当前位置:文档之家› 小波方差制作步骤

小波方差制作步骤

小波方差制作步骤
小波方差制作步骤

第六章 时间序列的小波分析

时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。

20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。

目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。

一、小波分析基本原理

1. 小波函数

小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:

?

+∞

-=0dt )t (ψ (1)

式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:

)a

b

t (

a

)t (2

/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。

2. 小波变换

若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2

∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为:

dt )a

b

t (

f (t)a

)b ,a (W R

2

/1-f ?-= (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数;

)a

b x (-ψ为)a

b

x (-ψ的复共轭函数。地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,(k=1,2,…,N; t ?

为取样间隔),则式(3)的离散小波变换形式为:

)a

b

-t k (

t)f(k t a

)b ,a (W N

1

k 2

/1-f ???=∑=ψ (4)

由式(3)或(4)可知小波分析的基本原理,即通过增加或减小伸缩尺度a 来得到信号的低频或高频信息,然后分析信号的概貌或细节,实现对信号不同时间尺度和空间局部特征的分析。

实际研究中,最主要的就是要由小波变换方程得到小波系数,然后通过这些系数来分析时间序列的时频变化特征。

3. 小波方差

将小波系数的平方值在b 域上积分,就可得到小波方差,即

db )b a,(W )a (Var 2

f ?∞

-= (5)

小波方差随尺度a 的变化过程,称为小波方差图。由式(5)可知,它能反映信号波动的能量随尺度a 的分布。因此,小波方差图可用来确定信号中不同种尺度扰动的相对强度和存在的主要时间尺度,即主周期。

二、小波分析实例-时间序列的多时间尺度分析(Multi-time scale analysis)

例题

河川径流是地理水文学研究中的一个重要变量,而多时间尺度是径流演化过程中存在的重要特征。所谓径流时间序列的多时间尺度是指:河川径流在演化过程中,并不存在真正意义上的变化周期,而是其变化周期随着研究尺度的不同而发生相应的变化,这种变化一般表现为小时间尺度的变化周期往往嵌套在大尺度的变化周期之中。也就是说,径流变化在时间域中存在多层次的时间尺度结构和局部变化特征。

表1给出了某流域某水文观测站1966-2004年的实测径流数据。试运用小波分析理论,借助Matlab6.5、suffer8.0和相关软件(Excel 等),完成下述任务:⑴计算小波系数;⑵绘制小波系数图(实部、模和模方)、小波方差图和主周期变化趋势图,并分别说明各图在分析径流多时间尺度变化特征中的作用。

表1 某流域某水文观测站1966-2004年实测径流数据(×108m 3

) 年份 径流量 年份 径流量 年份 径流量 年份 径流量 年份 径流量 1966 1.438 1974 2.235 1982 0.774 1990 1.806 1998 1.709 1967 1.151 1975 4.374 1983 0.367 1991 0.449 1999 0.000 1968 0.536 1976 4.219 1984 0.562 1992 0.120 2000 0.000 1969 1.470 1977 2.590 1985 3.040 1993 0.627 2001 2.104 1970 3.476 1978 3.350 1986 0.304 1994 1.658 2002 0.009 1971 4.068 1979 2.540 1987 0.728 1995 1.025 2003 3.177 1972 2.147 1980 0.807 1988 0.492 1996 0.955 2004 0.921 1973 3.931

1981

0.573

1989

0.007

1997

1.341

分析

1. 选择合适的基小波函数是前提

在运用小波分析理论解决实际问题时,选择合适的基小波函数是前提。只有选择了适合具体问题的基小波函数,才能得到较为理想的结果。目前,可选用的小波函数很多,如Mexican hat 小波、Haar 小波、Morlet 小波和Meyer 小波等。在本例中,我们选用Morlet 连续复小波变换来分析径流时间序列的多时间尺度特征。原因如下:

1.1 径流演变过程中包含“多时间尺度”变化特征且这种变化是连续的,所以应采用连续小波变换来进行此项分析。

1.2实小波变换只能给出时间序列变化的振幅和正负,而复小波变换可同时给出时间序列变化的位相和振幅两方面的信息,有利于对问题的进一步分析。

1.3 复小波函数的实部和虚部位相差为π/2,能够消除用实小波变换系数作为判据而产生的虚假振荡,使分析结果更为准确。

2. 绘制小波系数图、小波方差图和主周期变化趋势图是关键

当选择好合适的基小波函数后,下一步的关键就是如何通过小波变换获得小波系数,然后利用相关软件绘制小波系数图、小波方差图和主周期变化趋势图,进而根据上述三种图形的变化识别径流时间序列中存在的多时间尺度。

