当前位置:文档之家› 构造等腰三角形解题的常见途径

构造等腰三角形解题的常见途径

构造等腰三角形解题的常见途径
构造等腰三角形解题的常见途径

构造等腰三角形解题的常见途径

等腰三角形是研究几何图形的基础,因此在许多几何问题中,常常需要构造等腰三角形才能使问题获解,那么如何构造等腰三角形呢?一般说来有以下几种途径:

一、利用角平分线+平行线,构造等腰三角形

当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形.

例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:.AE =AP .

简析 要证.AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角形,故AE =AP .

例2 如图3

,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB 、BC 于点D

、E .

试猜想线段AD 、CE 、DE 的数量关系,

C

A

B

E D

O

图3

图4

F

C D

E

B A

M

图2

F

B

A

C

D P E

图1

D ②

C D C ④

F C

D

并说明你的猜想理由.

简析 猜想:AD +CE =DE .理由如下:由于OA 、OC 分别是∠BAC 、∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE .

例3 如图4,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC .求证:EF ∥AB .

简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB .

二、利用角平分线+垂线,构造等腰三角形

当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形.

例4 如图6,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD .

简析 由BF 平分∠ABC ,CD ⊥BD ,并在图5的揭示之下,延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,故BF =2CD .

三、利用转化倍角,构造等腰三角形

当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形.如图7①中,若∠ABC =2∠C ,如果作BD 平分∠ABC ,则

E 图5

A

B

C

D

图6

B

F D

E

C

A

△DBC 是等腰三角形;如图7②中,若∠ABC =2∠C ,如果延长线CB 到D ,使BD =BA ,连结AD ,则△ADC 是等腰三角形;如图7③中,若∠B =2∠ACB ,如果以C 为角的顶点,CA 为角的一边,在形外作∠ACD =∠ACB ,交BA 的延长线于点D ,则△DBC 是等腰三角形.

例5 如图8,在△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°. 简析 由于条件中有两个倍半关系,而结论与角有关,因此首先考虑对∠ACB =2∠B 进行技术处理,即作CD 平分∠ACB 交AB 于D ,过D 作DE ⊥BC 于E ,则由∠ACB =2∠B 知∠B =∠BCD ,即△DBC 是等腰三角形,而DE ⊥BC ,所以BC =2CE ,又BC =2AC ,所以AC =EC ,所以易证得△ACD ≌△ECD ,所以∠A =∠DEC =90°.

说明 本题也可以利用图7的②、③来构造等腰三角形求解.

图7

B C D

A

① ② B

C D

A ③

B

C

D

A

E

图8

C B

A

D

八下解题技巧专题:共顶点的等腰三角形

解题技巧专题:共顶点的等腰三角形 ——形成精准思维模式,快速解题 ◆类型一共顶点的等腰直角三角形 1.如图,已知△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由. 2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证: (1)AF=AD; (2)EF=BD. ◆类型二共顶点的等边三角形

3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有() A.0个B.1个C.2个D.3个 第3题图第4题图 4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________. 5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC全等吗?请说明理由; (2)试说明AE∥BC的理由; (3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想. 参考答案与解析

1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE . (2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE . 2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD . (2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD . 3.D 4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°. 5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD , ∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS). (2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC . (3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又 ∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

相似三角形-构造相似辅助线双垂直模型

构造相似辅助线(1)——双垂直模型 6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx 的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 7.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.

8.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D 点的位置,且AD交y轴于点E.那么D点的坐标为() A. B. C. D.

10..已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。求C、D两点的坐标。

6.答案:解:分两种情况 第一种情况,图象经过第一、三象限 过点A作AB⊥OA,交待求直线于点B,过点A作平行于y轴的直线交x轴于点C,过点B作BD⊥AC则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴ ∵A(2,1),=45°∴OC=2,AC=1,AO=AB ∴AD=OC=2,BD=AC=1 ∴D点坐标为(2,3)∴B点坐标为(1,3) ∴此时正比例函数表达式为:y=3x 第二种情况,图象经过第二、四象限 过点A作AB⊥OA,交待求直线于点B,过点A作平行于x轴的直线交y轴于点C,过点B作BD⊥AC 则由上可知:=90°由双垂直模型知:△OCA∽△ADB ∴

初中数学解题模型专题讲解4---角平分线 垂直构造等腰三角形

初中数学解题模型专题讲解 专题4 角平分线模型 模型模型 3 3 角平分线角平分线角平分线++垂线构造等腰三角形垂线构造等腰三角形 如图,P 是∠MON 的平分线上一点,AP⊥OP 于 P 点,延长 AP 交ON 于点 B。 结论:△AOB 是等腰三角形。 模型证明模型证明:: 由已知可得AP⊥OP,BP⊥OP,OP=OP,∠POA=∠POB ∴△POA≌△POB ∴OA=OB ∴△AOB 是等腰三角形 模型分析 构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等 的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线 和三线合一联系了起来。 模型实例 如图,已知等腰直角三角形 ABC 中,∠A=90°,AB=AC,BD 平分∠ABC, CE⊥BD,垂足为 E。求证:BD=2CE。

