当前位置:文档之家› 不同模式波涌灌溉及其对冬小麦耗水特性的影响

不同模式波涌灌溉及其对冬小麦耗水特性的影响

不同模式波涌灌溉及其对冬小麦耗水特性的影响
不同模式波涌灌溉及其对冬小麦耗水特性的影响

不同模式波涌灌溉及其对冬小麦耗水特性的影响水资源存在较大缺口、短期内不可补给性及农业对水资源的依赖性,决定农业节水的必要性。立足地面灌溉,在不改变本当前灌水条件的前提下,对波涌灌溉、间隔交替波涌灌溉、间隔固定波涌灌溉3种波涌模式灌溉质量及对小麦生长耗水特性的影响进行研究具有重要意义。

试验于2015年9月至2016年6月在山东农业大学马庄试验田进行,以连续灌溉为对照,针对预设的3种波涌模式以连续灌溉为对照,每种灌溉处理设置三

组重复。试验采用济麦22,在畦长120 m,畦宽1.5 m的畦田中进行灌溉试验。

试验主要对灌溉参数、土壤含水量、小麦各生育期生长性状等内容进行统计分析,以连续灌溉为对照,考察3种不同模式的波涌灌溉灌溉质量、生长性状及耗水特性。主要试验结论如下:1.与连续灌溉相比,普通波涌灌溉,间隔交替波涌灌溉二水灌溉组及三水灌溉组、间隔固定波涌灌溉灌溉组及不灌组,节水分别为17.5%、32.6%,32.6%;灌水均匀度提升10%以上,且有利于灌后2d存储于考察土

层内灌溉水占该畦获得总灌溉水的比例提高20%以上。

2.灌后30 d,0~100 cm土层中,2~5 d内土层水分高于灌前水平,连续灌溉处理消耗水量高于1.2倍各种模式的波涌灌溉处理;5~15 d连续灌溉处理消耗水量低于0.75倍各种模式的波涌灌溉处理;15~30 d连续灌溉处理耗水量低于0.9倍各模式波涌灌溉;表明各种模式的波涌灌溉能够更好的为小麦提供生长所需的水量。

3.灌溉对田间各土层含水量均匀度有所改善,但改善效果随灌溉方式的不同有所差别。

4.株高、叶面积、分蘖数、有效穗数、穗粒数受灌溉影响较大,波涌灌溉在各个生育期表现出较大优势,间隔交替波涌灌溉和间隔固定波供水涌灌溉次之。

与连续灌溉相比,波涌灌溉增产30%,间隔交替波涌灌溉增产26%,间隔固定波涌灌溉增产17.5%。

5.小麦播种期到返青期生长较为缓慢,起身期到抽穗开花期耗水最多,抽穗开花到成熟期次之。波涌灌溉、间隔交替波涌灌溉二水灌溉组及三水灌溉组、间隔固定波涌灌溉灌溉组及不灌组灌溉水分生产率是连续灌溉的1.6倍、1.9倍、1.8倍、1.8倍、1.7倍。

各模式波涌灌溉水分利用效率是连续灌溉的1.5倍。3种模式的波涌灌溉具有良好的节水的效果,能够有效提高灌溉质量,改善灌溉均匀度和含水量均匀度,使灌溉水能够尽量分布在较浅土层,长时间的为小麦提供水分,各模式的波涌灌溉增产效果显著,有效提高单位灌溉水和单位水生产干物质量,有效提高灌溉水分生产率和水分利用效率。

灌溉水利用系数的计算方法

灌溉水利用系数的计算方法 灌溉水利用系数在水土平衡与渠道设计流量分析中使用。 一、用模式分析法计算渠道灌的灌溉水利用系数 1计算公式 (1)灌溉水利用系数:η= 式中:——渠系水利用系数,可用各级渠道水利用系数连乘 求得。 ——田间水利用系数。 (2)渠道水利用系数 在无实测资料时按下式计算: =1- 土渠: = 衬砌渠:= 式中:——渠道单位长度水量损失率(%、km) L——渠道长度(km) K——土壤透水性系数,可从表3、1、9-1查得 m——土壤透水性指数,可从表3、1、9-1查得 ——衬砌渠道渗水修正系数,可从表3、1、9-3查得2 参数选择 (1)设计净流量: 1)干渠:Q净=q s A干=0、3682、46=0、972m3/s

2)支渠:Q净==m3/s 3)斗渠:Q净=n Q农净=20、091=0、182 m3/s 4)农渠:Q净= ==0、091 m3/s (2)渠道长度: 1)干渠:1条,长12、6km砼板防渗结构,灌溉面积2、64万亩。标准条田规格:长宽=700250=262、5亩拆合标准条田100块 2)支渠:4条,总长7、6km,平均长1、9km,平均灌溉面积0、66万亩,拆与标准条田25块 3)斗渠:14条,总长21km,平均长1、5km,平均灌溉面积0、1886亩,拆与标准条田7块 4)农渠:100条,总长0、65km,平均长度0、65km (3)m、k、的选择 查表3、1、9-1沙壤土:K=3、4,m=0、5 查表3、1、9-3干渠砼板衬砌:=0、15-0、05,取=0、10 支渠浆砌石衬砌:=0、20-0、10取=0、15 3、渠道水利用系数计算 利用渠道净流量、渠道长度及选择的参数计算各渠道水利用系数,考虑到蒸发损失,管理损失及衬砌渠道在使用期防渗性能降低等因素,并结合现场调查,对计算值作适当调整作为采用值。 渠道水利用系数 渠道Q L