具体步骤

1. 数据格式的转化

2. 边界效应的消除或减小

3. 计算小波系数

4. 计算复小波系数的实部

5. 绘制小波系数实部等值线图

6. 绘制小波系数模和模方等值线图

7. 绘制小波方差图

8. 绘制主周期趋势图

下面,我们以上题为例,结合软件Matlab 6.5、Suffer 8.0和Excel ,详细说明小波系数的计算和各图形的绘制过程,并分别说明各图在分析径流多时间尺度变化特征中的作用。

1. 数据格式的转化和保存

将存放在Excel 表格里的径流数据(以时间为序排为一列)转化为Matlab 6.5识别的数据格式(.mat )并存盘。

具体操作为:在Matlab 6.5 界面下,单击“File-Import Data ”,出现文件选择对话框“Import ”后,找到需要转化的数据文件(本例的文件名为runoff.xls ),单击“打开”。等数据转化完成后,单击“Finish ”,出现图1显示界面;然后双击图1中的Runoff ,弹出“Array Editor: runoff ”对话框,选择File 文件夹下的“Save Workspace As ”单击,出现图2所示的“Save to MAT-File:”窗口,选择存放路径并填写文件名(runoff.mat ),单击“保存”并关闭“Save to MAT-File ”窗口。

2. 边界效应的消除或减小

因为本例中的实测径流数据为有限时间数据序列,在时间序列的两端可能会产生“边界效用”。为消

除或减小序列开始点和结束点附近的边界效应,须对其两端数据进行延伸。在进行完小波变换后,去掉两

图1 数据格式的转化

图2数据的保存

端延伸数据的小变换系数,保留原数据序列时段内的小波系数。本例中,我们利用Matlab 6.5小波工具箱中的信号延伸(Signal Extension )功能,对径流数据两端进行对称性延伸。

具体方法为:在Matlab 6.5界面的“Command Window ”中输入小波工具箱调用命令“Wavemenu ”,按Enter 键弹“Wavelet Toolbox Main Menu ”(小波工具箱主菜单)界面(图3);然后单击“Signal Extension ”,打开Signal Extension / Truncation 窗口,单击“File ”菜单下的“Load Signal ”,选择runoff.mat 文件单击“打开”,出现图4信号延伸界面。Matlab 6.5的Extension Mode 菜单下包含了6种基本的延伸方式(Symmetric 、Periodic 、Zero Padding 、Continuous 、Smooth and For SWT )和Direction to extend 菜单下的3种延伸模式(Both 、Left and Right ),在这里我们选择对称性两端延伸进行计算。数据延伸的具体操作过程是:在Extension Mode 下选择“ Symmetric ”,Dircetion to extend 下选择“Both ”,单击“Extend ”按钮进行对称性两端延伸计算,然后单击“File ”菜单下的“Save Tranformed Signal ”,将延伸后的数据结果存为erunoff.mat 文件。

从erunoff 文件可知,系统自动将原时间序列数据向前对称延伸12个单位,向后延伸13个单位。

3. 计算小波系数

选择Matlab 6.5小波工具箱中的Morlet 复小波函数对延伸后的径流数据序列(erunoff.mat )进行小波变换,计算小波系数并存盘。

小波工具箱主菜单界面见图3,单击“Wavelet 1-D ”下的子菜单“Complex Continuous Wavelet 1-D ”,打开一维复连续小波界面,单击“File ”菜单下的“Load Signal ”按钮,载入径流时间序列erunoff.mat (图5)。图5的左侧为信号显示区域,右侧区域给出了信号序列和复小波变换的有关信息和参数,主要包括数据长度(Data Size )、小波函数类型(Wavelet :cgau 、shan 、fbsp 和cmor )、取样周期(Sampling Period )、周期设置(Scale Setting )和运行按钮(Analyze ),以及显示区域的相关显示设置按钮。本例中,我们选择cmor (1-1.5)、取样周期为1、最大尺度为32,单击“Analyze ”运行按钮,计算小波系数。然后单击“File ”菜单下的“Save Coefficients ”,保存小波系数为

cerunoff.mat 文件。

注意:上面涉及到的数据保存,其格式均为.mat 。 4. 计算Morlet 复小波系数的实部

将复小波系数转存到Excel 表格,去掉两端延伸数据的小波系数,并计算小波系数实部。

图3 小波工具箱主菜单

图4 径流时间序列的延伸

图5 小波变换菜单界面

在Matlab 6.5界面下的Workspace中将cerunoff.mat文件导入,

然后双击“coefs”打开,将数据全部复制到Excel后去掉延伸数据的小波变换系数(本例中去掉前12列和后13列)。将剩余有效数据转换成.txt形式。导入到Matlab中。在“Command Windows”中直接输入函数a=sum(abs(coefs).^2,2)。点击“回车”键。如图:

在“a”上右击,选择“Graph”,在下拉菜单中选择“plot”,即出小波方差图

set(gca,'XTickLabel',{'1963','1968','1973','1978','1983','1988','1993','1998','2003'}) 使横坐标显示为年份。

在“Insert”中更改X,Y坐标及图名。

时间序列的小波分析及等值线图小波方差制作

时间序列得小波分析 时间序列(Time Series)就是地学研究中经常遇到得问题。在时间序列研究中,时域与频域就是常用得两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化得更多信息;频域分析(如Fourier变换)虽具有准确得频率定位功能,但仅适合平稳时间序列分析、然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间得变化往往受到多种因素得综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列得研究,通常需要某一频段对应得时间信息,或某一时段得频域信息、显然,时域分析与频域分析对此均无能为力。 20世纪80年代初,由Morlet提出得一种具有时-频多分辨功能得小波分析(Wavelet Analysis)为更好得研究时间序列问题提供了可能,它能清晰得揭示出隐藏在时间序列中得多种变化周期,充分反映系统在不同时间尺度中得变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析与大气科学等众多得非线性科学领域内得到了广泛得应。在时间序列研究中,小波分析主要用于时间序列得消噪与滤波,信息量系数与分形维数得计算,突变点得监测与周期成分得识别以及多时间尺度得分析等。 一、小波分析基本原理 1. 小波函数 小波分析得基本思想就是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数就是小波分析得关键,它就是指具有震荡性、能够迅速衰减到零得一类函数,即小波函数且满足: (1) 式中,为基小波函数,它可通过尺度得伸缩与时间轴上得平移构成一簇函数系: 其中, (2) 式中,为子小波;a为尺度因子,反映小波得周期长度;b为平移因子,反应时间上得平移。 需要说明得就是,选择合适得基小波函数就是进行小波分析得前提。在实际应用研究中,应针对具体情况选择所需得基小波函数;同一信号或时间序列,若选择不同得基小波函数,所得得结果往往会有所差异,有时甚至差异很大。目前,主要就是通过对比不同小波分析处理信号时所得得结果与理论结果得误差来判定基小波函数得好坏,并由此选定该类研究所需得基小波函数。 2. 小波变换 若就是由(2)式给出得子小波,对于给定得能量有限信号,其连续小波变换(Continue Wavelet Transform,简写为CWT)为: (3) 式中,为小波变换系数;f(t)为一个信号或平方可积函数;a为伸缩尺度;b平移参数;为得复共轭函数。地学中观测到得时间序列数据大多就是离散得,设函数,(k=1,2,…,N; 为取样间隔),则式(3)得离散小波变换形式为: (4) 由式(3)或(4)可知小波分析得基本原理,即通过增加或减小伸缩尺度a来得到信号得低频或高频信息,然后分析信号得概貌或细节,实现对信号不同时间尺度与空间局部特征得分析。 实际研究中,最主要得就就是要由小波变换方程得到小波系数,然后通过这些系数来分析时间序列得时频变化特征、 3、小波方差 将小波系数得平方值在b域上积分,就可得到小波方差,即 (5)

SPSS单因素方差分析步骤

SPSS单因素方差分析步骤

spss教程:单因素方差分析 用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。 方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异。统计推断方法是计算F统计量,进行F检验,总的变异平方和 SST,控制变量引起的离差SSA(Between Group离差平方和),另一部分随机变量引起的SSE(组内Within Group离差平方和),SST=SSA+SSE。方法/步骤 1.计算检验统计量的观察值和概率P_值:Spss自动计算F统计 值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。

2.方差齐性检验:控制变量不同水平下各观察变量总体方差是否 相等进行分析。采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。图中相伴概率 0.515大于显著性水平0.05,故认为总体方差相等。 趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察

变量总体作用的程度。图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。

3.多重比较检验:单因素方差分析只能够判断控制变量是否对观 察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。 常用LSD、S-N-K方法。LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。