证明:如图延长BA 、CE 交于 ∠ABE=∠CBE ,BE=B ∴RT △BEF ≌RT △BEC ∴CE=EF ∴CF=2CE 又∵∠ADB=∠CDE ∠DCE+∠CDE=∠ ∴∠ADB=∠F 又AB=AC ∴RT △BAD ≌RT △CAF ∴BD=CF ∴BD=2CE. 模型练习 1.如图,在△ABC 中,BE 求证:∠2=∠1+∠C。 证明:如图延长AD 交BC 交于点F 则有: BE=BE BEC DCE+∠F=90° CAF BE 是角平分线,AD⊥BE,垂足为 D。 于点F 则有

BD=BD ,∠ABD=∠ ∴RT △ADB ≌RT △FDB ∴∠2=∠BFD=∠1+∠ ∴∠2=∠1+∠C 2.如图,在△ABC 中,∠求证:BE= ?(AC-AB)。 ∠FBD FDB ∠C ∠ABC=3∠C,AD 是∠BAC 的角平分线,BE⊥AD AD 于点 E。

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。 . A B C D E P D A C B M N

5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B ) 2 1P F M D B A C E 6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E . (1) 若BD 平分∠ABC ,求证CE=1 2 BD ; (2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围; 若不变,求出它的度数,并说明理由。 8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB , 求证:AC=AE+CD . 二、中点型 由中点应产生以下联想: E D C B A

相似三角形解答题难题含答案个人精心整理

一、相似三角形中的动点问题 1.如图,在Rt△ ABC中,∠ACB=90°,AC=3,BC=4,过 点B作射线BB1∥AC.动点D 从点A 出发沿射线AC方向 以每秒5 个单位的速度运动,同时动点E 从点C沿射线 AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥ AC交射线BB1于F,G是EF中点, 连接DG.设点D 运动的时间为t 秒. (1)当t 为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB 相似时,求t 的值. 点P从A点出发,沿着AB以每秒4cm的速度向B点运 动;同时点Q从C点出发,沿CA以每秒3cm 的速度向A 点运动,当P点到达B点时,Q 点随之停止运动.设运动 的时间为x. (1)当x 为何值时,PQ∥ BC? (2)△APQ 与△CQB能否相似?若能,求出AP的长; 若不能说明理由. 2.如图,在△ ABC中,ABC=90°,AB=6m,BC=8m, 动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移 动.同时,动点Q以1m/s的速度从C点出发,沿CB向 点B移动.当其中有一点到达终点时,它们都停止移 动.设移动的时间为t 秒. (1)① 当t=2.5s 时,求△ CPQ的面积; ② 求△ CPQ的面积S(平方米)关于时间t(秒)的函数 解析式; (2)在P,Q 移动的过程中,当△CPQ为等腰三角形 时,求出t 的值. 5.如图,在矩形ABCD 中,AB=12cm,BC=6cm,点P 沿 AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D开始向点A以1cm/s 的速度移动.如果P、Q 同 时出发,用t(s)表示移动的时间(0< t <6)。 (1)当t 为何值时,△ QAP为等腰直角三角形?(2) 当t 为何值时,以点Q、A、P 为顶点的三角形与△ABC 相似? 3.如图1,在Rt△ ABC中,ACB=90°,AC=6,BC=8, 点D 在边AB 上运动,DE 平分CDB交边BC 于点E, EM⊥ BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD 时,求证:DE∥AC; (2)探究:AD 为何值时,△BME与△CNE相似? 二、构造相似辅助线——双垂直模型 6.在平面直角坐标系xOy 中,点A 的坐标为(2,1), 正比例函数y=kx 的图象与线段OA 的夹角是45°,求这个 正比例函数的表达式. 7.在△ABC中,AB= ,AC=4, BC=2,以AB 为边在 C点的异侧作△ABD,使△ABD 为等腰直角三角形, 4.如图所示,在△ ABC中,BA=BC=20cm,AC=30cm ,

新人教版八年级下册数学解题技巧专题练习:等腰三角形中辅助线的作法

解题技巧专题:等腰三角形中辅助线的作法 ——形成精准思维模式,快速解题 ◆类型一利用“三线合一”作辅助线 一、已知等腰作垂线(或中线、角平分线) 1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=1,则BC的长为________. 2.如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于点D,E是AD上一点,且EA=EC,连接EB,求证:EB⊥AB. 二、构造等腰三角形 3.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为() A.3 B.4 C.5 D.6 4.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.

