当前位置:文档之家› 流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础
流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础

本章是流体动力学的基础。主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念

1.流线

(1)流线的定义

流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。图3-1为流线谱中显示的流线形状。

(2)流线的作法:

在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2

(3)流线的性质(图3-3)

a.同一时刻的不同流线,不能相交。图3-3

因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)

根据流线的定义,可以求得流线的微分方程:图3-4

设d s为流线上A处的一微元弧长:

u为流体质点在A点的流速:

因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即

展开后得到:——流线方程(3-1)

(或用它们余弦相等推得)

2.迹线

(1)迹线的定义

迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程

(3-2)

式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。图3-5

注意:流线和迹线微分方程的异同点。

——流线方程

3.色线(colouring line)

又称脉线,是源于一点的很多流体质点在同一瞬时的连线。

例如:为显示流动在同一点投放示踪染色体的线,以及香烟线都是色线。图3-6

考考你:在恒定流中,流线、迹线与色线重合。

流线、迹线、色线的比较:

概念名

流线是表示流体流动趋势的一条曲线,在同一瞬时线上各质点的速度向量都与其相切,它描述了流场中不同质点在同一时刻的运动情况。

流线方程为:式中时间t为参变量。

迹线迹线是指某一质点在某一时刻内的运动轨迹,它描述流场中同一质点在不同时刻的运动情况。

迹线方程为:式中时间t为自变量。

脉线脉线(色线)是指源于一点的很多流体质点在同一瞬时的连线。

例1如图3-7,已知流速场为,其中C为常数,求流线方程。

解:由式得

积分得:

则:

此外,由得:

图3-7 因此,流线为Oxy平面上的一簇通过原点的直线,这种流动称为平面点源流动(C>0时)或平面点汇流动(C<0时)

例2已知平面流动

试求:(1)t=0时,过点M(-1,-1)的流线。(2)求在t=0时刻位于x=-1,y=-1点处流体质点的迹线。

解:(1)由式(2)由式

得得

得:

由t=0时,x=-1,y=-1得C1=0, C2=0,则有:

将:t=0,x=-1,y=-1 代入得瞬时流线

xy=1 最后可得迹线为:

即流线是双曲线。

例3已知流动速度场为

试求:(1)在t= t0瞬间,过A(x0,y0,z0)点的流线方程;

(2)在t= t0瞬间,位于A(x0,y0,z0)点的迹线方程。

解:(1)流线方程的一般表达式为

将本题已知条件代入,则有:

积分得:(1+t)ln x = ln y + ln C'

当t= t0时,x=x0,y=y0,则有

故过A(x0,y0,z0)点的流线方程为

(2)求迹线方程

迹线一般表达式为

代入本题已知条件有:

由(1)式得:

当t= t0时,x=x0代入上式得

由(2)式得:

当t= t0时,y= y0代入上式得

故迹线方程为

t是自变量,消t后得到的轨迹方程为迹线方程:

二、流体流动的分类

1.层流与紊流

(1)层流的定义

层流(laminar flow)(图3-8)图3-8

亦称片流,是指流体质点不互相混杂,流体质点作有条不紊的有序的直线运动。

特点:

(1)有序性。

(2)水头损失与流速的一次方成正比。

(3)在流速较小且雷诺数Re较小时发生。图3-9

层流遵循牛顿内摩擦定律,粘性抑制或约束质点作横向运动。

紊流

紊流(turbulent flow)(图3-10)

亦称湍流,是指随流速增大,流层逐渐不稳定,质点相互混掺,流体质点沿很不规则的路径运动。

特点:

(1)无序性、随机性、有旋性、混合性。

(2)水头损失与流速的1.75~2次方成正比。

(3)在流速较大且雷诺数较大时发生。图3-10

紊流是工程实践中最常见的一种流动,如图3-9,紊流微团不仅有横向脉动,而且有相对于流体总运动的反向运动,紊流中质点运动要素具有随机性,流速的大小方向随机变化,没有两个流体质点可以沿着同样的、甚至相似的路径运动。紊流就是压力表指针不断摆动的原因。

想一想:城市污水管网中的出水口(淹没出流)附近的流体流动属于(层流,紊流)。

2.恒定流与非恒定流

(1)恒定流定义

恒定流(steady flow):又称定常流,是指流场中的流体流动,空间点上各水力运动要素均不随时间而变化。(图3-11)

即:

图3-11

三者都等于0。

(2)注意严格的恒定流只可能发生在层流,在紊流中,由于流动的无序,其流速或压强总有脉动,

但若取时间平均流速(时均流速),若其不随时间变化,则认为该紊流为恒定流。

非恒定流

(1)定义

非恒定流(unsteady flow):又称非定常流,是指流场中的流体流动空间点上各水力运动要素中,只要有任何一个随时间的变化而变化的流动。(图3-12)

即:

三者中至少一个不等于0。图3-12 (2)注意

在非恒定流情况下,流线的位置随时间而变;流线与迹线不重合。

在恒定流情况下,流线的位置不随时间而变,且与迹线重合。

问题:恒定流是:

A、流动随时间按一定规律变化;

B、流场中任意空间点的运动要素不随时间变化;

C、各过流断面的速度分布相同;

D、各过流断面的压强相同。

问题:非恒定流是:

A、;

B、;

C、;

D、。

3.均匀流与非均匀流

按质点运动要素是否随流程变化分为:

均匀流——流线是平行直线的流动,。(图3-13)

均匀流中各过水断面上的流速分布图沿程不变,过水断面是平面,沿程各过水断面的形状和大小都保持一样。例:等直径直管中的液流或者断面形状和水深不变的长直渠道中的水流都是均匀流。

图3-13

非均匀流——流线不是平行直线的流动,。

非均匀流中流场中相应点的流速大小或方向或同时二者沿程改变,即沿流程方向速度分布不均。例:流体在收缩管、扩散管或弯管中的流动。(非均匀流又可分为急变流和渐变流)

想一想:何谓均匀流及非均匀流?以上分类与过流断面上流速分布是否均匀有无关系?

答案:均匀流是指流线是平行直线的流动,。

非均匀流是流线不是平行直线的流动,。

这个分类与过流断面上流速分布是否均匀没有关系。

4.渐变流与急变流

非均匀流中如流动变化缓慢,流线的曲率很小接近平行,过流断面上的压力基本上是静压分布者为渐变流(gradually varied flow),否则为急变流。

渐变流——沿程逐渐改变的流动。(图3-14)

图3-14

特征:流线之间的夹角很小即流线几乎是平行的,同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流,过水断面可看作是平面。渐变流的加速度很小,惯性力也很小,可以忽略不计。

急变流——沿程急剧改变的流动。

特征:流线间夹角很大或曲率半径较小或二者兼而有之,流线是曲线,过水断面不是一个平面。急变流的加速度较大,因而惯性力不可忽略。

想一想:何谓渐变流,渐变流有哪些重要性质?