用excel计算方差

调用函数 STDEV 估算样本的标准偏差。标准偏差反映相对于平均值(mean) 的离散程度。 语法 STDEV(number1,number2,...) Number1,number2,... 为对应于总体样本的1 到30 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 说明 函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP 来计算标准偏差。 此处标准偏差的计算使用“无偏差”或“n-1”方法。 函数STDEV 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 忽略逻辑值(TRUE 或FALSE)和文本。如果不能忽略逻辑值和文本,请使用STDEVA 工作表函数。示例 假设有10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果您将示例复制到空白工作表中,可能会更易于理解该示例。 操作方法 创建空白工作簿或工作表。 请在“帮助”主题中选取示例。不要选取行或列标题。 从帮助中选取示例。 按Ctrl+C。 在工作表中,选中单元格A1,再按Ctrl+V。 若要在查看结果和查看返回结果的公式之间切换,请按Ctrl+`(重音符),或在“工具”菜单上,指向“公式审核”,再单击“公式审核模式”。 A 1 强度 2 1345 3 1301 4 1368 5 1322 6 1310 7 1370 8 1318 9 1350 10 1303 11 1299 公式说明(结果) =STDEV(A2:A11) 假定仅生产了10 件工具,其抗断强度的标准偏差(27.46391572) 方差分析 EXCEL的数据处理除了提供了很多的函数外,但这个工具必须加载相应的宏后才能使用,操作步骤为:点击菜单“工具-加载宏”,会出现一个对话框,从中选择“分析工具库”,点击确定后,在工具菜单栏内出现了这个分析工具。

时间序列的小波分析

时间序列的小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2 ∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中, 0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f(t)a )b ,a (W R 2 /1-f ?-= (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数;) a b x (-ψ为)a b x (-ψ的复共轭函数。 地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,(k=1,2,…,N; t ?

单因素方差分析和多因素方差分析简单实例

单因素方差分析实例 [例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。 问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体 在SPSS 中进行方差分析的步骤如下: (1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数 值型),G=1、2、3 表示第一组、第二组、第三组。然后录入相应数据,如图6-66所示 图6-66 方差分析数据格式 (2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对 话框(如图6-67所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G,单击按钮使之进入[Factor]框。单击[OK]按钮完成。

图6-67 方差分析对话框 (3)分析结果如下: 因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。 多因素方差分析 [例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产 量,观测到的产量如表6-31所示。试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为: (1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作 者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。录入相应数据,如图6-68所示。 图6-68 双因素方差分析数据格式 (2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。从主对话框左侧的变量列表中选定X,单击按钮使之进入[Dependent List]框,再选定变量G1 和G2,单击按钮使之进入[Fixed Factor(s)]框。单击[OK]按钮

excel方差函数是VAR

excel方差函数是VAR,excel均方差函数是STDEV。 我们通过下面的例子来理解方差和均方差的使用方法。A列是一些样本观察值,通过这些值,套用excel方差函数得到公式为:=VAR(A2:A7),再套用均方差函数得到公式为:= STDEV(A2:A7)。 下图是在excel中计算方差和均方差的相关截图演示。 尽管excel提供了均方差函数,上面计算均方差除了使用SEDEV函数以外,也可以使用这样的方法完成:=SQRT(VAR(A2:A7))。 SQRT是开方函数,具体的详细案例参考:https://www.doczj.com/doc/bb17603486.html,/show.asp?id excel开方函数有POWER和SQRT函数。excel开方可以使用开方函数或者数学运算来完成。下面是excel 开方详细介绍。 第一,excel开方函数相关介绍 excel开方函数一:POWER函数 POWER开方函数的用法是对数字进行乘幂运算。 POWER开方函数的语法是:POWER(number,power) 其中Number是底数,可以为任意实数。Power是指数,底数按该指数次幂乘方。excel开方函数二:SQRT函数