◆类型二 巧用等腰直角三角形构造全等 5.如图,在△ABC 中,AC =BC ,∠C =90°,D 是AB 的中点,DE ⊥DF ,点E ,F 分别在AC ,BC 上.求证:DE =DF . ◆类型三 等腰(边)三角形中截长补短或作平行线构造全等 6.(2017·郑州校级月考)如图,过等边△ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,Q 为BC 延长线上一点,且P A =CQ ,连 接PQ 交AC 于点D .若△ABC 的边长为6,则 DE 的长为【方法8】( ) A .2 B .3 C .4 D .不能确定 7.如图,在△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC 交AC 于点D .求证:BC =AB +CD . 参考答案与解析 1.2 2.证明:过点E 作EF ⊥AC 于点F .∵EA =EC ,∴AF =FC =12 AC .∵AC =2AB ,∴AF =AB .∵AD 平分∠BAC ,∴∠BAE =∠F AE .又∵AE =AE ,∴△ABE ≌△AFE (SAS),∴∠ABE =∠AFE =90°,∴EB ⊥AB .

初二等腰三角形专题

等腰三角形专题复习 一、等腰三角形中的分类讨论 1、等腰三角形的周长为50, —条边长是12,则另两边分别是____________________ 4 、如图,在RT^ABC中,/ ACBW ,AB=2BC 在直线BC或AC上取一点P 使得△ PAB为等腰三角形,则符合条件的点P共有____________ 个。 5、已知0为等边△ ABD边BD的中点,AB=4, E、F分别为射线AB DA上一动点,且/ EOF=^ ,若AF=1,求BE的长 _________________ 。 二、构造等腰三角形解题一一截长补短法 6、如图,在△ ABC中,AD为角平分线,且AC=AB+BD求证丁代 2 <:. 7、如图,已知W.W 1 2V,AC平分/ MA N MEC-A N C

&如图,△ ABC为等腰三角形,EC=ED, P为BD的中点,求证:AE=2PE. 三、构造等腰三角形解题一一引平行线 9、如图,已知△ ABC是等边三角形,延长BC到D,延长BA到E,使AE=BD求证:EC=ED. 10、已知△ ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC延长BE交AC于F,求证:AF=EF. B

11、△ ABC为等边三角形,D为BC上任意一点,/ ADE=60,边ED与/ ACB外角的平分线交于点E. (1) 求证:AD=DE. (2) 若点D在CB的延长线上,(1)的结论是否依然成立?请画出图形,若成立,请给出证明, 若不成立,请说明理由。 12、如图,BD平分/ ABC交AC于点D, E为CD上一点,且AD=DE,EF// BC交BD于F,求证: AB=EF. 四、等腰三角形中的“三线合一” (一)利用等腰三角形的“三线合一”证题 AE=AC,EF// BC交AC于点F,求证:EC 平分/ DEF. 13、如图,AD是厶ABC的角平分线,且

全等三角形解题方法与技巧

“三步曲”证全等 牢记判定定理:SSS SAS ASA AAS HL 一看图形:全等三角形的基本图形大致有以下几种①平移型;②对称型;③旋转型(复杂图形可分离 出基本图形) 二看条件: (一)应先看有无隐含条件(如对顶角、公共边、公共角、某些角的和差,某些线段的和差。) 1、利用公共边(或公共角)相等 例1:如图1,AB DC =,AC DB =,△ABC ≌△DCB 全等吗?为什么? 练习1:已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。求证:EB=ED 。 D A E C B

2、利用对顶角相等 例2:如图2,已知AC 与BD 交于点O ,∠A=∠C ,且AD =CB ,你能说明BO=DO 吗? 练习2:已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。求证:∠ACE=∠BDF 。 3、利用等边(等角)加(或减)等边(等角),其和(或差)仍相等 例3:如图,AB=DC ,BF=CE ,AE=DF ,你能找到一对全等的三角形吗?说明你的理由. 练习3:已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 A E D C B A B C D E F O

4、利用平行线的性质得出同位角、内错角相等 例4:如图4,AB ∥CD ,∠A =∠D ,BF =CE ,∠AEB =110°,求∠DFC 的度数. 练习4:如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。 (二)再分析显性条件,如果条件不够,应确定还需什么条件,然后证明该条件。基本思路:1.已知两角――任一边;2.已知两边――找夹角或第三边;3.已知一角与邻边――找另一角或另一邻边;4.已知一角与对边――找另一角。 例1:如图,已知点E C ,在线段BF 上,BE=CF ,AB ∥DE ,∠ACB=∠F . 求证:ABC DEF △≌△. 例2:如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 的延长线上的点E 处,则∠BDC 的度数为 . 例3:两个大小不同的等腰直角三角形三角板如图所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连接DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE . 图1 图2 C E B F D A E