答案:渐变流是指沿程逐渐改变的流动。渐变流的性质:流线之间的夹角很小即流线几乎是平行的,同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流,过水断面可看作是平面。渐变流的加速度很小,惯性力也很小,可以忽略不计。

按液流运动要素所含空间坐标变量的个数分:

一元流

一元流(one-dimensional flow):流体在一个方向流动最为显著,其余两个方向的流动可忽略不计,即流动流体的运动要素是一个空间坐标的函数。若考虑流道(管道或渠道)中实际液体运动要素的断面平均值,则运动要素只是曲线坐标s的函数,这种流动属于一元流动。(图3-15)

图3-15

二元流

二元流(two-dimensional flow):流体主要表现在两个方向的流动,而第三个方向的流动可忽略不计,即流动流体的运动要素是二个空间坐标(不限于直角坐标)函数。(图3-16)

图3-16 图3-17 如实际液体在圆截面(轴对称)管道中的流动,如图3-17,运动要素只是柱坐标中r, x的函数而与 角无关,这是二元流动。又如在x方向很长的滚水坝的溢流流动,可以认为沿x轴方向没有流动,仅在O yz一系列平行的平面上流动,而且这些平面上各点的流动状态相同,其运动要素只与两个位置坐标(y,z) 有关,因而只需研究平行平面中任一个平面上的流动情况。

问题:一元流动是:

A、均匀流;

B、速度分布按直线变化;

C、运动参数是一个空间坐标和时间变量的函数;

D、限于直线流动。

拉格朗日法

拉格朗日方法(lagrangian method)是以流场中每一流体质点作为描述对象的方法,它以流体个别质点随时间的运动为基础,通过综合足够多的质点(即质点系)运动求得整个流动。——质点系法空间坐标

(a,b,c)为t=t0起始时刻质点所在的空间位置坐标,称为拉格朗日数。所以,任何质点在空间的位置(x,y,z)都可看作是(a,b,c)和时间t的函数

(1)(a,b,c)=const , t为变数,可以得出某个指定质点在任意时刻所处的位置。

(2)(a,b,c)为变数,t=const,可以得出某一瞬间不同质点在空间的分布情况。

由于位置又是时间t的函数,对流速求导可得加速度:

速度加速度

由于流体质点的运动轨迹非常复杂,而实用上也无须知道个别质点的运动情况,所以除了少数情况(如波浪运动)外,在工程流体力学中很少采用。

欧拉法

欧拉法(euler method)是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。——流场法

它不直接追究质点的运动过程,而是以充满运动液体质点的空间——流场为对象。研究各时刻质点在流场中的变化规律。将个别流体质点运动过程置之不理,而固守于流场各空间点。通过观察在流动空间中的每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个流体的运动情况。

流场运动要素是时空(x,y,z,t)的连续函数:

速度

(x,y,z,t)——欧拉变量

因欧拉法较简便,是常用的方法。

欧拉加速度

质点的加速度(流速对时间求导)由两部分组成:

(1)时变加速度(当地加速度)(local acceleration)——流动过程中流体由于速度随时间变化而引起的加速度;

(2)位变加速度(迁移加速度)(connective acceleration)——流动过程中流体由于速度随位置变化而引起的加速度。

由于位置又是时间t的函数,所以流速是t的复合函数,对流速求导可得加速度:

代入上式得:

(3-3) 等号右边第一项是时变加速度;后三项是位变加速度;

在恒定流中,流场中任意空间点的运动要素不随时间变化,所以时变加速度等于零;在均匀流中,质点运动速度不随空间位置变化,所以位变加速度等于零。

1、在水位恒定的情况下:

(1)A→A'不存在时变加速度和位变加速度。(2)B→B'不存在时变加速度,但存在

位变加

速度。

图3-19

2、在水位变化的情况下:

(1)A→A'存在时变加速度,但不存在位变加速度。

(2)B→B'既存在时变加速度,又存在位变加速度。

问题:均匀流是:

A、当地加速度为零;

B、迁移加速度为零;

C、向心加速度为零;

D、合加速度为零。思考题

1.什么是流线、迹线、色线?它们有何区别?

流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。迹线(path line)是指某一质点在某一时段内的运动轨迹线。色线又称脉线,是源于一点的很多流体质点在同一瞬时的连线。

2.流线、迹线各有何性质?色线有些什么作用?

流线的性质: a、同一时刻的不同流线,不能相交。 b、流线不能是折线,而是一条光滑的曲线。 c、流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。色线可用来显示流体的流动轨迹。

3.实际水流中存在流线吗?引入流线概念的意义何在?

不存在。引入流线概念是为了便于分析流体的流动,确定流体流动趋势。

4.“只有当过水断面上各点的实际流速均相等时,水流才是均匀流”,该说法是否正确?为什么?

不对。均匀流是指运动要素沿程不发生改变,而不是针对一过水断面。

5. 恒定流、均匀流等各有什么特点?

答案:恒定流是指各运动要素不随时间变化而变化,,恒定流时流线迹线重合,且时变加速度等于0。

均匀流是指各运动要素不随空间变化而变化,,均匀流时位变加速度等于0。

6.欧拉法、拉格朗日方法各以什么作为其研究对象?对于工程来说,哪种方法是可行的?

欧拉法以流场为研究对象,拉格朗日方法以流体质点为研究对象;在工程中,欧拉法是可行的。

第二节 流体质点运动特点和有旋流

一、流体质点的运动特点

图3-20(a) 图3-20(b)

刚体的运动是由平移和绕某瞬时轴的转动两部分组成,如图3-20(a)。 流体质点的运动,一般除了平移、转动外,还要发生变形(角变形和线变形),如图3-20(b)。

二、角速度的数学表达式

流体质点的旋转用角速度表征,习惯上是把原来互相垂直的两邻边的角速度平均值定义为该转轴的角速度。

图3-21中Oxy 平面内,质点ABCD 经过 t 时间后到达A'B'C'D',初始位置在Oxy 平面上A 点的流速 为u x ,u y

3-21

顺时针为负;逆时针为正。

转角

顺时针

逆时针

角速度(3-4)

三、有旋流和无旋流

根据流体质点是否绕自身轴旋转,可分为有旋流和无旋流。

1.定义

有旋流(vortex):亦称“涡流”。流体质点(微团)在运动中不仅发生平动(或形变),而且绕着自身的瞬时轴线作旋转运动。

如旋风即为空气的涡流。当流体速度变化较大,由于流体粘滞阻力、压强不均匀等因素的影响,就容易形成涡流。

无旋流(potential flow)亦称“势流”、“有势流”。流体在运动中,它的微小单元只有平动或变形,但不发生旋转运动,即流体质点不绕其自身任意轴转动。

注意:无旋流和有旋流决定于流体质点本身是否旋转,而与运动轨迹无关。

图3-22

2.有旋流和无旋流的特性

(1)若ωx=ωy=ωz=0,即

(3-5)

则流动为无旋流,否则,为有旋流。

有旋流(涡流)——ωx、ωy、ωz中任一个或全部不等于零的流体运动,绕自身轴有旋转的运动。(与通常的旋转不同)流场内流体质点具有绕质点自身任意轴的角速度。

例:已知流体流动的流速场为,判断该流动是无旋流还是有旋流?