SQRT开方函数的用法是:返回给定数字的正平方根。 SQRT函数的语法是:SQRT(number),其中Number是要计算平方根的数。 SQRT函数实例:A1单元格输入:=SQRT(16),即可得出答案4,即16的平方根。excel开方函数三:SUMSQ函数 SUMSQ开方函数的用法是:返回参数的平方和。 SUMSQ函数的语法是:SUMSQ(number1, [number2], ...),其中number1,number2等30个以内的数,SUMSQ开方函数可以求出它们的平方和。 excel开方函数大致就是POWER函数、SQRT函数和SUMSQ函数。其实excel 开方不仅可以用上面介绍的excel开方函数完成,也可以使用数学幂运算来完成excel开方计算。 第二,excel 开方实例应用介绍 1、8的三次方根,也就是平方,开方函数公式:=POWER(8,1/3),答案2。 2、可以用“^”运算符代替函数,POWER开方函数来表示对底数乘方的幂次,例如5^ 2。将27开5次方,在单元格中输入=27^(1/5),也可以用开方函数:=POWER(27,1/5) 3、如果刚好是开平方,可以用sqrt函数,例如求9的平方根,可以用:=SQRT(9)。 4、计算5的4次方,方法:=POWER(5,4),或者=5^4,即可得出开方答案625。 5、=SUMSQ(3,4),求3和4的平方和,返回“25”。 在使用Excel创建工作表时,有时会因操作失误而显示一些相关的错误值信息,比如#####、#N/A!、#VALUE!、#DIV/O!等等错误值。 下面小编分别讲解几种常见的错误值的意义和解决方法。

第10章单因素方差分析

第10章 单因素方差分析 单因素方差分析(0ne-Way ANOV A),又称一维方差分析,它能够对单因素多个独立样本 的均数进行比较,可以用10种检验方法对变量间的均数进行两两比较(即多重比较检验)并给出方差分析表,还可以作出5种类型图形(Type of plots)和2种均数图形(Means plot options) 10.1 单因素方差分析的计量资料 [例10—1] 某社区随机抽取了30名糖尿病患者、IGT 异常人和正常人进行载脂蛋白 (mg /dL)测定,结果示于表10—1。试问3组人群的载脂蛋白测定结果含量是否相同?(倪宗瓒.卫生统计学.第4版,北京:人民卫生出版社,2001.50) 组别(B ) 载脂蛋白测定 糖尿病(1) 85.7 105.2 109.5 96.0 115.2 95.3 110.0 100.0 125.6 111.0 106.5 96.0 124.5 105.1 76.4 95.3 110.0 95.2 99.0 120.0 144.0 117.0 110.0 109.0 103.0 123.0 127.0 121.0 159.0 115.0 IGT 异常(2) 正常人(3) 本例是一个完全随机设计的单因素方差分析。已建立SAS 数据集文件并保存Sasuser.onewav4。 (1)进入SAS /Win(v8)系统,单击Solutions -Analysis -Analyst ,得到分析家窗口。 (2)单击File-open By SAS Name —Sasuser-0neway4—0K ,调入数据文件。 (3)在“分析家”窗口单击Statistics-ANOV A-One way ANOV A ,得到图10—1所示对话框。本例因变量(Dependent)为A(载脂蛋白),单击A —Dependent 。自变量(1ndependent): B(3种人的组别),单击B —Independent 。 图10.1 0ne —way ANOV A :0neway4(单因素方差分析)对话框 (4)单击Tests 按钮,得到图10—2所示对话框。在此对话框的ANOV A(F —检验)选项 中可进行如下设置。 Analysis of variance ,方差分析。 Welch ’s variance-weighted ANOV A ,威尔奇方差—权重方差分析。 Tests for equal variance ,相等方差检验,即方差齐性检验。 Barlett ’s test ,巴特尼特检验。 Brown-Forsythe test ,布朗—福塞斯检验。 Levene ’s test ,列文检验。本例以上都选。