各种等腰三角形难题

各类等腰三角形难题 例1. 在⊿ABC中,AB=AC,且∠A=20°,在为AB上 一点,AD=BC,连接CD. 试求:∠BDC的度数. 分析:题中出现相等的线段,以此为突破口,构造 全等三角形. 解:作∠DAE=∠B=80°,使AE=BA,(点D,E在AC两侧) 连接DE,CE. ∵AE=BA;AD=BC;∠DAE=∠B. ∴⊿DAE≌⊿CBA(SAS),DE=AE;∠DEA=∠BAC=20°. ∠CAE=∠BAE-∠BAC=60°,又AE=AB=AC. ∴⊿AEC为等边三角形,DE=CE;∠DEC=∠AEC-∠DEA=40°. 则:∠CDE=70°;又∠ADE=80°.故∠ADC=150°,∠BDC=30°. 例2.已知,如图:⊿ABC中,AB=AC,∠BAC=20°. 点D和E分别在AB,AC上,且∠BCD=50°,∠CBE=60°. 试求∠DEB的度数.

本题貌似简单,其实不然. 解:过点E作BC的平行线,交AB于F,连接CF交BE于点 G,连接DG.易知⊿GEF,⊿GBC均为等边三角形. ∴∠FEG=∠EFG=60°;∠AFG=140°,∠DFG=40°; ∵∠BCG=50°;∠CBD=60°. ∴∠BDC=50°=∠BCD,则BD=BC=BG;又∠ABE=20°. 故∠BGD=80°,∠DGF=180°-∠BGD-∠FGE=40°. 即∠DGF=∠DFG,DF=DG;又EG=EF;DE=DE. ∴⊿DGE≌⊿DFE(SSS),得:∠DEG=∠DEF=30°. 所以,∠DEB=30°. 例3.已知,等腰⊿ABC中,AB=AC,∠BAC=20°,D和E分 别为 AB和AC上的点,且∠ABE=10°,∠ACD=20°. 试求:∠DEB的度数. 本题相对于上面两道来说,难度又增加了许多.且看我下面的解答.

相似三角形解题方法步骤(教师版)

相似三角形解题方法、技巧、步骤 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件: ①;②;③. 三、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角两角对应相等,两三角形相似 找夹边对应成比例两边对应成比例且夹角 相等,两三角形相似 找夹角相等两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例三边对应 成比例,两三角形相似 找一个直角斜边、直角边对应成比例,两个直角三角形相似 找另一角两角对应相等,两三角形相似 找两边对应成比例判定定理1或判定定理 4 找顶角对应相等判定定理1 找底角对应相等判定定理1 找底和腰对应成比例判定定理3 e)相似形的传递性若△1∽△2,△2∽△3,则△1∽△3 五、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证:BA AC AF AE = (判断“横定”还是“竖定”?) 例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 例1、 已知:如图,△ABC 中,∠ ACB=900 ,AB 的垂直平分线交AB 于D ,交BC 延长线于F 。 求证:CD 2 =DE ·DF 。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 六、过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. 1、 等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC 中,AD 平分∠BAC , AD 的垂直平分线FE 交BC 的延长线于E .求证:DE 2=BE·CE . 分析: 2、 等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。 例2:如图4,在△ABC 中,∠BAC=90°,AD ⊥BC ,E 是AC 的中点,ED 交AB 的延长线于点F . 求证:AB DF AC AF =. a)已知一对等b)己知两边对应成比 c)己知一个直d)有等腰关

一个可以从旋转角度(构造等边三角形)理解的好题及其解法(13)

题目 在凸四边形ABCD 中,60ABC ∠=?,AB BC =,30ADC ∠=?。 证明:222AD CD BD +=。 分析:待证结论让我们联想到勾股定理,需要通过添加辅助线将AD 、CD (作 为直角边)和BD (作为斜边)集中到一个直角三角形里。 图1 图2 证明1:如图1,过D 作DE DA ⊥,且使得ED CD =,连接AE 、CE 、AC 903060CDE ADE ADC ∠=∠-∠=?-?=? ∴CDE ?是等边三角形 ∴CE CD =,60DCE ∠=? 60ABC ∠=?,AB BC = ∴ABC ?是等边三角形 ∴AC BC =,60BCA ∠=? ∴ACE ACD DCE ACD BCA BCD ∠=∠+∠=∠+∠=∠ ∴ACE ?≌BCD ?(SAS ) ∴AE BD = 在Rt ADE ?中,222AD ED AE += ∴222AD CD BD += 评注:意外的是,添加辅助线后原图回到了一个经典(老)问题的图上—两个有公共顶点的等边三角形(不看AD ,试试?)!另外,也可以按如下方式作辅助线:如图2,过D 作DE DC ⊥,且使得ED AD =,连接CE 、AE 、AC (过程基本同证明1,不赘述)。 D B B D B D