解:

;;

故液体流动是无旋流。

(2)有旋流的特征是存在角速度。角速度是一个矢量,所以可如同用流线描述流动一样,可用涡线描述流动的旋转变化。

涡线——在同一瞬时线上各质点的转速矢量都与该曲线相切。

无旋流一般存在于无粘性理想流体中。有旋流一般存在于有粘性实际流体中,但在粘性流体中的层状渗流也可看作是无旋流。

想一想:1.粘性流有可能是无旋流吗?为什么?

可能;粘性可忽略的情况。例如水和空气,静止时是无涡的,由于它们的粘滞性很小,当它们由静止过渡到运动时,在短距离内可以认为是无涡运动。又如水从水库或大小水箱流入容器时可认为是无涡流动。再如在很宽的矩形顺坡渠道中,在距渠壁较远的纵剖面上,液体质点也可以认为是无旋流。

2.什么是有旋流、无旋流?它们各有什么特点?

答案:有旋流:质点具有绕自身任意轴旋转的角速度,ωx、ωy、ωz中至少有一个不等于0。

无旋流:质点不具有绕自身任意轴旋转的角速度,即ωx=ωy=ωz=0。

第三节流体动力学基本方程式

一、连续性微分方程

在流场内取一微元六面体(如图3-23),边长为d x,d y,d z,中心点O流速为(u x,u y,u z)

以x轴方向为例:

图3-23

左表面流速

右表面流速

所以单位时间内x方向流出流进的质量流量差:

x方向:

同理可得:

y方向:

z方向:

质量守恒定律:单位时间内流出与流入六面体的流体质量差之总和应等于六面体内因密度变化而减少的质量,即:

(3-6)

(1)流体的连续性微分方程的一般形式

由(3-6)式可得

(3-7)适用范围:理想流体或实际流体;恒定流或非恒定流;可压缩流体或不可压缩流体。

(2)可压缩流体恒定流动的连续性微分方程

当为恒定流时,有,则(3-7)式为

(3-8) 适用范围:理想、实际、可压缩、不可压缩的恒定流。

(3)不可压缩流体的连续性微分方程

当为不可压缩流时,有,则(3-7)式为

(3-

9)物理意义:不可压缩流体单位时间内流入单位空间的流体体积(质量),与流出的流体体积(质量)之差等于零。

适用范围:理想、实际、恒定流或非恒定流的不可压缩流体流动。

例:有二种的二元液流,其流速可表示为:(1)u x= -2y, u y=3x;(2)u x=0, u y=3xy。

试问这两种液流是不可压缩流吗?

解:(1)

符合不可压缩流的连续性方程。

所以是不可压缩流。

(2)

不符合不可压缩流的连续性方程。

所以不是不可压缩流。

算一算:不可压缩流体对下面的运动是否满足连续性条件?

(1)

(2)

(3)

(1)不连续;(2)连续;(3)连续

二、理想流体运动微分方程

理想流体的动水压强特性与静水压强特性相同:

从理想流体中任取一(x,y,z)为中心的微元六面体为控制体,边长为d x,d y,d z,中心点压强为p(x,y,z) ,如图3-24。

受力分析(x方向为例):

1.表面力

因为理想流体,所以t=0

左表面

右表面图3-24

2.质量力

单位质量力在各坐标轴上分量为X,Y,Z,所以x方向的质量力为X d x d y d z

由牛顿第二运动定律,x方向有:

理想流体的运动微分方程(欧拉运动微分方程)

(3-10)适用范围:恒定流或非恒定流,可压缩流或不可压缩流体。

若加速度等于0,则上式就可转化为欧拉平衡微分方程(2-6)式

考考你:在什么情况下,加速度会等于0,从而使(3-10)式转化为(2-6)式?

当流体处于静止或相对平衡状态时

三、粘性流体的运动微分方程

1.粘性流体的特点

(1)实际流体的面积力包括:压应力和粘性引起的切应力。

切应力由广义牛顿内摩擦定律确定:

错误!}

(2)实际的流动流体任一点的动压强,由于粘性切应力的存在,各向大小不等,即p xx≠ p yy≠ p zz。任一点动压强由式(2-5)为:

(3-11)2.实际流体的运动微分方程式

图3-25

同样取一微元六面体作为控制体,如图3-25。

x向受力

左右向压力、上下向切力、前后面切力、质量力

x方向(牛顿第二运动定律)

考虑条件: 1)不可压缩流体的连续性微分方程(3-9):

2)切应力与主应力的关系表达式(3-11)。

可得不可压缩粘性流体运动微分方程:

纳维-斯托克斯方程(Navier-Stokes,N-S)方程

(3-12)

拉普拉斯算符,例:

想一想:N-S方程与欧拉运动微分方程有何联系?

N-S方程是不可压缩粘性流体的运动微分方程,而欧拉运动微分方程则是理想流体的运动微分方程。当流动流体的运动粘度等于0,即为理想流体时,N-S方程即为欧拉运动微分方程。

第四节欧拉运动微分方程的积分

由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分,只能在一定条件下积分。欧拉运动微分方程组(3-10)各式分别乘以d x,d y,d z(流场任意相邻两点间距d s的坐标分量),然而相加得:

(3-13)

一、在势流条件下的积分

考虑条件

1.恒定流:;

2.均匀不可压缩流体,即 =const,;

3.质量力只有重力,即X=Y=0,Z=-g;

4.有势流动,满足式(3-5):;

因此,(3-13)式中各项为:

(考虑欧拉加速度的表达式(3-3))

(引入有势流动的条件4)

由以上得:

积分得:

理想势流伯努利方程

(3-14)

或(3-15)

物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C均相等。

(应用条件:“”所示)

符号说明

物理意义几何意义

单位重流体的位能(比位能)位置水头

单位重流体的压能(比压能)压强水头

单位重流体的动能(比动能)流速水头

流体力学公式总结(完整资料).doc

【最新整理,下载后即可编辑】 工程流体力学公式总结 第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: T V V ??=1αp V V ??-=1κV P V K ??- =κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm ·a 离心惯性力ΔFR = Δm ·rω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即: p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??- =ρ

高等计算流体力学讲义(2)

高等计算流体力学讲义(2) 第二章 可压缩流动的数值方法 §1. Euler 方程的基本理论 0 概述 在计算流体力学中,传统上,针对可压缩Navier -Stokes 方程的无粘部分和粘性部分分别构造数值方法。其中最为困难和复杂的是无粘部分的离散方法;而粘性项的离散相对简单,一般采用中心差分离散。所以,本章主要研究无粘的Euler 方程的解法。在推广到Navier -Stokes 方程时,只需在Euler 方程的基础上,加上粘性项的离散即可。Euler 方程是一种典型的非线性守恒系统。下面我们将讨论一般的非线性守恒系统以及Euler 方程的一些数学理论,作为研究数值方法的基础。 1非线性守恒系统和Euler 方程 一维一阶非线性守恒系统(守恒律)可写为下列一般形式 =??+??x F t U ,0,>∈t R x (1) 其中U 称为守恒变量,是有m 个分量的列向量,即T m u u u U ),...,(21=。T m f f f F ),...,(21=称为通量函数,是U 的充分光滑的函数,且满足归零条件,即: 0)(lim =→U F U 即通量是对守恒变量的输运,守恒变量为零时,通量也为零。 守恒律的物理意义 设U 的初始值为:0(,0)(),U x U x x =∈R 。如果0()U x 在x ∈R 中有紧支集(即0U 在有限区域以外恒为零),则0(,)()U x t dx U x dx =??R R 。即此时虽然(,)U x t 的分布可以随时 间变化,但其总量保持守恒。 多维守恒律可以写为 )(=++??+??k H j G i F t U (2) 守恒律的空间导数项可以写为散度形式。 守恒系统(1)可以展开成所谓拟线性形式

流体力学期末复习资料(精选.)