Excel公式和函数 方差和标准差

Excel 公式和函数 方差和标准差 方差是一组数据中,各变量值与其均值离差平方和的平均数;而标准差是方差的平方根,两者均反映了数据中变量值的平均变异程度。在Excel 中,可以利用相应的统计函数,轻松、快捷的对这些值进行计算。 1.COVAR 函数 该函数用于返回协方差,即每对数据点的偏差乘积的平均数。利用协方差可以决定两个数据集之间的关系,例如,利用该函数检验教育程度与收入档次之间的关系。 语法:COVAR (array1, array2) 其中,参数Array1表示第一个所含数据为整数的单元格区域;参数Array2表示第二个所含数据为整数的单元格区域。 例如,假设未来经济可能有四种状态,每种状态发生的概率都是相同的,理财产品X 在四种状态下的收益率分别为14%、20%、35%和29%;而理财产品Y 在四种状态下的收益率分别为9%、16%、40%和28%。求这两种理财产品的收益率协方差为多少? 将已知的两种产品在各状态下的收益率输入到工作表中。然后,选择“协方差”所对应的单元格,即C8单元格,插入COVAR 函数,并在【函数参数】对话框中,设置参数Array1为C3:C6;参数Array2为D3:D6,即可计算出这两种理财产品收益率的协方差为0.0094875,如图7-45所示。 图7-45 两种产品收益率的协方差 2.DE VSQ 函数 该函数用于返回数据点与各自样本平均值偏差的平方和。 语法:DEVSQ (number1, number2,...) 其中,参数Number1, number2, ...为1到255个需要计算偏差平方和的参数,它们可以是用逗号分隔的数值,也可以是数组引用。 例如,某化学实验小组进行了5次实验,分别统计了3种化学反应的响应时间,求各化学反应响应时间的偏差平方和分别为多少? 选择D7单元格,插入DEVSQ 函数,在【函数参数】对话框中,设置参数Number1为B4:F4,即可计算化学反应1的偏差平方和为149,如图7-46所示。 然后,拖动该单元格右下角的填充柄,将公式填充至D9单元格,计算结果如图7-47所示。 提 示 在计算过程中,如果参数Array1和Array2所含数据点的个数不等,则COVAR 函数 返回错误值#N/A ;如果参数Array1和Array2当中有一个为空,则COVAR 函数返回 错误值#DIV/0!。 设置 计算结果

小波分析-经典解读

时间序列-小波分析 时间序列(Time Series )是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。显然,时域分析和频域分析对此均无能为力。 20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。 目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。 一、小波分析基本原理 1. 小波函数 小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足: ? +∞ ∞ -=0dt )t (ψ (1) 式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系: )a b t ( a )t (2 /1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。 需要说明的是,选择合适的基小波函数是进行小波分析的前提。在实际应用研究中,应针对具体情况选择所需的基小波函数;同一信号或时间序列,若选择不同的基小波函数,所得的结果往往会有所差异,有时甚至差异很大。目前,主要是通过对比不同小波分析处理信号时所得的结果与理论结果的误差来判定基小波函数的好坏,并由此选定该类研究所需的基小波函数。 2. 小波变换 若)t (b ,a ψ是由(2)式给出的子小波,对于给定的能量有限信号)R (L )t (f 2 ∈,其连续小波变换(Continue Wavelet Transform ,简写为CWT )为: dt )a b t ( f (t)a )b ,a (W R 2 /1-f ? -=ψ (3) 式中,)b ,a (W f 为小波变换系数;f(t)为一个信号或平方可积函数;a 为伸缩尺度;b 平移参数; )a b x ( -ψ为)a b x (-ψ的复共轭函数。地学中观测到的时间序列数据大多是离散的,设函数)t k (f ?,

单因素方差分析的计算步骤

单因素方差分析的计算 步骤 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一、 单因素方差分析的计算步骤 假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。结果如下表: m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设() m j n i a N x j ij ,2,1;,2,1,,~2==σ。 可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。因此检验因素A 的各水平之间是否有显着的差异,就相当于检验: μ====m a a a H 210:或者 具体的分析检验步骤是: (一)计算水平均值 令j x 表示第j 种水平的样本均值, 式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数 (二)计算离差平方和 在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。 首先,总离差平方和,用SST 代表,则, 其中,n x x ij ∑∑=它反映了离差平方和的总体情况。 其次,组内离差平方和,用SSE 表示,其计算公式为: 其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。 最后,组间平方和,用SSA 表示,SSA 的计算公式为:

半方差函数

半方差 半方差函数(Semi-variogram)及其模型 半方差函数也称为半变异函数,它是地统计学中研究土壤变异性的关键函数. 2.1.1半方差函数的定义和参数 如果随机函数Z(x)具有二阶平稳性,则半方差函数((h)可以用Z(x)的方差S2和空间协方差C(h)来定义:((h)= S2-C(h) ((h)反映了Z(x)中的空间相关部分,它等于所有以给定间距h相隔的样点测值之差平方的数学期望: (1) 实际可用: (2) 式中N(h)是以h为间距的所有观测点的成对数目.某个特定方向的半方差函数图通常是由((h)对h作图而得.在通常情况下,半方差函数值都随着样点间距的增加而增大,并在一定的间距(称为变程,arrange)升大到一个基本稳定的常数(称为基台,sill). 土壤性质的半方差函数也可能持续增大,不表现出确定的基台和变程,这时无法定义空间方差,说明存在有趋势效应和非平稳性.另一些半方差函数则可能完全缺乏空间结构,在所用的采样尺度下,样品间没有可定量的空间相关性. 从理论上讲,实验半方差函数应该通过坐标原点,但是许多土壤性质的半方差函数在位置趋于零时并不为零.这时的非零值就称为"块金方差(Nugget variance)"或"块金效应".它代表了无法解释的或随机的变异,通常由测定误差或土壤性质的微变异所造成. 对于平稳性数据,基底方差与结构方差之和约等于基台值. 2.1.2 方差函数的理论模型 土壤在空间上是连续变异的,所以土壤性质的半方差函数应该是连续函数.但是,样品半方差图却是由一批间断点组成.可以用直线或曲线将这些点连接起来,用于拟合的曲线方程就称为半方差函数的理论模型.在土壤研究中常用的模型有: ①线性有基台模型: 式中C1/a是直线的斜率.这是一维数据拟合的最简单模型: ((h)=C0 +C1·h/a 0在极限情况下,C1/a可以为0,这时就有纯块金效应模型: ((h)=C0, h>0 (4) ((0)=0 h=0 ②球状模型 ((h)= C0 +C1[1.5h/a-0.5(h/a)3] 0a (5) ((0)=0 h=0 ③指数模型 ((h)=C0+C1[1-exp-h/a ] h>0 (6)

SPSS单因素方差分析

SPSS单因素方差分析

单因素方差分析 单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measu re过程。 [例子] 调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。 表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数 水稻品种 重复 12345 14133383731 23937353934 34035353834 数据保存在“data1.sav”文件中,变量格式如图1-1。 图1-1 分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据 在数据编辑窗口中输入数据。建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。或者打开已存在的数据文件“dat a1.sav”。 2)启动分析过程 点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统 打开单因素方差分析设置窗口如图1-2。 图1-2 单因素方差分析窗口 3)设置分析变量 因变量: 选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。 因素变量: 选择一个因素变量进入“Factor”框中。本例选择“品种”。 4)设置多项式比较 单击“Contrasts”按钮,将打开如图1-3所示的对话框。该对话框用于设置均值的多项式比较。

Excel计算方差和标准差

Excel计算方差和标准差 样本中各数据与的差的平方和的平均数叫做样本方差;样本方差的叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 方差(Variance)和标准差(Standard Deviation)。方差和标准差是测算离散趋势最重要、最常用的。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。平均值=AVERAGE () 方差=VAR ( ) 标准差=STDEV ( ) 一、标准差 函数STDEV:估算样本的标准偏差。标准偏差反映相对于平均值(mean) 的离散程度。 语法STDEV(number1,number2,...) Number1,number2,... 为对应于总体样本的1 到30 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 说明函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP 来计算标准偏差。此处标准偏差的计算使用“无偏差”或“n-1”方法。 函数STDEV 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 忽略逻辑值(TRUE 或FALSE)和文本。如果不能忽略逻辑值和文本,请使用STDEVA 工作表函数。 示例假设有10件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。如果您将示例复制到空白工作表中,可能会更易于理解该示例。 操作方法创建空白工作簿或工作表。请在“帮助”主题中选取示例。不要选取行或列标题。从帮助中选取示例。 按Ctrl+C。 在工作表中,选中单元格A1,再按Ctrl+V。 若要在查看结果和查看返回结果的公式之间切换,请按Ctrl+`(重音符),或在“工具”菜单上,指向“公式审核”,再单击“公式审核模式”。 A