灌溉水利用系数

灌溉水利用系数综合测定法 □ 许建中赵竞成高峰黄修桥李英能 摘要对任何一种节水措施进行分析、评价都离不开灌溉水利用系数。目前,各地、各灌区给出的灌溉水利用系数不具备可比性,难以作为比较和衡量节水措施的标准。灌溉水利用系数综合测定法选择具有代表性的典型渠道,而不是只测量典型渠段,并在测流断面、测量方法、测定条件、渠道数量、典型渠段长度等方面提出具体要求,既使得测量的灌溉水利用系数比较符合实际,又使得不同灌区的灌溉水利用系数具有可比性。综合测定法测定的灌溉水利用系数需要根据渠道越级输水、渠道布置形式等情况进行修正,并用首尾测定法校核。 关键词灌溉利用系数综合测定法 灌溉水利用系数是衡量农业节水效果的关键指标。对任何一种节水技术措施进行分析、比较和评价时都不能离开灌溉水利用系数。但是,我国目前各地和各灌区所给出的灌溉水利用系数却难以作为比较与衡量的标准。从各地区来讲,目前统计出的灌溉水利用系数差异极大,很多数据明显地存在错误,影响灌溉水利用系数正常测定的主要原因是传统测定方法存在测定工作量巨大、测定条件难以保证等,急需对灌溉水利用系数进行分析研究。综合测定计算方法是在分析研究的基础上提出的,既克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足,而且能反映出灌区渠系用水情况、灌溉工程质量及灌溉用水管理水平等。为灌区今后经常性地测量符合实际的灌溉水利用系数及指导灌区节水工程改造等提供了一种切实可行的汁算方法。 一、典型渠道的选择及要求 1.选择具有代表性的典型渠道 典型渠道应包括衬砌渠道和未衬砌渠道,其工程完好率分别接近全灌区该级衬砌和未衬砌渠道的工程完好率,过水流量接近该级渠道的平均值。典型渠段的了程完好率和过水流量应接近典型渠道的平均值。 2.测流断面的选 应选择在渠段平直、水流均匀、无旋涡或回流的地方,断面应与水流方向垂直。测流段应基本具有稳定规则的断面。全面、认真地检查拟测渠道,清除测水断面处及附近淤积物和石块等,保持测流断面的完整和通畅。 3.测量方法的选择

小麦的需水规律

一、小麦的需水规律 1、三叶分蘖期:小麦三叶分蘖期水分供应充足可以增加小麦的有 效分蘖数。当土壤湿度从22%增加到27%,小麦的有效分蘖就会从平均的3.7个增加到 7.9个,主穗上的小穗也会从7.1个增加到10.4个。 2、拔节孕穗期:小麦拔节孕穗 期是小麦生长发育最快的时期,需水量较大,但拔节前期水分又不能过多。否则容易引起小麦徒长倒伏。 3、抽穗开花期:小麦抽穗开花期需水量达到生育期的最高峰。当土壤湿度由20%增加到28%时,主穗上的小穗平均由0.6个增加到12.4个;每株粒数重由 44.6增加到63.7;千粒重增加2.5克;增产32.4%。如果小麦此期缺水,将严重的影 响小卖的品质和产量。 4、灌浆乳熟期。小麦灌浆乳熟期是小麦品质形成的关键时期,此期如果小麦缺水,将造成小麦秕粒,从而降低效买的品质和产量。 5.每生产1kg小麦约需水1-1.2kg;播种后到拔节前,耗水量占全生育期耗水量的35%一40%,每亩日耗水量约0.4立方米;拔节到抽穗时期是小麦生长的临界期,缺水会造成减产,在 25—30天时间内耗水量占总耗水量的20%一25%,每亩日耗水量约2.2-3.4立方米;抽穗到发育成熟,日耗水量还要大些,约35—40天,耗水量占总耗水量26% 一 42%,特别是抽穗时期,日耗水量可达4立方米。灌溉用水和土壤情况有关:灌水 量(立方米/亩)=667*(田间最大持水量—灌水前士壤含水量)×土壤容重×计划灌水土层深度,例如,灌前测知土壤含水量为17%,田间最大持水量28%,土壤容重为1.3,计划灌水土层深度为0.6米,则本次灌水量应为57.22立方米。 二、水稻的需水规律 水稻种子发芽的最低温度为10~15℃,最适宜温度为30~35℃一般种子要吸收本身重量的25-50%或以上的水,才开始萌发.水稻40%. 稻田水分状况对水稻生长发育的影响据测定,当土壤水分下降到80%以下时,因水分不足阻碍水稻对矿质元素的吸收和运转,使叶绿素含量减少,气孔关闭,妨碍叶片对二氧化碳的吸收,光合作用大大减弱,呼吸作用增强,可见保持土壤充足的水分,有利于水稻正常生理活动,利于分蘖、长穗、开花、结实,获得高产。试验还表明在水稻生育过程中,任何一个生育时期受旱都不利,但—般以返青、花粉母细胞减数分裂、开花与灌浆四个时期受旱对产量影响最大。返青期缺水,秧苗不易成活返青,即使成活对分蘖及以后各生育时期器官建成都有影响。幼穗发育期,叶面积大,光合作用强,代谢作用旺盛,蒸腾量也大,是水稻一生中需水最多的时期,初期受旱抑制枝梗、颖花原基分化,每穗粒数少,中期受旱使内外颖,雌雄蕊发育不良。减数分裂期受旱颖花大量退化,粒数减少,结实率下降。抽穗开花期,水稻对水分的敏感程度仅次于孕穗期,缺水造成“卡脖子旱”,抽穗开花困难,包颈白穗多,结实率不高,严重影响产量。灌浆期受旱,影响对营养物质的吸收和有机物的形成,运转,从而使千粒重、结实率降低,青米、死米、腹白大的米粒增多,影响产量和品质。水稻虽耐涝力强,短期淹水对产量影响不大,但若长期淹水没顶则会影响生育及产量。生育时期不同对淹水的反应不同。 据试验仍以返青和花粉母细胞减数分裂及开花、灌浆期对淹水最敏感。据观察,返育期当日平均温度为25~30℃时,淹水3~4天死苗率高达85%,双季稻孕穗期淹水7天,幼穗腐烂完全无收,开花期淹7天,结实率只有5%,乳熟期淹7天,结实率尚有60%,蜡熟期淹7天可收70~80%的产量。深灌会使土壤中氧气减少,泥温昼夜温差减小,稻株基部光照减弱,对根的生长及分蘖发生均不利,且茎秆软弱易倒伏。 2.各生育时期水分蒸腾量的变化。水稻的叶面蒸腾量,随植株叶面积的加大而增多,至孕穗到出穗期达最高峰,以后又下降,但是水稻的蒸腾量既与品种有关,又受气温、湿度、风速、降雨等环境条件及栽培技术的影响。 3.稻田需水量稻田需水量由叶面蒸腾量,窝间蒸发量和稻田渗漏量三者组成,前二者又合称腾发量。 (1)腾发量其中叶面蒸腾量的变化前面已谈过。而窝间蒸发量一般是移栽后最大,随着稻株对稻田覆盖度的增大而减