1、流体运动粘度的国际单位为m^2/s 。 2、流体流动中的机械能损失分为沿程损失和局部损失两大类。 3、当压力体与液体在曲面的同侧时,为实压力体。 4、静水压力的压力中心总是在受压平面形心的下方。 5、圆管层流流动中,其断面上切应力分布与管子半径 的关系为线性关系。 6、当流动处于紊流光滑区时,其沿程水头损失与断面 平均流速的1.75 次方成正比。 7、当流动处于湍流粗糙区时,其沿程水头损失 与断面平均流速的2 次方成正比。 8、圆管层流流动中,其断面平均流速与最大流速的比值为1/2 。 9、水击压强与管道内流动速度成正比关系。 10、减轻有压管路中水击危害的措施一般有:延长阀门关闭时间, 采用过载保护,可能时减低馆内流速。 11、圆管层流流动中,其断面上流速分布与管子半径的关系为二次抛物线。 12、采用欧拉法描述流体流动时,流体质点的加速度由当地加速度和迁移加速度组成。 13流体微团的运动可以分解为: 平移运动、线变形运动、角变形运动、旋转运动。 14、教材中介绍的基本平面势流分别为:点源、点汇、点涡、均匀直线流。 15、螺旋流是由点涡和点汇两种基本势流 所组成。 16、绕圆柱体无环量流动是由偶极流和 平面均匀流两种势流所组成。 17、流动阻力分为压差阻力和摩擦阻力。 18、层流底层的厚度与雷诺数成反比。 19、水击波分为直接水击波和间接水击波。 20、描述流体运动的两种方法为 欧拉法和拉格朗日法。 21、尼古拉兹试验曲线在对数坐标中的图像分为5个区域,它们依次为: 层流层、层流到紊流过渡区、紊流区、 紊流水力粗糙管过渡区、紊流水力粗糙管平方阻力区。 22、绕流物体的阻力由和两 部分组成。 二、名词解释 1、流体:在任何微小剪力的持续作用下能够连续不断变形的物质 2、牛顿流体:把在作剪切运动时满足牛顿内摩擦定律的流体称为牛顿流体。 3、等压面:在流体中,压强相等的各点所组成的面称为等压面。 4、流线:流线是某一瞬时在流场中所作的一条曲线,在这条曲线上的各流体的速度方向都与该曲线相切。 5、流管:过流管横截面上各点作流线,则得到充满流管的医术流线簇 6、迹线:流场中某一质点的运动轨迹。

流体力学课后习题答案

【2012年】《液压与气压传动》继海宋锦春高常识-第1-7章课后答案【最新经典版】 1.1 液体传动有哪两种形式?它们的主要区别是什么? 答:用液体作为工作介质来进行能量传递的传动方式被称之为液体传动。按照其工作 原理的不同,液体传动又可分为液压传动和液力传动,其中液压传动是利用在密封容器 液体的压力能来传递动力的;而液力传动则的利用液体的动能来传递动力的。 1.2 液压传动系统由哪几部分组成?各组成部分的作用是什么? 答:(1)动力装置:动力装置是指能将原动机的机械能转换成为液压能的装置,它是 液压系统的动力源。 (2)控制调节装置:其作用是用来控制和调节工作介质的流动方向、压力和流量,以 保证执行元件和工作机构的工作要求。 (3)执行装置:是将液压能转换为机械能的装置,其作用是在工作介质的推动下输出 力和速度(或转矩和转速),输出一定的功率以驱动工作机构做功。 (4)辅助装置:除以上装置外的其它元器件都被称为辅助装置,如油箱、过滤器、蓄 能器、冷却器、管件、管接头以及各种信号转换器等。它们是一些对完成主运动起辅助作

用的元件,在系统中是必不可少的,对保证系统正常工作有着重要的作用。(5)工作介质:工作介质指传动液体,在液压系统常使用液压油液作为工作介质。 1.3 液压传动的主要优缺点是什么? 答:优点:(1)与电动机相比,在同等体积下,液压装置能产生出更大的动力,也就 是说,在同等功率下,液压装置的体积小、重量轻、结构紧凑,即:它具有大的功率密度 或力密度,力密度在这里指工作压力。 (2)液压传动容易做到对速度的无级调节,而且调速围大,并且对速度的调节还可 以在工作过程中进行。 (3)液压传动工作平稳,换向冲击小,便于实现频繁换向。 (4)液压传动易于实现过载保护,能实现自润滑,使用寿命长。 (5)液压传动易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调 节和控制,并能很容易地和电气、电子控制或气压传动控制结合起来,实现复杂的运动和 操作。 (6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用。答:缺点:(1)由于液压传动中的泄漏和液体的可压缩性使这种传动无法保证严格

(完整版)工程流体力学课后习题(第二版)答案.doc

第一章绪论1-1. 20℃的水 2.5m 3,当温度升至80℃时,其体积增加多少?[ 解 ] 温度变化前后质量守恒,即1V12V2 又20℃时,水的密度80℃时,水的密度1998.23kg / m3 2971.83kg / m3 V2 1V 1 2.5679m3 2 则增加的体积为V V2 V1 0.0679 m3 1-2.当空气温度从0℃增加至 20℃时,运动粘度增加15%,重度减少 10% ,问此时动力粘度增加多少(百分数)? [ 解 ] (1 0.15) 原 (1 0.1) 原 1.035 原原 1.035 原 原 1.035 原原 0.035 原原 此时动力粘度增加了 3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为u 0.002 g( hy 0.5y2 ) /,式中、分别为水的密度和动力粘度,h 为水深。试求h 0.5m 时渠底(y=0)处的切应力。 [ 解 ] du 0.002 g (h y) / dy du 0.002 g(h y) dy 当h =0.5m,y=0时 0.002 1000 9.807(0.50) 9.807Pa 1-4.一底面积为 45× 50cm2,高为 1cm 的木块,质量为 5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度 u=1m/s,油层厚 1cm,斜坡角 22.620(见图示),求油的粘度。 u

[ 解 ] 木块重量沿斜坡分力 F 与切力 T 平衡时,等速下滑 mg sin T A du dy mg sin 5 9.8 sin 22.62 A u 0. 4 0.45 1 0.001 0.1047 Pa s 1-5.已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律 du ,定性绘出切应力 dy 沿 y 方向的分布图。 y y y u u u u u u [ 解 ] y y y = 0 = 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 0.9mm ,长度 20mm ,涂料 的粘度 =0.02Pa . s 。若导线以速率 50m/s 拉过模具,试求所需牵拉力。 (1.O1N ) [ 解 ] A dl 3.14 0.8 10 3 20 10 3 5.024 10 5 m 2