图3 图4 证明2:如图3,过C 作CE CD ⊥,且使得CE AD =,连接DE 、BE 360360BCE ECD BCD ABC ADC BCD BAD ∠=?-∠-∠=?-∠-∠-∠=∠ BC BA = ∴BCE ?≌BAD ?(SAS ) ∴BE BD =,CBE ABD ∠=∠ ∴60DBE ABC ∠=∠=? ∴DBE ?是等边三角形 ∴ED BD = 在Rt DCE ?中,222CE CD ED += ∴222AD CD BD += 评注:明白作辅助线的初衷和目的后,问题解决将得心应手,也可以按如下方式作辅助线:如图4,过A 作AE AD ⊥,且使得AE CD =,连接DE 、BE (过程基本同证明2,不赘述)。 后记:1、证明1的图可以看成以CD 为边作等边三角形CDE ,证明2的图可以看成以BD 为边作等边三角形BDE ,你能理解为什么作等边三角形吗? 2、图1可以看成是将BCD ?绕点C 沿顺时针方向旋转60?到ACE ?,图3可以看成是将ABD ?绕点B 沿顺时针方向旋转60?到CBE ?,你能理解为什么旋转60?吗?其实,从旋转的视角来看待本题,过程将十分简洁:如图3,将ABD ?绕点B 沿顺时针方向旋转60?到CBE ?,连接DE ,易知DBE ?是等边三角形,故ED BD =, 由于D C E D B E C E B C D B A B C A D B C ∠=∠+∠+∠=∠+∠+∠603090=?+?=?(凹四边形),所以2 2 2 CE CD ED +=,从而2 2 2 AD CD BD +=。 相关题目如图,在ABC ?中,90ABC ∠=?,AB CB =,45DBE ∠=?D 、E 是AC 上两点。试证明:222 AD CE DE +=。 请务必督促孩子今晚进行独立思考,下午辅导课时在黑板上已抄过B B

全等三角形解题技巧

造全等三角形解题的技巧 全等三角形是初中几何《三角形》中的一个重要内容,是初中生必须掌握的三角形两大知识点之一(全等和相似),在解决几何问题时,若能根据图形特征添加恰当的辅助线,构造出全等三角形,并利用全等图形的性质,可以使问题化难为易,出奇制胜,现举几例供大家参考。 友情提示:证明三角形全等的方法有SAS、SSS、AAS、ASA、HL(Rt△)。 一、见角平分线试折叠,构造全等三角形 例1 如图1,在△ABC中,AD平分∠BAC,AB+BD=AC。 求证:∠B:∠C=2:1。 证法一:在线段AC上截取AE=AB,连接DE。 在△ABD和△AED中 ∵AE=AB,∠1=∠2,AD=AD,∴△ABD△AED。∴DE=DB,∠B=∠AED。 ∵AB+BD=AC,∴AE+DE=AC。 又∵AE+CE=AC,∴DE=CE。∴∠C=∠EDC。 ∵∠AED=∠C+∠EDC,∴∠AED=2∠C,即∠B=2∠C。∴∠B:∠C=2:1。 证法二:延长AB到F,使BF=BD,连接DF。∴∠F=∠BDF。 ∵∠ABC=∠F+∠BDF,∴∠ABC=2∠F。 ∵AB+BD=AC,∴AB+BF=AC,即AF=AC。 在△ADF和△ADC中, ∵AF=AC,∠1=∠2,AD=AD,∴△ADF△ADC。∴∠F=∠C。 又∵∠ABC=2∠F,∴∠ABC=2∠C,即∠ABC:∠C=2:1。 点评:见到角平分线时,既可把△ABD沿AD折叠变成△AED,也可把△ACD沿AD折叠变成△AFD,利用全等三角形的性质,可使问题得以解决。