调亏灌溉对冬小麦耗水特性和水分利用效率的影响-应用生态学报

说明:论文的格式,字号等项目参照如下范例撰写,本刊审稿为盲审制,投稿正文请不要出现作者信息和基金项目等内容,但修改稿需补充完整(红色部分)。调亏灌溉对冬小麦耗水特性和水分利用效率的影响 作者姓名 (作者地址) 摘要以高产中筋冬小麦品种济麦22为材料,在山东兖州小孟镇史王村进行田间试验,研究了调 亏灌溉对冬小麦耗水特性和水分利用效率的影响.结果表明:在全生育期降水228 mm条件下,W1(土 壤相对含水量:播种期80%+拔节期70%+开花期70%)和W4(土壤相对含水量:播种期90%+拔节 期85%+开花期85%)处理总耗水量高于W0(土壤相对含水量:播种期80%+拔节期65%+开花期65%)、W2(土壤相对含水量:播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量:播 种期90%+拔节期80%+开花期80%)处理,W1和W4处理间无显著差异;W1处理增加了0~200 cm 土层土壤贮水消耗量,降低了小麦拔节至开花期的耗水模系数,提高了开花至成熟期的耗水模系数; W4处理在开花至成熟期、拔节至开花期的耗水量和耗水模系数均较大.调亏灌溉条件下,W0处理水分 利用效率较高,但产量最低;随灌溉量增加,其他处理水分利用效率为先增加后降低的趋势.耗水量最 高的W1和W4处理产量也最高, W1处理灌溉水利用效率和灌溉效益均高于W4处理,为本试验条件下 高产节水的最佳处理. 关键词冬小麦;调亏灌溉;耗水特性; 水分利用效率 Effects of regulated deficit irrigation on water consumption characteristics and water use efficiency of winter wheat.作者姓名英文(作者地址英文) Abstract:Field experiment was conducted to examine the effects of regulated deficit irrigation on water consumption and water use efficiency(WUE)in wheat plants (cv. Jimai 22) at Shiwang Village,Yanzhou, Shandong, China. Under 228 mm annual precipitation precondition, the water consumption amount of treatment W1(with soil relative water content (SRWC) of 80%, 70% and 70% at sowing, jointing, and anthesis stages, respectively) and W4 (with SRWC of 90%, 85% and 85% at sowing, jointing, and anthesis stages, respectively) were significantly higher than those of W0 (with SRWC of 80%, 65% and 65% at sowing, jointing, and anthesis stages, respectively), W2 (with SRWC at sowing, jointing, and anthesis stages of 80%, 80%, and 80%,respectively), and W3 (with SRWC of 90%,80% and 80% at sowing, jointing, and anthesis stages, respectively). Compared with W4, the treatment W1increased the ratio of soil water consumption amount to water consumption amount, used more water in 0-200 cm soil layers, and it decreased water consumption percentage from jointing to anthesis stages, whereas increased that from

渠系水利用系数、灌溉水利用系数计算方法

渠系水利用系数、灌溉水利用系数 近十几年来,随着水文业务范围的不断拓宽,区域水资源评价和水资源论证工作已成为水文部门的主要业务工作之一。而在水资源评价和论证工作中,往往要用到渠道、渠系和灌溉水利用系数,为使有关技术人员正确理解和掌握这一知识,现根据有关书籍及有关水资源评价细则中的规定,对渠道、渠系和灌溉水利用系数简介如下: 1、渠系的组成 完整的输配水灌溉渠道包括干渠、支渠、斗渠、农渠和毛渠。其中,农渠以上输配水量称为渠系水,农渠以下输配水量称为田间水。 2、渠道水利用系数 某渠道的出口流量(净流量)与入口流量(毛流量)的比值,称为渠道水利用系数。换言之,某渠道下断面的流量与上断面流量的比值,称为该段渠道的渠道水利用系数。也就是说,渠道水利用系数反映的是单一的某级渠道的输水损失,公式表示如下: η渠道=Q净/Q毛=Q下/Q上

3、渠系水利用系数 渠系水利用系数反映了从渠道到农渠的各级输配水渠道的输水损失,表示了整个渠系的水的利用率,其值等于同时工作的各级渠道的渠道水利用系数的乘积,公式表示如下: η渠系=η干渠×η支渠×η斗渠×η农渠 4、田间水利用系数 是指农渠以下(包括临时毛渠直至田间)的水的利用系数η田间。若在田间工程配套齐全,质量良好,灌水技术合理的情况下,田间水利用系数可达到0.90,而水田可达到0.90~0.95。 5、灌溉水利用系数 全灌区的灌溉水利用系数(η灌溉水)为田间所需的净水量与渠首引入水量之比,或等于渠系水利用系数与田间水利用系数的乘积。公式表示如下: η灌溉水=Q田间净/Q渠首引=η渠系水×η田间水

灌溉水有效利用系数(effective coefficient of irrigative water utilization) 灌溉期内,灌溉面积上不包括深层渗漏与田间流失的实际有效利用水量与渠道头进水总量之比,以η水表示。它由渠系水利用系数与田间水利用系数两部分组成。从末级固定渠道(一般为农渠)的渠尾进入毛渠的水量总和与渠首同期进入总量的比值,通常以η渠系表示,具有下列关系:η渠系=η干·η支·η斗·η农 式中:η干、η支...分别表示干渠、支渠...的渠道水利用系数。 计划湿润层内实际灌入的水量与进入毛渠的水量的比值称为田间水利用系数,通常以η田表示。灌溉水有效利用系数应等于渠系利用系数与田间水利用系数的乘积,即η水=η渠系·η田。 灌溉水利用系数(又称灌溉水利用率),是指灌入田间的有效水量与灌溉水源引进的总水量的比值。渠系水利用系数是指各级固定渠道水利用系数的乘积或末级固定渠道放出的总水量与渠首引进的总水量的比值。“十五”时期灌溉水利用系数从0.43提高到0.45。 灌溉水利用系数