spss中的单因素方差分析

SPSS中的单因素方差分析 一、基本原理单因素方差分析也即一维方差分析,是检验由单一因素影响的多组样本某因变量的均值是否有显著差异的问题,如各组之间有显著差异,说明这个因素(分类变量)对因变量是有显著影响的,因素的不同水平会影响到因变量的取值。 二、实验工具 SPSS for Windows 三、试验方法例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。在每批灯泡中随机地抽取若干个灯泡测其使用寿命(单位:小时hours),数据列于下表,现在想知道,对于这四种灯丝生产的灯泡,其使用寿命有无显著差异。 灯泡灯丝 1 2 3 4 5 6 7 8 甲 1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙 1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不使用选择项操作步骤(1)在数据窗建立数据文件,定义两个变量并输入数据,这两个变量是: filament 变量,数值型,取值1、2、3、4 分别代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。 Hours 变量,数值型,其值为灯泡的使用寿命,单位是小时,格式为F4.0,标签为“灯泡使用寿命”。 (2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。 (3)从左边源变量框中选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。 (4)从左边源变量框中选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。 (5)在主对话框中,单击“OK”提交进行。 五、输出结果及分析灯泡使用寿命的单因素方差分析结果 ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部分说明如下: 第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。 第二列:离差平方和,组间离差平方和为39776.46,组内离差平方和为178088.9,总离差平方和为217865.4,是组间离差平方和与组内离差平方和相加而得。 第三列:自由度,组间自由度为3,组内自由度为22,总自由度为25,是组间自由度和组内自由度之和。 第四列:均方,即平方和除以自由度,组间均方是 13258.819,组内均方是8094.951. 第五列:F 值,这是F 统计量的值,其计算公式为模型均方除以误差均方,用来检验模型的显著性,如果不显著说明模型对指标的变化没有解释能力,F 值为1.683. 第六列:显著值,是F 统计量的p 值,这里为0.209. 由于显著值0.209 大于0.05,所以在置信水平0.95 下不能否定零假设,也就是说四种灯丝生产的灯泡,其平均使用寿命美誉显著差异。 六、使用选择项操作步骤七、输出结果及分析描述性统计量表方差一致性检验 Sig 大于0.05,说明各组的方差在0.05 的显著水平上没有显著性差异,即方差具有一致性。

小波变换 mallat

实验目的:通过编程实现离散快速小波变换Mallat 算法,从而加深理解二维 小波变换的分解与合成,同时,提高编程能力和matlab 的应用,为以后的学习打下基础。 实验原理: 1、Mallat 快速算法 本实验使用离散快速小波变换快速算法Mallat 算法,算法原理如下 (1)1(2)j j k n n c h n k c -=-∑ (2) 1(2)j j k n n d g n k c -=-∑重构算法: (3) 1(2)(2)j j j n k k n n c h n k c g n k d -=-+-∑∑对于(1)、(2)等效于经过冲击响应为和的数字滤波器,然后再分别进 1 j n c -[]h n -[]g n -行“二抽取”,Mallat 分解算法的滤波器表示形式如下图 C j-1 d j (k) C j (k) 用滤波器表示如下图 d j C j C j-1(k) 2、 255*255 10lg PSNR MSE ='2 11 ()*M N ij ij i j f f MSE M N ==-= ∑∑ 分别表示原始图像和重建后的图像,。 {}ij f '{}ij f 1,1i M j N ≤≤≤≤3、边界延拓方法有零延拓、周期延拓、对称周期延拓、常数连续延拓等,本实验采用以上四种方法进行原图像的1/8延拓,并进行重构,各种延拓方法所对应的函数为yan0(x)、yancir (x )、yan(x)、yanc(x),在主程序中,需要某种延拓,便调用某种函数。

实验编程思路: 为使程序易于理解,在不考虑算法复杂度的情况下,分解程序采用简洁的循环计算出下一级的分解系数,程序采用的编程思想如下 [][][]11100[0][1][2][3][4][5]001[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j j c c h h h h h h c c h h h h n c n h h h h h h c ---?? ??????????????? ???=??????????????--?????????????? L L M M M M M M M M O O M L 以上矩阵等式左面是进行二抽样的结果,是分解的低频部分。同理,对 [0][1]2 j j n c c -L j 于分解的高频部分有如下矩阵形式: j [][][]11 100[0][1][2][3][4][5]0 01[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j d d g g g g g g d d g g g g n d n g g g g g g d ---???? ????????????? ???=? ?????? ???????--?????????????? L L M M M M M M M M O O M L 分解程序: lenx=size(x,2);%x 为一维向量 lenh=size(h,2);h=[h,zeros(1,(lenx-lenh))];g=[g,zeros(1,(lenx-lenh))]; r1(1)=sum(h.*x); r2(1)=sum(g.*x); for k=1:1:(lenx/2-1) %循环求出下一级低频和高频分量 h=[h(end-1:end),h(1:(end-2))]; r1(k+1)=sum(h.*x); g=[g(end-1:end),g(1:1:(end-2))]; r2(k+1)=sum(g.*x); end y=[r1,r2]; 对于重构算法,其等效形式为 [][][] 1(2)(2)j j j n n c n h n k c k g n k d k -=-+-∑∑上式等号右边部分实质上是对变量的数字卷积运算,程序采用频域相乘代替卷积,重建程k 序为 y=ifft(fft(c3,lenx).*fft(h,lenx))+ ifft(fft(d3,lenx).*fft(g,lenx));

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

常见分布的期望和方差 ()

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

相关主题
文本预览
相关文档 最新文档