练习:如图3,△ABC中,AN平分∠BAC,CN⊥AN于点N,M为BC中点,若AC=6,AB=10,求MN的长。 图3 提示:延长CN交于AB于点D。则△ACN△ADN,∴AD=AC=6。 又AB=10,则BD=4。可证为△BCD的中位线。 ∴。 点评:本题相当于把△ACN沿AN折叠成△AND。 二、见中点“倍长”线段,构造全等三角形 例2 如图4,AD为△ABC中BC上的中线,BF分别交AC、AD于点F、E,且AF=EF,求证:BE=AC。 图4 证明:延长AD到G,使DG=AD,连接BG。 ∵AD为BC上的中线,∴BD=CD, 在△ACD和△GBD中, ∵AD=DG,∠ADC=∠BDG,BD=CD,∴△ACD△GBD。∴AC=BG,∠CAD=∠G。 ∵AF=EF,∴∠CAD=∠AEF。∴∠G=∠AEF=∠BEG,∴BE=BG, ∵AC=BG,∴BE=AC。 点评:见中线AD,将其延长一倍,构造△GBD,则△ACD△GBD。 例3 如图5,两个全等的含有、角的三角极ADE和ABC如图放置,E、A、C三点在同一直线上,连接BD,取BD中点M,连接ME、MC 图5 试判断△EMC的形状,并说明理由。 解析:△EMC为等腰直角三角形。

相似三角形解题思路赏析

相似三角形解题思路赏析(3.29) 姓名_______ 评价 内容解读:人们在对两个物体或图形的形状和大小进行认识时,全等和相似的感知是伴生的.在数学上全等和相似是特殊与一般、共性与个性的关系,形状相同是二者的共性.全等形是相似比等于1时的相似形;同时我们应学会应用两个三角形相似的判定方法去解决问题。 例题讲解: 1、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、2 2 2 b a c =+ D 、22b a c == 2、已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的 1 9 ? (2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △ 相似?若存在,求t 的值;若不存在,请说明理由. 3、如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△; (2)当O 为AC 边中点,2AC AB =时,如图2,求 OF OE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出 OF OE 的值. 4、已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB = (如图1所示). B A D E C O F 图2 B A C E D 图1 F

八年级数学 构造等腰三角形解题的辅助线常用做法

构造等腰三角形解题的辅助线常用做法 等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起考查。在许多几何问题中,通常需要构造等腰三角形才能使问题获解。那么如何构造等腰三角形呢?一般有以下四种方法: (1)依据平行线构造等腰三角形; (2)依据倍角关系构造等腰三角形; (3)依据角平分线+垂线构造等腰三角形; (4)依据120°角或60°角,常补形构造等边三角形。 1、依据平行线构造等腰三角形 例1:如图。△ABC中,AB=AB,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证DE=DF. [点拔]:若证DE=DF,则联想到D是EF的中点,中点的两旁容易构造全等三角形,方法是过E或F作平行线,构造X型的基本图形,只需证两个三角形全等即可。 证明:过E作EG∥AC交BC于G ∴∠1=∠ACB,∠2=∠F ∵AB=AC ∴∠B=∠ACB ∴∠1=∠B ∴BE=GE ∵BE=CF ∴GE=CF 在△EDG和△FDC中 ∠3=∠4 ∠2=∠F GE=CF

∴△EDG≌△FDC ∴DE=DF [评注]:此题过E作AC的平行线后,构造了等腰△BEG,从而达到转化线段的目的。 2、依据倍角关系构造等腰三角形 例2:如图。△ABC中,∠ABC=2∠C,AD是∠BAC的平分线 求证:AB+BD=AB [点拔]:在已知条件中出现了一个角是另一个角的2倍,可延长CB,构造等 腰三角形,问题即可解决。 证明:延长CB至E,使BE=BA, 连接AE ∵BE=BA ∴∠BAE=∠E ∵∠ABC=2∠C, ∠ABC=∠E+∠BAE=2∠E ∴∠C=∠E AC=AE ∵AD平分∠BAC ∴∠1=∠2 ∴∠EAD=∠BAE+∠1=∠E+∠1=∠C+∠2=∠BDA ∴EA=ED ∵ED=EB+BD,EB=AB,AC=AE ∴AC=AB+BD [评注]:当一个三角形中出现了一个角是另一个角的2倍时,我们就可以通过转化倍角寻找等腰三角形。