水的特性

水的基本特性 在自然界中,几乎水的全部物理性质,要么是独特的,要么是处于这种性质范围的极端状态。由此,导致了它在化学上的特殊性。这些在物理及化学上的特点,又使得它在生物学上具有不可代替的作用。这就可以清楚的看出,水在自然地理研究中的价值。 让我们首先来熟悉一下水分子的结构。由两个氢原子和一个氧原子所组成的水分子,呈非对称分布,共形状略作V字形,这是依据水分子的电子云分布决定的。现已清楚的是,氧原子居于中心,两个氢原子位于类似正方体之一个面的两个对角。H—O—H之间的角度(也就是V字形结构之角度)为104°31′,而不是真正的正方体所应有的109°30′。氧原子的8个电子分布是:两个靠近原子核,两个包含在与氢原子结合的键中。另外两对孤对电子则形成两个臂,伸向与包含氢原子那个面相对的另一个面中,分别位于该面的两个对角(见图7.1)。这两个臂的电子云,特别引起人们的关注,因为它们显示出了一个带负电区,能吸引邻近水分子中氢原子的局部正电区,借此力量把水分子互相连接起来,这就是水分子所表现出来的“极性”。 正因极性作用的缘故,水聚结在一起而不轻易地汽化,就是说在通常气压下,水不致在较低的温度时就沸腾。由于水分子中电荷的分布,它产生了1.84×10-18静电单位的偶极矩。如果水分子没有带负电的电子云臂及偶极矩,水分子之间的结合就不会如现在这样,海洋中所有液态水势必完全汽化,生命的形成必然是不可能的。借助于极性,水分子能连接起来一直升高到近百米高的树顶,光靠毛管力及大气压力是无法解释的。 我们已经提到,液态水几乎在其所有的物理化学性质方面都是异乎寻常的。例如仅从它发生相变时的温度来说,就十分独特。元素周期表中第ⅥA族各元素的氢化物,随着分子量由H2S、H2Se,到H2Te的增大,其熔点也按照这样的序列

农业灌溉用水定额:小麦

为深入推进节约用水工作,我部制定了《农业灌溉用水定额:小麦》《工业用水定额:味精》《工业用水定额:氧化铝》《工业用水定额:电解铝》《工业用水定额:醋酸乙烯》《工业用水定额:钛白粉》《服务业用水定额:科技文化场馆》《服务业用水定额:环境卫生管理》《服务业用水定额:理发及美容》和《服务业用水定额:写字楼》。现印发给你们,请认真贯彻执行。本通知自2020年3月1日起施行。

农业灌溉用水定额:小麦 一、适用范围 本定额适用于小麦种植区开展农业用水总量配置、水资源论证、取水许可审批、节水评价、灌溉排水工程规划与设计等工作,也用于指导地方农业灌溉用水定额制定和修订。 二、词语解释 1.灌溉用水定额是指在规定位置和规定水文年型下核定的某种作物在一个生育期内单位面积的灌溉用水量。 2.灌溉用水定额通用值是指根据灌区现状水平,在规定水文年型,满足区域用水供需平衡,某种作物在大中型灌区斗口、小型灌区渠首、井灌区井口位置的单位面积灌溉用水量。 3.灌溉用水定额先进值是指按照《节水灌溉工程技术标准》,采取渠道防渗输水灌溉、管道输水灌溉、喷灌、微灌等节水灌溉方式,在规定水文年型,某种作物在大中型灌区斗口、小型灌区渠首、井灌区井口位置的单位面积灌溉用水量。 4.灌溉水利用系数是指灌入田间可被作物利用的水量与渠首引进的总水量的比值。 5.渠道防渗是指减少渠道水量渗漏损失的技术措施。 6.管道输水灌溉是指由水泵加压或自然落差形成的有压水流通过管道输送到田间给水装置,采用改进地面灌溉的方法,也称管灌。 7.喷灌是指利用专门设备将有压水流通过喷头喷洒成细小

水滴,落到土壤表面进行灌溉的方法。 8.微灌是指通过管道系统与安装在末级管道上的灌水器,将水和作物生长所需的养分以较小的流量,均匀、准确地直接输送到作物根部附近土壤的一种灌水方法。 9.地面灌溉是指采用沟、畦等地面设施,对作物进行灌水的方式。 10.改进地面灌溉是指改善灌溉均匀度和提高灌溉水利用率的沟、畦、格田灌溉技术。 三、灌溉分区 1. 本定额分区分为两级。一级分区与水资源规划、灌溉规划分区相协调;二级分区与各省农业灌溉用水定额分区相结合。 2. 一级分区包括8个分区,包括东北区、海河区、黄河上中游区、黄河中下游区、淮河区、长江中下游区、西南区、内陆河区。 东南沿海区小麦播种面积小且占比低,本定额不涉及该区。 3. 二级分区包括114个分区,涉及19个省(自治区、直辖市)。 各分区所含区域情况详见附录。 四、灌溉用水定额 全国各分区小麦灌溉用水定额见附表。 五、计算方法 1.灌溉用水定额通用值由净用水定额和现状大中型灌区斗口、小型灌区渠首、井口的灌溉水利用系数确定。 m 通用=m 净 η 斗口 ?

灌溉水利用系数

灌溉水利用系数( water efficiency of irrigation ) 一、定义灌溉水利用系数是指在一次灌水期间被农作物利用的净水量与水源渠首处总引进水量的比值。它是衡量灌区从水源引水到田间作用吸收利用水的过程中水利用程度的一个重要指标,也是集中反映灌溉工程质量、灌溉技术水平和灌溉用水管理的一项综合指标,是评价农业水资源利用、指导节水灌溉和大中型灌区续建配套及节水改造健康发展的重要参考。 二、影响因素灌区灌溉用水除一部分被农作物吸收利用外,其余部分在输水、配水和灌水过程中损失掉。主要有:1. 渗水损失,包括各级输水渠道通过渠底、边坡土壤空隙渗漏的水量,以及田间深层渗漏的水量;2.漏水损失,含由于地质条件、生物作用或施工不良而导致裂缝所漏出灌区的水量;3.蒸发损失。三者分别占总输水损失的81%、17%、2%。 三、利用现状据有关部门统计分析,我国目前灌区平均水利用系数仅为0.45,节水仍有较大空间。另外,灌溉水利用系数的测定方法还有待进一步研究。 四、测定方法1、首尾测定法首尾测定法指不必测定灌溉水、配水和灌水过程中的损失,而直接测定灌区渠首引进的水量和最终储存到作物计划湿润层的水量(即净灌水定额),从而求得灌溉水利用系数。这样,可绕开测定渠系水利用系数这个难点,减少了许多测定工作量。首尾测定法,是建立在灌区进行灌溉试验的基础上,因此,也可称灌溉试验法或净灌水定额法。该方法克服了传统测定方法工作量大等缺点,适用于各种布置形式的渠系,但只是单纯为了确定灌区的灌溉水利用系数,不能分别反映渠系输水损失和田间水利用的情况。如在任何一级渠道上防渗,降低渠道透水性,提高渠道水利用系数,都会收到同样的效果。2、典型渠段测量法典型渠段测量法,首先选择具有代表性的典型渠道及测流断面,测流段应基本具有稳定规则的断面;其次选择测量方法,测定时尽量采用流速仪表、量水建筑物测流,采用其他方法时,要用流速仪来率定。 3、综合测定方法综合测定法就是将首尾测定法、典型渠道测量法及对灌溉水利用系数的修正等综合考虑的一种方法,它克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足。 五、中央文件提到的灌溉水利用系数的目标 1、2010年,我国灌溉水有效利用系数为0.5左右;(十一五规划纲要) 2、2015年我国农业灌溉用水有效利用系数达到0.53,累计增加0.03;(十二五规划纲要) 3、到2020年,农田灌溉水有效利用系数提高到0.55以上。(2011年中央一号文件) 4、到2030年,农田灌溉水有效利用系数提高到0.6以上。《全国水资源综合规划》