流体力学资料复习整理

流体复习整理资料 第一章 流体及其物理性质 1、流体的特征——流动性: 在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。也可以说能够流动的物质即为流体。 流体在静止时不能承受剪切力,不能抵抗剪切变形。 流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。 只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。 运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不就是变形的大小(与弹性体的不同之处)。 2、流体的重度:单位体积的流体所的受的重力,用γ表示。 g 一般计算中取9、8m /s 2 3、密度:=1000kg/,=1、2kg/,=13、6,常压常温下,空气的密度大约就是水的1/800 3、 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。通常液体与低速流动的气体(U<70m /s)可作为不可压缩流体处理。 4、压缩系数: 弹性模数:21d /d p p E N m ρβρ== 膨胀系数:)(K /1d d 1d /d T V V T V V t ==β 5、流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就就是粘滞性。流体的粘性就就是阻止发生剪切变形的一种特性,而内摩擦力则就是粘性的动力表现。温度升高时,液体的粘性降低,气体粘性增加。 6、牛顿内摩擦定律: 单位面积上的摩擦力为: 内摩擦力为: 此式即为牛顿内摩擦定律公式。其中:μ为动力粘度,表征流体抵抗变形的能力,它与密度的比值称为流体的运动粘度ν 内摩擦力就是成对出现的,流体所受的内摩擦力总与相对运动速度相反。为使公式中的τ值既能反映大小,又可表示方向,必须规定:公式中的τ就是靠近坐标原点一侧(即,其大小为μ du/dy,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。 粘性受温度影响明显: 气体粘性:分子热运动, 温度升高,粘性增加;液体粘性:分子间吸引力,温度升高,粘性下降。 7、理想流体:粘性系数很小,可以忽略粘性的流体 , 第二章 流体静力学 3 /g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m N V p p ρβρ=-=h U μτ=dy du A h U A A T μμτ===ρ μν=0=μ

流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。 第一节流体微团的运动分析 运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。 在直角坐标系中取微小立方体进行研究。

一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。 二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了 dy y u y ??,而 y u y ??就代表1=dy 时液体基体运动时,在单位时间内沿 y 轴方向的伸长率。 x u x ??,y u y ??,z u z ?? 三、角变形(角变形速度) d d d D C A B C D B A

dt y u dy dt dy y u d x x ??=???=α dt x u dx dt dx x u d y y ??=???=β θβθα+=-d d 2 βαθd d -= ∴ 角变形: ???? ????+??=+=-=x u y u d d d y x z 212βαθαθ ?? ? ????+??= x u z u z x y 21θ ???? ????+??=y u z u z y x 21θ 四、旋转(旋转角速度) ??? ? ????-??=-=y u x u x y z 21θω ??? ? ????-??=z u y u y z x 21ω 即, ?? ? ????-??=x u z u z x y 21ω z y x u u u z y x k j i ??????= 21ω 那么,代入欧拉加速度表达式,得: z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t x u u u u u u u u dt t y u u u u u u u u dt t z αθθωωαθθωωαθθωω??? = =++++-???? ????==++++-???? ????==++++-? ??? 各项含义: (1) 平移速度 (2)线变形运动所引起的速度增量

流体力学资料复习整理

流体复习整理资料 第一章 流体及其物理性质 1.流体的特征——流动性: 在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。也可以说能够流动的物质即为流体。 流体在静止时不能承受剪切力,不能抵抗剪切变形。 流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。 只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。 运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。 2.流体的重度:单位体积的流体所的受的重力,用γ表示。 g 一般计算中取9.8m /s 2 3.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/800 3. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。 4.压缩系数: 弹性模数:21d /d p p E N m ρβρ== 膨胀系数:)(K /1d d 1d /d T V V T V V t ==β 5.流体的粘性:运动流体存在摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。流体的粘性就是阻止发生剪切变形的一种特性,而摩擦力则是粘性的动力表现。温度升高时,液体的粘性降低,气体粘性增加。 6.牛顿摩擦定律: 单位面积上的摩擦力为: 摩擦力为: 此式即为牛顿摩擦定律公式。其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν 摩擦力是成对出现的,τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。 3 /g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m N V p p ρβρ=-=h U μτ=dy du A h U A A T μμτ===ρ μν=

(完整版)工程流体力学课后习题(第二版)答案

第一章绪论 3 1-1. 20C的水2.5m,当温度升至80C时,其体积增加多少? [解]温度变化前后质量守恒,即V 2V 3 又20C时,水的密度i 998.23kg /m 3 80C 时,水的密度 2 971.83kg/m3 V2— 2.5679m3 2 3 则增加的体积为V V V i 0.0679m 1-2.当空气温度从0C增加至20C时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解](1 0.15)原(1 0.1)原 1.035原原1.035原 原 1.035原原 0.035 原原 此时动力粘度增加了 3.5% 1-3?有一矩形断面的宽渠道,其水流速度分布为u 0.002 g(hy 0.5y2)/ ,式中、分别为水的密度和动力粘度,h为水深。试求h 0.5m时渠底(y=0)处的切应力。 [解]——0.002 g(h y)/ dy 0.002 g(h y) dy 当h =0.5m , y=0 时 0.002 1000 9.807(0.5 0) 9.807Pa 1-4.一底面积为45 x 50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度。

[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑 mg sin du T A dy mg sin A U 5 9.8 sin 22.62 1 0.4 0.45 - 0.001 0.1047 Pa s 1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律 沿y方向的分布图。 3 3 5 2 [解] A dl 3.14 0.8 10 20 10 5.024 10 m 石,定性绘出切应力 1-6 ?为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 的粘度=0.02Pa. s。若导线以速率50m/s拉过模具,试求所需牵拉力。 0.9mm,长度20mm,涂料 (1.O1N) y

高等流体力学复习资料

扩散:指流体在没有对流混合情况下,流体由分子的随机运动引起的质量传递的一种性质。 本构方程:是反应物体的外部效应与内部结构之间关系的方程。对动力的粘性流体而言,外部黏性应力与内部变形速度之间的关系成为本构方程。 变形速度张量:[]? ???? ?????=zz zy zx yz yy yx xz xy xx s εεεεεεεεε,,,,,,,其中,z y v x zz yy xx ??= ??=??=ω εεμε,,, ???? ????+??==x v y yx xy μεε21,??? ????+??==z x zx xz μωεε21,??? ? ????+??==y z v zy yz ωεε21 雷诺应力:在不可压缩流体的雷诺方程中,j i -μμρ称为雷诺应力(i ,j>1,2,3)当i=j 时为法相雷诺应力,不等时称为均向雷诺应力。 镜像法:是确定干扰后流场的方法之一,是一种特别的奇点法。 粘性:流体微团发生相对滑移时产生切向阻力的性质。 不可压缩流体: 0=Dt D ρ 的流体称为不可压缩流体。不可压缩均质流体:C =ρ 可压缩流体:密度随温度和压强变化的流体称为可压缩流体。 紊流:是一种随机的三维非定常有旋流动。紊流的基本特征:1,不规则流动状态;2,参数随时间空间随机变化;3,空间分布大小形状各不相同漩涡;4,具有瞬息万变的流动特征;5,流动参数符合概率规律;6,相邻参数有关联。 流体:通常说能流动的物质为流体,液体和气体易流动,我们把液体和气体称之为流体。严格地说:在任何微小剪切力的持续作用下,能够连续不断变形的物质称为流体,流体显然不能保持一定的形状,即具有流动性。 耗散函数:i i ij x p ??μ' 称为耗散函数Γ,Γ表示单位时间内单位体积流体由机械能耗散成热能 i i ij ij i i ij x v div x p ????????+??? ??-=??=Γμμεδμμμ232'' 应力张量:[]??? ? ??????=zz zy zx yz yy yx xz xy xx p p p p p p p p p p ,,,,,,称为应力张量,它是描述运动黏性流体内任一点应力 状态的物理量。