北师版数学九年级上册相似三角形---构造相似基本恩图形,为解题打开一扇智慧之门

构造相似基本恩图形,为解题打开一扇智慧之门 相似三角形问题解答时,常遇到或构造一个重要解题基本图形,这个基本图形构成元件非常简单,但是这个图形的解题内涵非常丰富,能为很多问题的破解提供强有力的方法支撑.一起走进这个基本图形. 一、认识基本图形 如图1,在△ABC中,点D,E分别是AB,AC上的点,且DE∥BC.则△ADE∽△ABC. 常见基本结论: 一“=”型比例式: AD:BD=AE:EC;AD:AB=AE:AC;AD:AE=BD:CE. 连“=”型比例式: AD:AB=AE:AC=DE:BC. 二、基本图形的解题应用 (一).直接应用型 1.1探求被截线段的长度 例1 (2019年四川内江市)如图2,在△ABC中,DE∥BC,AD=9,DB=3,CE=2,则AC的长为() A.6 B.7 C.8 D.9 解析:因为DE∥BC,所以=,即=,所以AE=6,所以AC=AE+EC=6+2=8. 所以选C. 点评:这是平行线分线段成比例定理的简易图形,是定理的一个重要缩影,更是解题的一个重要工具性图形,识记图形是基础,活用图形解题是根本,据图正确选择比例式是解题的关键. 1.2探求与截线平行线段的长度 例2 (2019年广西贺州市)如图3,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于() A.5 B.6 C.7 D.8

解析: 因为DE∥BC,所以△ADE∽△ABC,所以=,即=,解得:BC=6,所以选B. 点评:基本图形中,当求与截线平行的线段长时,要转换解题思路,把平行线分线段成比例定理转型为“A”字型的三角形相似问题解决,这种转化思想很重要. 1.3探求非比例线段,非平行线段的线段的长度 例3 (2019年广西贵港市)如图4,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为() A.2B.3C.2D.5 解析:设AD=2x,BD=x,所以AB=3x,因为DE∥BC,所以△ADE∽△ABC,所以=,所以=,所以DE=4,=,因为∠ACD=∠B, ∠ADE=∠B,所以∠ADE=∠ACD,因为∠A=∠A,所以△ADE∽△ACD, 所以=,设AE=2y,AC=3y,所以=,所以AD=y, 所以=,所以CD=2,所以选:C. 点评:在“A”字型基本图形中解题,实现三个维度的目标:一是三角形相似,构造连等比例式;二是巧妙引进未知数表示未知线段,化抽象线段为具体表达线段,利于计算;三是依托基本图形为基础,提供新条件,为新三角形的相似奠基,为问题的最终解决搭桥. 1.4 甄别比例式 例4 (2019年浙江省杭州市)如图5,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M 为BC边上一点(不与点B,C重合),连接AM交DE于点N,则() A.=B.=C.=D.=

构造等腰三角形解题的常见途径(新)

构造等腰三角形解题的常见途径 等腰三角形是研究几何图形的基础,因此在许多几何问题中,常常需要构造等腰三角形才能使问题获解,那么如何构造等腰三角形呢?一般说来有以下几种途径: 一、利用角平分线+平行线,构造等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形.如图1①中,若AD 平分∠BAC ,AD ∥EC ,则△ACE 是等腰三角形;如图1②中,AD 平分∠BAC ,DE ∥AC ,则△ADE 是等腰三角形;如图1③中,AD 平分∠BAC ,CE ∥AB ,则△ACE 是等腰三角形;如图1④中,AD 平分∠BAC ,EF ∥AD ,则△AGE 是等腰三角形. 例1 如图2,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延 长线于点E ,垂足为点F .求证:.AE =AP . 简析 要证.AE =AP ,可寻找一条角平分线与EF 平行,于是想到AB =AC ,则可以作AD 平分∠BAC ,所以AD ⊥BC ,而EF ⊥BC ,所以AD ∥EF ,所以可得到△AEP 是等腰三角形,故AE =AP . 例2 如图3 ,在△ABC 中,∠BAC 、∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB 、BC 于点 D 、 E .试猜想线段AD 、CE 、DE 的数量关系,并说明你的猜想 C A B E D O 图3 图4 F C D E B A M 图2 F B A C D P E 图1 ① D ② C D C ④ F C D

理由. 简析 猜想:AD +CE =DE .理由如下:由于OA 、OC 分别是∠BAC 、∠BCA 的平分线,DE ∥AC ,所以△ADO 和△CEO 均是等腰三角形,则DO =DA ,EC =EO ,故AD +CE =DE . 例3 如图4,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC .求证:EF ∥AB . 简析 由于这里要证明的是EF ∥AB ,而AD 平分∠BAC ,所以必须通过辅助线构造出平行线,这样就可以得到等腰三角形了,于是DE =CD 的提示下,相当于倍长中线,即延长AD 至M ,使DM =AD ,连结EM ,则可证得△MDE ≌△ADC ,所以ME =AC ,又EF =AC ,∠M =∠CAD ,所以∠M =∠EFM ,即∠CAD =∠EFM ,又因为AD 平分∠BAC ,所以∠BAD =∠EFD =∠CAD ,所以EF ∥AB . 二、利用角平分线+垂线,构造等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图5中,若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形. 例4 如图6,已知等腰R t△ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D .求证:BF =2CD . 简析 由BF 平分∠ABC ,CD ⊥BD ,并在图5的揭示之下,延长线BA 、CD 交于点E ,于是△BCE 是等腰三角形,并有ED =CD ,余下来的问题只需证明BF =CE ,而事实上,由∠BAC =90°,CD ⊥BD ,∠AFB =∠DFC ,得∠ABF =∠DCF ,而AB =AC ,所以△ABF ≌△ACE ,则BF =CE ,故BF =2CD . 三、利用转化倍角,构造等腰三角形 E 图5 A B C D 图6 B F D E C A