玉米小麦需水量

一、小麦的需水规律 1、三叶分蘖期:小麦三叶分蘖期水分供应充足可以增加小麦的有效分蘖数。当土壤湿度从22%增加到27%,小麦的有效分蘖就会从平均的3.7个增加到7.9个,主穗上的小穗也会从7.1个增加到10.4个。 2、拔节孕穗期:小麦拔节孕穗期是小麦生长发育最快的时期,需水量较大,但拔节前期水分又不能过多。否则容易引起小麦徒长倒伏。 3、抽穗开花期:小麦抽穗开花期需水量达到生育期的最高峰。当土壤湿度由20%增加到28%时,主穗上的小穗平均由0.6个增加到12.4个;每株粒数重由44.6增加到63.7;千粒重增加2.5克;增产32.4%。如果小麦此期缺水,将严重的影响小卖的品质和产量。 4、灌浆乳熟期。小麦灌浆乳熟期是小麦品质形成的关键时期,此期如果小麦缺水,将造成小麦秕粒,从而降低效买的品质和产量。 5.每生产1kg小麦约需水1-1.2kg; 播种后到拔节前,耗水量占全生育期耗水量的35%一40%,每亩日耗水量约0.4立方米;拔节到抽穗时期是小麦生长的临界期,缺水会造成减产,在25—30天时间内耗水量占总耗水量的20%一25%,每亩日耗水量约2.2-3.4立方米; 抽穗到发育成熟,日耗水量还要大些,约35—40天,耗水量占总耗水量26%一42%,特别是抽穗时期,日耗水量可达4立方米。 灌溉用水和土壤情况有关:灌水量(立方米/亩)=667*(田间最大持水量—灌水前士壤含水量)×土壤容重×计划灌水土层深度,例如,灌前测知土壤含水量为17%,田间最大持水量28%,土壤容重为1.3,计划灌水土层深度为0.6米,则本次灌水量应为57.22立方米。 二.水稻的需水规律 水稻种子发芽的最低温度为10~15℃,最适宜温度为30~35℃ 一般种子要吸收本身重量的25-50%或以上的水,才开始萌发.水稻40%. 稻田水分状况对水稻生长发育的影响据测定,当土壤水分下降到80%以下时,因水分不足阻碍水稻对矿质元素的吸收和运转,使叶绿素含量减少,气孔关闭,妨碍叶片对二氧化碳的吸收,光合作用大大减弱,呼吸作用增强,可见保持土壤充足的水分,有利于水稻正常生理活动,利于分蘖、长穗、开花、结实,获得高产。试验还表明在水稻生育过程中,任何一个生育时期受旱都不利,但—般以返青、花粉母细胞减数分裂、开花与灌浆四个时期受旱对产量影响最大。 返青期缺水,秧苗不易成活返青,即使成活对分蘖及以后各生育时期器官建成都有影响。幼穗发育期,叶面积大,光合作用强,代谢作用旺盛,蒸腾量也大,是水稻一生中需水最多的时期,初期受旱抑制枝梗、颖花原基分化,每穗粒数少,中期受旱使内外颖,雌雄蕊发育不良。减数分裂期受旱颖花大量退化,粒数减少,结实率下降。 抽穗开花期,水稻对水分的敏感程度仅次于孕穗期,缺水造成“卡脖子旱”,抽穗开花困难,包颈白穗多,结实率不高,严重影响产量。 灌浆期受旱,影响对营养物质的吸收和有机物的形成,运转,从而使千粒重、结实率降低,青米、死米、腹白大的米粒增多,影响产量和品质。 水稻虽耐涝力强,短期淹水对产量影响不大,但若长期淹水没顶则会影响生育及产量。生育时期不同对淹水的反应不同。据试验仍以返青和花粉母细胞减数分裂及开花、灌浆期对淹水最敏感。据观察,返育期当日平均温度为25~30℃时,淹水3~4天死苗率高达85%,双季稻孕穗期淹水7天,幼穗腐烂完全无收,开花期淹7天,结实率只有5%,乳熟期淹7天,结实率尚有60%,蜡熟期淹7天可收70~80%的产量。深灌会使土壤中氧气减少,泥温昼夜温差减小,稻株基部光照减弱,对根的生长及分蘖发生均不利,且茎秆软弱易倒伏。 2.各生育时期水分蒸腾量的变化。水稻的叶面蒸腾量,随植株叶面积的加大而增多,至孕穗

灌溉水利用系数

灌溉水利用系数

————————————————————————————————作者:————————————————————————————————日期:

灌溉水利用系数综合测定法 □ 许建中赵竞成高峰黄修桥李英能 摘要对任何一种节水措施进行分析、评价都离不开灌溉水利用系数。目前,各地、各灌区给出的灌溉水利用系数不具备可比性,难以作为比较和衡量节水措施的标准。灌溉水利用系数综合测定法选择具有代表性的典型渠道,而不是只测量典型渠段,并在测流断面、测量方法、测定条件、渠道数量、典型渠段长度等方面提出具体要求,既使得测量的灌溉水利用系数比较符合实际,又使得不同灌区的灌溉水利用系数具有可比性。综合测定法测定的灌溉水利用系数需要根据渠道越级输水、渠道布置形式等情况进行修正,并用首尾测定法校核。 关键词灌溉利用系数综合测定法 灌溉水利用系数是衡量农业节水效果的关键指标。对任何一种节水技术措施进行分析、比较和评价时都不能离开灌溉水利用系数。但是,我国目前各地和各灌区所给出的灌溉水利用系数却难以作为比较与衡量的标准。从各地区来讲,目前统计出的灌溉水利用系数差异极大,很多数据明显地存在错误,影响灌溉水利用系数正常测定的主要原因是传统测定方法存在测定工作量巨大、测定条件难以保证等,急需对灌溉水利用系数进行分析研究。综合测定计算方法是在分析研究的基础上提出的,既克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足,而且能反映出灌区渠系用水情况、灌溉工程质量及灌溉用水管理水平等。为灌区今后经常性地测量符合实际的灌溉水利用系数及指导灌区节水工程改造等提供了一种切实可行的汁算方法。 一、典型渠道的选择及要求 1.选择具有代表性的典型渠道 典型渠道应包括衬砌渠道和未衬砌渠道,其工程完好率分别接近全灌区该级衬砌和未衬砌渠道的工程完好率,过水流量接近该级渠道的平均值。典型渠段的了程完好率和过水流量应接近典型渠道的平均值。 2.测流断面的选 应选择在渠段平直、水流均匀、无旋涡或回流的地方,断面应与水流方向垂直。测流段应基本具有稳定规则的断面。全面、认真地检查拟测渠道,清除测水断面处及附近淤积物和石块等,保持测流断面的完整和通畅。