《工程流体力学》综合复习资料(DOC)

《工程流体力学》综合复习资料 一、 单项选择 1、实际流体的最基本特征是流体具有 。 A 、粘滞性 B 、流动性 C 、可压缩性 D 、延展性 2、 理想流体是一种 的流体。 A 、不考虑重量 B 、 静止不运动 C 、运动时没有摩擦力 3、作用在流体的力有两大类,一类是质量力,另一类是 。 A 、表面力 B 、万有引力 C 、分子引力 D 、粘性力 4、静力学基本方程的表达式 。 A 、常数=p B 、 常数=+γ p z C 、 常数=+ +g 2u γp z 2 5、若流体内某点静压强为at p 7.0=绝,则其 。 A 、 at p 3.0=表 B 、Pa p 4 108.93.0??-=表 C 、 O mH p 27=水 真 γ D 、 mmHg p 7603.0?=汞 真 γ 6、液体总是从 大处向这个量小处流动。 A 、位置水头 B 、压力 C 、机械能 D 、动能 7、高为h 的敞口容器装满水,作用在侧面单位宽度平壁面上的 静水总压力为 。 A 、2 h γ B 、 2 2 1h γ C 、22h γ D 、h γ 8、理想不可压缩流体在水平圆管中流动,在过流断面1和2截面()21d d >上 流动参数关系为 。 A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< A 、2121,p p V V >> B 、2121,p p V V << C 、2121,p p V V <> D 、2121,p p V V >< 9、并联管路的并联段的总水头损失等于 。 A 、各管的水头损失之和 B 、较长管的水头损失

流体力学第二版课后习题答案

第一章习题答案 选择题(单选题) 1.1 按连续介质的概念,流体质点是指:(d ) (a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 1.2 作用于流体的质量力包括:(c ) (a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。 1.3 单位质量力的国际单位是:(d ) (a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。 1.4 与牛顿内摩擦定律直接有关的因素是:(b ) (a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。 1.5 水的动力黏度μ随温度的升高:(b ) (a )增大;(b )减小;(c )不变;(d )不定。 1.6 流体运动黏度ν的国际单位是:(a ) (a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。 1.7 无黏性流体的特征是:(c ) (a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合 RT p =ρ 。 1.8 当水的压强增加1个大气压时,水的密度增大约为:(a ) (a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。 1.9 水的密度为10003 kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==?=(kg ) 29.80719.614G mg ==?=(N ) 答:2L 水的质量是2kg ,重量是19.614N 。 1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807 899.3580.5 m G g V V ρ= ===(kg/m 3) 答:该油料的密度是899.358kg/m 3 。 1.11 某液体的动力黏度为0.005Pa s ?,其密度为8503 /kg m ,试求其运动黏度。

流体力学学习资料

《工程流体力学》典型习题(二) 1.已知转轴直径360mm d =,轴承长度1000mm L =,轴与轴承间隙 0.2mm δ=,其中充满动力黏度0.72pa.s μ=的润滑油,若轴的转速200rpm n =, 试求克服润滑油黏性阻力所消耗的功率 N 。 2.水塔供水系统如图所示。已知C 点供水流量为Q C =0.022m 3/s ,B 点出流量

4.如图所示,在40mm h =的两平行固定壁面间充满动力黏度=0.7Pa s μ?的液体,其中有一面积23600mm A =的薄板(平行于壁面)以15m/s U =的速度沿薄板所在平面内运动,假定壁面间速度呈线性分布。 试求当10mm y =时,薄板运动的液体阻力F 。 5.如题图所示的密封容器内盛有油(与水的相对密度0.8)和水两层液体,在油层中有一扇圆弧形闸门,其半径0.2m R =,宽0.4m B =,油水厚度均为0.2m h =,水银测压计中的液柱高也为0.2m h =,闸门的铰接点位于O 点。为使闸门关闭,试求所需的锁紧力F 。 6.如图所示的具有并联、串联管路的虹吸管,已知H =40m ,l 1=200m ,l 2=100m ,l 3=500m ,d 1=0.2m ,d 2=0.1m ,d 3=0.25m ,02.021==λλ,025.03=λ,求总流量Q 。 7.如图所示底宽b 1=b 2=2.0m 的矩形断面变坡棱柱形渠道(n 1=n 2),上游接水库,下游接跌坎。已知渠道进口断面水深h 1=1m ,部分渠段的水面曲线如图所示。 ① 试完成下游渠段的水面曲线连接(定性); ② 试根据水面曲线形状确定上、下游渠段坡度的缓急状态(急、缓坡); ③ 试求该渠道的通过流量Q ;

流体力学讲义

流体力学讲义 课程简介:流体力学是动力、能源、航空、环境、暖通、机械、力学等专业的重要基础课。本课程的任务是系统介绍流体的力学性质、流体力学的基本概念和观点、基础理论和常用分析方法、有关的工程应用知识等;培养学生具有对简单流体力学问题的分析和求解能力,掌握一定的实验技能,为今后学习专业课程,从事相关的工程技术和科学研究工作打下坚实基础。 流体力学学科既是基础学科,又是用途广泛的应用学科;既是古老的学科,又是不断发展、充满活力的学科。当前,流体力学进入了一个新的发展时期:分析手段更加先进,与各类工程专业结合更为密切,与其他学科的交叉渗透更加广泛深入。但由于流体力学理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。为改进流体力学教学质量,所以,我们采用多媒体教学的方式,尽可能多地给学生提供大量的图片,增加感性认识。 学生在学习的过程中,要特别注意学习目标、学习方法、重点内容、注意事项等问题。 第一章绪论 第一节工程流体力学的研究对象、内容和方法 一、研究对象和内容 研究对象和内容:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体力学是一门基础性很强和应用性很广的学科,是力学的一个重要分支。它的研究对象随着生产的需要与科学的发展在不断地更新、深化和扩大。60年代以前,它主要围绕航空、航天、大气、海洋、航运、水利和各种管路系统等方面,研究流体运动中的动量传递问题,即局限于研究流体的运动规律,和它与固体、液体或大气界面之间的相互作用力问题。60年代以后,能源、环境保护、化工和石油等领域中的流体力学问题逐渐受到重视,这类问题的特征是:尺寸小、速度低,并在流体运动过程中存在传热、传质现象。这样,流体力学除了研究流体的运动规律以外,还要研究它的传热、传质规律。同样,在固体、液体或气体界面处,不仅研究相互之间的作用力,而且还需要研究它们之间的传热、传质规律。