解题技巧专题:共顶点的等腰三角形

北师版八年级数学下册 解题技巧专题:共顶点的等腰三角形 ——形成精准思维模式,快速解题 ◆类型一共顶点的等腰直角三角形 1.如图,已知△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE; (2)猜想:AD和CE是否垂直?若垂直,请说明理由;若不垂直,则只要写出结论,不用写理由. 2.如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD,延长CA 至点E,使AE=AC,延长CB至点F,使BF=BC.连接BD,AD,AF,DF,EF.延长DB 交EF于点N.求证: (1)AF=AD; (2)EF=BD.

◆类型二共顶点的等边三角形 3.如图,△APB与△CDP是两个全等的等边三角形,且P A⊥PD,有下列四个结论:①∠PBC=15°;②AD∥BC;③直线PC与AB垂直.其中正确的有() A.0个B.1个C.2个D.3个 第3题图第4题图 4.如图,在△ABC中,分别以AC,BC为边作等边三角形ACD和等边三角形BCE,连接AE,BD,交于点O,则∠AOB的度数为________. 5.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC全等吗?请说明理由; (2)试说明AE∥BC的理由; (3)如图②,将(1)中动点D运动到边BA的延长线上,其他条件不变,请问是否仍有AE∥BC?证明你的猜想.

参考答案与解析 1.(1)证明:∵△ABC 和△DBE 均为等腰直角三角形,∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°,∴∠ABC -∠DBC =∠DBE -∠DBC ,即∠ABD =∠CBE ,∴△ABD ≌△CBE ,∴AD =CE . (2)解:垂直.理由如下:延长AD 分别交BC 和CE 于G 和F .由(1)知△ABD ≌△CBE ,∴∠BAD =∠BCE .∵∠BAD +∠ABC +∠BGA =∠BCE +∠AFC +∠CGF =180°,∠BGA =∠CGF ,∴∠AFC =∠ABC =90°,∴AD ⊥CE . 2.证明:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =180°-∠ABC =135°,∠ACD =∠ACB +∠BCD =135°,∴∠ABF =∠ACD .∵CB =CD ,CB =BF ,∴BF =CD ,∴△ABF ≌△ACD (SAS),∴AF =AD . (2)由(1)知△ABF ≌△ACD ,AF =AD ,∴∠F AB =∠DAC .∵∠BAC =∠BAD +∠DAC =90°,∠EAB =∠EAF +∠F AB =90°,∴∠EAF =∠BAD .∵AE =AC ,AB =AC ,∴AE =AB ,∴△AEF ≌△ABD (SAS),∴EF =BD . 3.D 4.120° 解析:设AC 与BD 交于点H .∵△ACD ,△BCE 都是等边三角形,∴CD =CA ,CB =CE ,∠ACD =∠BCE =60°,∴∠ACD +∠ACB =∠BCE +∠ACB ,即∠DCB =∠ACE ,∴△DCB ≌△ACE ,∴∠CDB =∠CAE .∵∠DCH +∠CHD +∠BDC =180°,∠AOH +∠AHO +∠CAE =180°,∠DHC =∠OHA ,∴∠AOH =∠DCH =60°,∴∠AOB =180°-∠AOH =120°. 5.解:(1)△DBC 和△EAC 全等.理由如下:∵△ABC 和△EDC 都是等边三角形,∴AC =BC ,DC =EC ,∠ACB =60°,∠DCE =60°,∴∠BCD =60°-∠ACD ,∠ACE =60°-∠ACD , ∴∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,DC =EC , ∴△DBC ≌△EAC (SAS). (2)由(1)知△DBC ≌△EAC ,∴∠EAC =∠B =60°.又∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC . (3)仍有AE ∥BC .证明如下:∵△ABC ,△EDC 为等边三角形,∴BC =AC ,DC =CE ,∠BCA =∠DCE =60°,∴∠BCA +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE .在△DBC 和△EAC 中,∵?????BC =AC ,∠BCD =∠ACE ,CD =CE , ∴△DBC ≌△EAC (SAS),∴∠EAC =∠B =60°.又 ∵∠ACB =60°,∴∠EAC =∠ACB ,∴AE ∥BC .

相关主题
文本预览
相关文档 最新文档