2010年四川省农业灌溉用水有效利用系数测算分析

2010年四川省农业灌溉用水有效利用系数测算分析 调查表 表1:2010年四川省(市、州)灌区统计信息调查表 表2:2010年灌区(样点)基本信息调查表 表3:2010年灌区(样点)作物与田间灌溉情况调查表表4:2010年灌区(样点)净灌溉用水量分析汇总表

附表1: 2010年四川省(市、州)灌区统计信息调查表 填表人:联系电话: 注:本表由地市州统计填写上报。 2

附表2: 2010 年灌区(样点)基本信息调查表 填表人:联系电话:

填表说明: 1、经纬度填写大致范围,如东经A°B′—C°D′,北纬E°F′—G°H′。也可以填写样点灌区大 致中心处或灌区管理单位所在地(必须在灌区范围内)的经纬度。 2、地下水埋深范围填写灌溉期间灌区平均最高、最低地下水埋深。 3、完成节水工程投资包括当年灌区骨干工程改造、田间工程建设等已完成工程投资。 4、灌区主要土质类型,根据分布面积大小按其所占百分比依次填写1-3种,格式如:粘土30%,沙 壤土30%,粉壤土20%。 5、由于灌区情况差别较大,渠系级别多样,各地根据典型样点灌区情况可以对样表进行补充,如 干渠级可以分为总干、分干等,以灌区实际情况分别填写; 6、当年实灌面积是与有效灌溉面积对应的实灌面积,不考虑复种指数; 7、如果灌区综合净灌溉定额有观测或统计结果则填写,如无可不填写此项; 8、防渗率是指某一级渠道设计超高水位下的已防渗断面面积与土渠断面总面积之比,该值根据灌 区渠系资料计算分析后直接填入。 9、毛灌溉用水量根据各自的实际情况分项进行填写。其中渠首取水量和塘堰坝取水量等均应为考 虑弃水、退水和工业与城市、农村生活等非灌溉用水后的水量数值;其它水源取水量包括当地降雨产生的地表径流进入渠道的用于农业灌溉的水量等。具体计算参见指南4.2。 10、如样点灌区的塘堰坝灌溉供水量有统计资料,则直接填写统计值,有关参数均不用填写; 如无统计资料,可在径流系数法参数和复蓄次数法参数中选择其一填写相关信息。 11、末级渠道灌溉供水总量是指在具有量水设施的末级固定渠道计量得到的实际灌溉供水量, 末级固定渠道量水点可以是斗口、农口或其它级别渠道量水点等。如果灌区只在支渠有量水设施,可以填支渠口测量值。在括号中应注明量水口级别。 12、洗碱净定额可根据灌区试验资料和生产经验科学合理确定。

第三章地球上的水知识点总结

地球上的水 [授课建议] 1、水体的类型 2、河流的补给关系

3、河流的水文特征 (1)流量:河流流量大小的变化主要取决于河流的补给量与流域面积的大小,一般来说,补给量与流域面积越大,流量越大;流量的时间变化主要取决于补给方式。 (2)汛期(水位):包括丰水期、枯水期时间,汛期长短等,主要与补给方式和河道特征有关,河流流量相同的情况下,河道的宽窄、深浅影响水位的高低。 (3)含沙量:与流域内植被状况、地形坡度、地面物质结构及降水强度等有关,一般来说,坡度越大、物质越疏松、植被覆盖越差、降水强度越大,河流含沙量就越大。 (4)结冰期:取决于冬季气温的高低。冬季气温在0℃以下有结冰期,从低纬向高纬流的河段可能发生凌汛。 4.河流的水系特征分析 主要包括河流的源地、流向、长度、落差、支流(多少、形状)、流域面积、河道特征(宽窄、深浅、曲直)等。流经山区的河段窄、落差大、流速快,而流经平原地区的河段往往比较宽,比较浅(黄河下游段除外),流速缓。 河流水文特征与水系特征的联系总结如下图: [深度探究] 植被的破坏会对河流水文特征产生什么影响 提示:(1)流量季节变化增大,即枯水期流量减少,汛期水量增大;(2)洪峰到来快,水位陡涨陡落;(3)河流含沙量增大。 4、水循环的类型

5、水循环环节 6、水循环的意义 2.人类对水循环的影响 (1)改变地表径流——最主要的影响方式:人类的引河湖水灌溉、修建水 库、跨流域调水、填河改陆、围湖造田等一系列针对河流、湖泊 的活动极大地改变了地表径流的自然分布状态。 (2)影响地下径流:人类对地下水资源的开发利用、局部地区的地下工程 建设都不可避免地对地下径流产生影响,如雨季对地下水的人工回灌, 抽取地下水灌溉,城市地下铁路的修建破坏地质结构、改变地下水的 渗流方向等。 (3)影响局地大气降水,如人工降雨。 (4)影响蒸发,如植树造林、修建水库可以增加局部地区的水汽供应量。 3.利用水循环,探究生活实例 (1)沼泽地的形成 (2)西部地区一些内流河断流 [深度探究] 1.河流上游修建水库后,下游河流径流有哪些变化 提示:修建水库后,河流下游丰水期水位下降,流量减小,枯水期水位上升,流量增大;洪峰到来时间推迟;流量的季节变化变小。

水的定义、特点与影响因

第一章绪论 是一门研究食品(包括食品原料)的组成,特性以及其产生的化学变化的科学。 ●食品加工和保藏过程中重要的可变因素有温度,时间,温度变 化的速度,产品的成分, pH,气相的成分和水分活度。其中温度也许是最重要的。 第二章水 ●水为什么是食品体系中最重要的部分? 1.水在食品中的存在形式是食品加工与保藏的基础。 2.水是一种良好的溶剂 3.水可支持必须的生物化学反应,可作为反应剂和反应介质。4.以物理方法截留的水,使组织具有一定的形态,硬度和弹性5.食品的水分含量与其易腐性之间存在一定关系 ●结合水的定义及特点