流体力学习题及参考答案

09流体力学习题1及参考答案 一、单项选择题(共15分,每小题1分) 1、下列各力中,属于质量力的是( )。 A .离心力 B .摩擦力 C .压力 D .表面张力 2、下列关于流体粘性的说法中,不准确的说法是( )。 A .粘性是实际流体的固有属性 B .构成流体粘性的因素是流体分子间的吸引力 C .流体粘性具有传递运动和阻碍运动的双重性 D .动力粘度与密度之比称为运动粘度 3、在流体研究的欧拉法中,流体质点的加速度由当地加速度和迁移加速度组成,当地加速度反映()。 A .流体的压缩性 B .由于流体质点运动改变了空间位置而引起的速度变化率 C .流体速度场的不稳定性 D .流体速度场的不均匀性 4、重力场中流体的平衡微分方程为( )。 A .gdz dp -= B .gdz dp ρ= C .dz dp ρ-= D .gdz dp ρ-= 5、无旋流动是指( )的流动。 A .速度环量为零 B .迹线是直线 C .流线是直线 D .速度环量不为零 6、压强的量纲 []p 是( )。 A.[]2-MLt B.[]21--t ML C.[]11--t ML D.[]1 -MLt 7、已知不可压缩流体的流速场为 则流动不属于( )。 A .非均匀流 B .非稳定流动 C .稳定流动 D .三维流动 0 ),,() ,(?? ???===w t z x f z y f u υ

8、动量方程的适用条件是( ) 。 A .仅适用于理想流体作定常流动 B .仅适用于粘性流体作定常流动 C .适用于理想流体与粘性流体作定常或非定常流动 D .适用于理想流体与粘性流体作定常流动 9、在重力场中作稳定流动的系统,沿流动方向总水头线维持水平的条件是 ( ) 。 A .管道是水平放置的 B .流体为不可压缩流体 C .管道是等径管 D .流体为不可压缩理想流体 10、并联管道系统中,其各支管内单位质量流体的能量损失( )。 A .不相等 B .之和为总能量损失 C .相等 D .不确定 11、边界层的基本特征之一是( )。 A .边界层内流体的流动为层流 B .与物体的特征长度相比,边界层的厚度很小 C .边界层厚度沿流动方向逐渐减薄 D .边界层内流体的流动为湍流 12、指出下列论点中的错误论点:() A .平行流的等势线与流线相互平行 B .涡流的径向速度为零 C .无旋流动也称为有势流动 D .点源的圆周速度为零 13、关于涡流有以下的论点,指出其中的错误论点:( )。 A .以涡束诱导出的平面流动,称为涡流 B .点涡是涡流 C .涡流的流线是许多同心圆 D .在涡流区域速度与半径成正比 14、超音速气体在收缩管中流动时,气流速度()。 A .逐渐增大 B .不变 C .不确定 D .逐渐减小 15、为提高离心泵的允许安装高度,以下哪种措施是不当的?( ) A .提高流体的温度 B .增大离心泵吸入管的管径 C .缩短离心泵吸入管的管径 D .减少离心泵吸入管路上的管件 参考答案:1.A 2.B 3.C 4.D 5.A 6.B 7.C 8.D 9.D 10.C 11.B 12.A 13.D 14.D in out QV QV F )()(ρρ∑-∑=∑

流体力学考试复习资料考点(1)

一、流体力学及其研究对象 流体:液体和气体的总称。 流体力学:是研究流体的科学,即根据理论力学的普遍原理,借助大量的实际资料,运用数学和实验方法来研究流体的平衡和运动规律及其实际应用的一门科学。 流体力学研究的对象:液体和气体 流 二、流体的力学特性 1、流体与固体的区别主要在于受剪应力后的表现有很大的差异。 固体--能承受剪应力、压应力、张应力,没有流动性。 流体--只能承受压应力,不能承受拉力和剪力,否则就会变形流动,即流体具有流动性。 2、液体与气体的主要差别在于受压后的表现上的差异。

液体:受压后体积变化很小,常称不可压缩流体;液体的形状随容器的形状而变,但其体积不变。 气体:受压后体积变化很大,常称可压缩流体;气体的形状和体积都随容器而变。 注:气体的体积变化小于原体积的20%时,可近似看作不可压缩流体。 1.1.1流体的密度 1、流体密度的定义及计算 定义:单位体积流体的质量,以ρ表示,单位为kg/m3 (1)均质流体: 标态(2)混合流体: 混合气体: 混合液体: 2、流体的密度与温度、压力的关系 (1)液体:工程上,液体的密度看作与温度、压力无关。 (2)气体:与温度和压力有关。

理想气体: 或 工业窑炉:P=P0 分析:t↑ρ↓;t↓ρ↑ 1.1.2流体的连续性 流体的连续性:流体看成是由大量的一个一个的连续近质点组成的连续的介质,每个质点是一个含有大量分子的集团,质点之间没有空隙。质点尺寸:大于分子平均自由程的100倍。 连续性假设带来的方便: (1)它使我们不考虑复杂的微观分子运动,只考虑在外力作用下的宏观机械运动。 (2)能运用数学分析的连续函数工具。 【例题】已知烟气的体积组成百分组成为:H2O12%,CO218%,N270%,求此烟气标态在及200℃的密度。

高等流体力学讲义

高等流体力学 授课提纲 第一章概论 §1.1 流体力学的研究对象 §1.2 流体力学发展简史 §1.3 流体力学的研究方法 §1.3.1 一般处理途径 §1.3.2 应用数学过程 §1.3.3 流体力学方法论:一般方法 §1.3.4 流体力学方法论:特殊方法 ●Lagrange描述和Euler描述 ●无量纲化 ●线性化 ●分离变量法 ●积分变换法 ●保角映射法 ●奇点法(孤立奇点法、分布奇点法、Green函数法) ●控制体积法 ●微元法 第一章概论 §1.1 流体力学的研究对象 (1)物质四态: ●四态:固态—液态—气态—等离子态;等离子体=电离气体 ●界限:彼此无明确界限(高温下的沥青;冰川),取决于时间尺度; ●流体力学的具体研究对象:液体、气体、等离子体(电磁流体力学、 等离子体物理学); ●液体与气体的差别: 液体—有固定容积、有自由面、不易压缩、有表面张力; 气体—无固定容积、无自由面、易压缩、无表面张力。 (2)流体的基本性质: 易流动性:静止流体无剪切抗力; 压缩性(膨胀性):压差、温差引起的体积改变,判据:马赫数; 粘性:运动流体对剪切的抗力,判据:雷诺数; 热传导性:温差引起的热量传递,普朗特数。 (3)流体的分类: i)按有无粘性、热传导性分:

真实流体(有粘性、有热传导、与固体有粘附性无温差); 理想流体(无粘性、无热传导、与固体无粘附性有温差); ii)按压缩性分: 不可压缩流体,可压缩流体; iii)按本构关系分: 牛顿流体(牛顿粘性定律成立), 非牛顿流体(牛顿粘性定律不成立),下分 纯粘性流体(拟塑性流体,涨塑性流体); 粘塑性流体(非宾汉流体、宾汉流体); 时间依存性流体(触变流体、振凝流体); 粘弹性流体 拟塑性流体(剪切流动化流体):剪切应力随剪切速度增加而减 小,如淀粉浆糊、玻璃溶液、 高分子流体、纤维树脂; 涨塑性流体(剪切粘稠化流体):剪切应力随剪切速度增加而减 小,如淀粉中加水、某些水- 砂混合物; 粘塑性(非宾汉和宾汉流体):存在屈服应力,小于该应力无流 动,如粘土泥浆、沥青、油漆、 润滑脂等,所有粘塑性流体为 非宾汉流体,宾汉流体为近似; 触变流体(摇溶流体):粘性或剪切应力随时间减小,如加入高 分子物质的油、粘土悬浊液; 振凝流体:粘性或剪切应力随时间增大,如矿石浆料、膨润土溶 胶、五氧化钒溶液等; 粘弹性流体:兼有粘性和弹性性质的流体,能量不像弹性体守恒, 也不像纯粘性体全部耗散。 (4)流体力学学科的研究对象 流体力学——研究流体的机械运动以及它与其它运动形态相互作用的科 学。 其它运动形态:固体运动-与界面的相互作用;热运动-传热、传质;电 磁-电磁流体力学。 §1.2 流体力学发展简史 流体力学大事年表 公元前3世纪阿基米德(287-212BC)发现浮力定律(阿基米德原理);发明阿基米德螺旋提水机; 1644 托里拆里(E.Torricelli,1608-1647)制成气压计;导出小孔出流公式; 1650 帕斯卡(B.Pascal,1623-1662)提出液体中压力传递的帕斯卡原理;

流体力学讲义-第十章-堰流

第十章堰流 堰流是明渠缓流由于流动边界急剧变化而引起的明渠急变流现象。本章主要介绍各类堰流的水力特征、基本公式、应用特点及水力计算方法。 概述 一、堰和堰流 堰:在明渠缓流中设置障壁,它既能壅高渠中的水位,又能自然溢流,这障壁就称为堰。 堰流(weir flow):缓流越过阻水的堰墙溢出流动的局部水流现象称为堰流。 选择:堰流特定的局部现象是: A.缓流通过障壁; B.缓流溢过障壁; C.急流通过障壁; D.急流溢过障壁。 研究堰流的主要目的: 探讨流经堰的流量Q及与堰流有关的特征量之间的关系。 堰流的基本特征量(图10-1) 1.堰顶水头H; 2.堰宽b; 3.上游堰高P、下游堰高P1;图10-1 4.堰顶厚度δ; 5.上、下水位差Z; 6.堰前行近流速υ0。 二、堰的分类 1.根据堰壁厚度d与水头H的关系,如图10-2: 图10-2

图10-3 2.根据上游渠道宽度B与堰宽b的关系,图10-4: 3.根据堰与水流方向的交角: 图10-4 4.按下游水位是否影响堰流性质: 5.按堰口的形状: 堰可分为矩形堰、梯形堰、三角堰。 三、堰流及孔流的界限 1.堰流:当闸门启出水面,不影响闸坝泄流量时。孔流:当闸门未启出水面,以致影响闸坝泄流量时。 2.堰流和孔流的判别式 (1)宽顶堰式闸坝 堰流:e/H ≥0.65 孔流:e/H <0.65 (2)实用堰式闸坝(闸门位于堰顶最高点时) 堰流:e/H ≥0.75 孔流:e/H <0.75

式中:e——闸门开启高度; H——堰孔水头。 判断:从能量角度看,堰流和闸孔出流的过程都是一种势能转化为动能的过程。对 第一节堰流的基本公式 一、堰流基本公式推导(图10-7) 由大孔口的流量公式(7-6) 及,并考虑上游行近流速的影响,令图10-6 得堰流的基本公式: (10-1) 式中:m——堰流流量系数,m=。 二、堰流公式图10-7 若考虑到侧收缩影响及淹没影响,则堰流公式为: (10-2) (10-3) 式中:——淹没系数,≤1.0; ——侧收缩系数,≤1.0 。 m0——计及行近流速的流量系数 第二节薄壁堰 薄壁堰(如图10-8)主要用途:用作量水设备。薄壁堰口的横断面形状不同,相应的流量系数也不同。 图10-8

流体力学复习资料

1.迹线:同一质点在不同时刻所占有的空间位置联成的空间曲线称为迹线。 2.定常流动:液体流动时,若流体中任何一点的压力,速度和密度都不随时间变化,则这种流动就称为定常流动。 3.沿程阻力:流体在均匀流段上产生的流动阻力,称为沿程阻力。 4.量纲:量纲是指物理量的性质和类别。 5.体积模量: 6.流动相似:两个流动相应点上的同名物理量具有各自固定的比例,则这两个流动就是相似的。 7.纲和谐原理: 8.湍流:流体质点的远动轨迹是极不规则的,各部分相互混杂,这种流动状态称为紊流。 9.局部阻力:由于流体速度或方向的变化,导致流体剧烈冲击,由于涡流和速度重新分布而产生的阻力。 10.层流:液体层间有规则的流动状态称为层流。 11.渐变流:流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。 12.淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间。 13.薄壁孔口:出流流股与孔口接触只有一条周线,这种条件的孔口称为薄壁孔口。 14.动能修正系数: 15.流管:在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管状流面,称为流管。 简答题 1.什么是等压面等压面的条件是什么 等压面是指流体中压强相等的各点所组成的面。只有重力作用下的等压面应满足的条件是:静止、连通、连续均质流体、同一水平面。 2.流线的定义性质。

流线的定义:在某一时刻,个点的切线方向与通过该点的流体质点的流速方向重合的空间去曲线。 流线的性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线或直线。c、流线越密处,流速越大,流线越稀处,流速越小。 4.试简要回答缓变流的定义及其两个主要特性。 缓变流(渐变流):流线之间的夹角β很小、流线的曲率半径r很大的近乎平行直线的流动。 特性: 5.试简要阐述局部能量损失的定义及大致分类。 6.简述孔口出流的分类情况。 按孔口直径D和孔口形心在液面下深度H分为大孔口和小孔口;按水头随时间变化,分为恒定出流和非恒定出流;按壁厚,分为薄壁孔口和厚壁孔口;按出流空间状况,分为自由出流和淹没出流。 孔口出流分三类:①孔口自由出流:容器中的液体自孔口留到大气中;②孔口淹没出流:容器中的液体通过孔口出流到另一个充满液体的空间;③管嘴出流:当圆孔壁厚δ等于3~4d时或在孔口接一段长l=3~4d的圆管时,此时的出流称为管嘴出流。 7.流体粘度的定义并说明温度对流体粘性的影响。 流体粘度:流体内部质点或流层间因相对运动而产生内摩擦里以反抗相对运动,此内摩擦力称为粘滞力,即为粘度。 液体的粘度随温度升高而减小;气体的粘度随温度升高而增大。 8.温度变化对流体的粘度有什么影响,并简要说明原因。 液体的粘度随温度升高而减小;气体的粘度随温度升高而增大。 原因:粘滞性是分子间的吸引力和分子不规则的热运动产生动量交换的结果。温度升高,分子间吸引力降低,动量增大;反之,温度降低,分子间吸引力

相关主题
文本预览
相关文档 最新文档