存在于溶质或其他非水组分相邻处,具有与同一体系中体相水显著不同的那部分水。 特点:1.与体系水相比,结合水具有被阻碍的流动性。 2.高水分食品中,结合水占总水量的一小部分。 3.低温下(-40度或更低)不能冻结。 4.不能作为外加溶质的溶剂。 水分活度 1.根据热力学平衡定律, a w=f/fo f——表示溶剂的逸度,fo——表示纯溶剂的逸度. 2.溶液是理想溶液,热力学平衡条件下, a w =P/Po 水分活度是指食品上方的水分蒸汽压与相同温度下纯水的 蒸汽压的比值 3.食品体系不符合上述条件,一般使用相对蒸汽压RVP表示。 RVP= P/P0= %ERH/100 ERH——百分平衡相对湿度 注意:1)RVP是样品内在性质,ERH是与样品平衡的大气性 质。 2)仅当样品与它的环境达到平衡时等式成立。 测定意义: 1.水分活度说明水与各种非水成分的缔合的强度。参与强缔合的

水比弱缔合的水在较低程度上支持降解的活力。 2.水分活度比水分含量能较好的预示食品的稳定性,安全性和其 他性质。 测定方法:冰点测定法;水分活度仪法;扩散法 与温度的关系: 1.在一定温度范围,Aw与1/T呈负相关关系 2.取决于产品种类,10℃温度导致0.03~0.2的RVP变化。当食品中 水分含量增加时,温度对水分活度的影响程度也提高。 3.在冰点以上的温度时,水分活度是食品组成和温度的函数,并以 食品的组成为主。在冰点以下时,水分活度只与温度有关。 水分吸着等温线(MSI) 在一定温度下,食品的水分含量与它的水分活度之间的关系。 即在等温条件下,以食品含水量为纵坐标,以Aw为横坐标作 图,所得曲线称为水分的吸着等温线 意义: ①在浓缩、干燥过程样品脱水的难易程度与Aw有关 ②配制食品混合必须避免水分在配料之间的转移 ③测定包装材料的阻湿性的必要性 ④必须测定什么样的水分含量能够抑制微生物生长 ⑤需要预测食品的化学和物理稳定性与水分含量的关系 MSI形状:大多数食品的等温吸湿线都成 S形,含有大量糖及可溶性小分子但不富含高聚物的水果、糖果以及咖啡提取物的等温吸湿线呈

玉米的需水特性与灌水技术

玉米的需水特性与灌水技术 (一)玉米的需水量 需水量也称耗水量,是指玉米在一生中棵间土壤蒸发和植株叶面蒸腾所消耗的水分(包括降水、灌溉水和地下水)总量。玉米是用水比较经济的作物之一。各生育阶段的蒸腾系数在250~500之间。因为玉米植株比较高大,一生制造的干物质比较多,而且生育期多处于高温季节,所以绝对耗水量很大。玉米全生育期需水量受产量水平、品种特性、栽培条件、气候等诸多因素的影响。一般来说,玉米一生的耗水总量,春玉米2 550—6 000 m/hm,夏玉米1860—4440m/hm。 1.产量水平与需水量试验证明,在一定范围内玉米的需水量随着子粒产量水平的提高而逐渐增多。但产量增加到一定程度后,耗水量增长的比值逐渐减少。表现为玉米对水分的利用效率随产量的提高而提高,产量越高用水越经济。一般每生产1kg子粒约耗水0.6m。 2.品种与需水量玉米需水量受品种影响。品种不同,其生育期、植株大小、单株生产力、吸肥耗水能力、抗旱性等均有差异,其耗水量也不同。即使在同一产量水平,对水分消耗也不同。生育期长的晚熟品种,一般植株高大、叶数多、叶面积大,因而叶面蒸腾量大、棵间蒸发和叶面蒸腾持续期相对加长,耗水量也较大。反之,生育期短的早熟品种耗水量则较小。此外,抗旱性强的品种,叶片蒸腾速率低于一般品种,消耗的水分也比不耐旱的品种要少。 3.栽培措施与需水量施肥、灌水、密度和田间管理等栽培措施都是影响玉米需水量的因素。在相同生态条件下,增加施肥量可促进植株根、茎、叶等营养器官生长,不仅增强了根系对深层土壤水分的吸收,同时也增加了蒸腾面积和植株蒸腾作用,从而使耗水量增加。 灌水次数越多,每次灌水量越大,玉米实际的耗水量越高。如果灌水方法不科学,更会加大玉米耗水量,降低水分利用效率。在一定范围内,随密度增加会因群体叶面积和蒸腾量的相应增多,使总耗水量有加大的趋势。中耕可以切断土壤毛细管,避免下层土壤水分向空间蒸发。中耕的除草作用亦减少了水

全国农田灌溉水有效利用系数测算分析技术指导细则

全国农田灌溉水有效利用系数测算分析 技术指导细则 全国农田灌溉水有效利用系数测算分析专题组 2013年12月

目录

前言 发展节水灌溉的目的就是要不断提高灌溉用水效率和效益。一直以来,国内外有许多表征灌溉用水效率的指标,说法也不统一。鉴于目前国内有关资料已广泛使用“灌溉水有效利用系数”表征灌溉用水效率,为与实际管理工作相衔接,本细则采用“灌溉水有效利用系数”作为灌溉用水效率的表征指标。灌溉水有效利用系数是在某次或某一时间内被农作物利用的净灌溉水量与水源渠首处总灌溉引水量的比值,它与灌区自然条件、工程状况、用水管理水平、灌水技术等因素有关。 为跟踪测算分析灌溉水有效利用系数变化情况,科学评价节水灌溉发展成效与节水潜力,根据水利部的要求,自2006年起,在各省(区、市)和新疆生产建设兵团的大力支持下,连续多年在全国范围内开展了灌溉水有效利用系数测算分析工作,取得的成果为有关部门研究制定相关政策和规划提供了依据。 为统一测算分析方法,水利部农村水利司于2007年8月下发了《全国现状灌溉水有效利用系数测算技术方案》,2008年1月下发了《全国灌溉水有效利用系数测算分析技术指南》,规范了各地灌溉水有效利用系数测算分析工作。 为进一步做好灌溉水有效利用系数测算分析工作,适应节水灌溉发展新形势与国家有关部门新要求,专题组在总结各地测算分析工作实践经验的基础上,对《全国灌溉水有效利用系数测算分析技术指南》进行了修订,重点细化完善了典型田块选取、样点灌区选择及净灌溉用水量测算等内容,同时对附表数量和内容也作了调整和补充,形成《全国农田灌溉水有效利用系数测算分析技术指导细则》。 本《全国农田灌溉水有效利用系数测算分析技术指导细则》的内容包括:前言、测算分析工作总体框架与流程、灌溉水有效利用系数测算分析方法、样点灌区选择、样点灌区灌溉水有效利用系数测算、省级区域灌溉水有效利用系数计算分析、全国灌溉水有效利用系数计算和附录等8部分。

不同模式波涌灌溉及其对冬小麦耗水特性的影响

不同模式波涌灌溉及其对冬小麦耗水特性的影响水资源存在较大缺口、短期内不可补给性及农业对水资源的依赖性,决定农业节水的必要性。立足地面灌溉,在不改变本当前灌水条件的前提下,对波涌灌溉、间隔交替波涌灌溉、间隔固定波涌灌溉3种波涌模式灌溉质量及对小麦生长耗水特性的影响进行研究具有重要意义。 试验于2015年9月至2016年6月在山东农业大学马庄试验田进行,以连续灌溉为对照,针对预设的3种波涌模式以连续灌溉为对照,每种灌溉处理设置三 组重复。试验采用济麦22,在畦长120 m,畦宽1.5 m的畦田中进行灌溉试验。 试验主要对灌溉参数、土壤含水量、小麦各生育期生长性状等内容进行统计分析,以连续灌溉为对照,考察3种不同模式的波涌灌溉灌溉质量、生长性状及耗水特性。主要试验结论如下:1.与连续灌溉相比,普通波涌灌溉,间隔交替波涌灌溉二水灌溉组及三水灌溉组、间隔固定波涌灌溉灌溉组及不灌组,节水分别为17.5%、32.6%,32.6%;灌水均匀度提升10%以上,且有利于灌后2d存储于考察土 层内灌溉水占该畦获得总灌溉水的比例提高20%以上。 2.灌后30 d,0~100 cm土层中,2~5 d内土层水分高于灌前水平,连续灌溉处理消耗水量高于1.2倍各种模式的波涌灌溉处理;5~15 d连续灌溉处理消耗水量低于0.75倍各种模式的波涌灌溉处理;15~30 d连续灌溉处理耗水量低于0.9倍各模式波涌灌溉;表明各种模式的波涌灌溉能够更好的为小麦提供生长所需的水量。 3.灌溉对田间各土层含水量均匀度有所改善,但改善效果随灌溉方式的不同有所差别。 4.株高、叶面积、分蘖数、有效穗数、穗粒数受灌溉影响较大,波涌灌溉在各个生育期表现出较大优势,间隔交替波涌灌溉和间隔固定波供水涌灌溉次之。

世界水文及水系特征

中国及世界水文水系特征 淮河水系特征:上游两岸山丘起伏,水系发育,支流众多;中游地势平缓,多湖泊洼地;下游地势低洼,大小湖泊星罗棋布,水网交错,渠道纵横。 河流水文与水系特征的区别 河流水系一般指集水河道的结构而言的。它包括源地、注入、流程、流域、支流及分布,以及落差等要素。不难看出,水系特征和地形关系较为密切,正如中国一句古话所说的:“水往低处流。”正是在这个总的基本原则下,只要有水就可形成河流水系,水多,水系就发达。 河流水文即水情,是指河水结构、变化等,如流量、流速、水位、汛期、水温和冰期、含沙量等。影响河流水文变化的最重要因素是河流的补给,即水源。而水源补给,对大多数河流来说主要是雨水补给。因此河流的水文和河流流经地的气候关系密切。冰期,包括凌汛当然也和气候有关。河水含沙量,由河流流经地区地表结构决定,如黄河中游地区,地表结构简单,由极易遭受流水侵蚀的黄土组成,且地面植被很少,从而造成黄河含沙量大的特点。 水系特征 主要包括河流长度、河网密度、河流的弯曲系数等。①河流长度是指河源到河口的轴线长度,确定河流长度一般在大比例尺的地形图上,用曲线计或两脚规量取。②河网密度是水系干支流总长度与流域面积的比值,即单位面积上的河流长度,它说明水系发育和河流分布疏密的程度。③河流的弯曲系数是指某河段的实际长度与该河段直线长度的比值。弯曲系数越大,表明河段越弯曲,对航运和排洪不利。 河流的水文特征 包括水量大小,汛期及水量季节变化,含沙量,流速, 结冰期. 外流河的水文特征一般包括河流的水位、流量、汛期、含沙量有无结冰期等方面,影响河流水文特征的因素主要是气候因素,对应如下: 外流河水文特征 水位、流量大小及其季节变化由降水决定。夏季降水丰沛,河流流量大增,水位上升,冬季降水少,河流水量减少,水位下降。降水的季节变化大,河流流量季节变化也大。 汛期长短 雨季开始早结束晚,河流汛期长。雨季开始晚,结束早,河流汛期短。 含沙量大小 由植被覆盖情况和土质状况决定的。植被覆盖差,土质疏松,河流含沙量大。反之,含沙量小。有无结冰期 由流域内最低气温决定的。月均温在0℃以下河流结冰,0℃以上无结冰期 河水流速大小 由地形决定,落差大流速大、地形平坦、水流缓慢 如我们说江阔水深、河网密集,这些当属水系特征。我们说水流平缓、冰期短则属水文特征。 国内外主要河流的水文特征 莱茵河:发源于阿尔卑斯山脉北麓,自南向北注入北海,河口附近为世界最大的港口----鹿特丹。该河流经西欧最发达的经济区----鲁尔区,具有较高的航运价值。该河流的水文特征:水量较大,水量的季节变化小,流速平稳,无明显的汛期,无冰期,含沙量小。(结合西欧的气候和地形特点:为温带海洋性气候区,流经的多为地势低平的平原地区) 伏尔加河:自北向南注入里海,为世界最长的内流河。流经俄罗斯经济发达的欧洲部分,航运价值很高。其水文特征:为内流河,靠积雪融水和大气降水补给为主,径流量不大,春季径流量最大(有积雪融水补给),冰期较长。

相关主题
文本预览
相关文档 最新文档