当前位置:文档之家› 第一章有机化合物结构理论

第一章有机化合物结构理论

第一章有机化合物结构理论
第一章有机化合物结构理论

第一章有机化合物的结构理论

研究有机化合物,首先要研究其电子结构和成键作用,研究有机物中多原子间主要的共价键结合,对其描述可用价键理论和分子轨道理论。

一.Lewis结构模型

1.几个基本概念

Lewis结构是有机化学中常用的,最简单的成键模型。它基于以下的概念:离子键的成键能力来自相反电荷的静电引力,共价键的结合力,则来自原子间电子对的共享。Lewis结构的起点是原子和共价电子。用元素符号表示原子实(atomic core)——核和内层电子。原子实所带的正电荷数目等于价电子数,此正电荷称为原子实电荷。第三周期以后的元素的d电子包括在其原子实内。

价层占有度:与每个原子紧相邻的总电子数为起其价层占有度(Valence Shell Occupancy),它等于该原子外层未共享电子总数及该原子各键上成键电子总数之和,如H的VSO≤2,第二周期原子VSO≤8,第三周期原子VSO≤10,12.

形式电荷(Formal Charge)

FC = 原子实电荷 - 电子主权数(Electron Ownership)

EO = 未共享电子数 + 成键电子数/2

如:HO 中,H的FC = 1–1 = 0 ,O的FC = 6–7 = -1

在一个结构式中,形式电荷的代数和必等于该结构的总电荷。2.Lewis结构的书写程序:

(1)计算出各原子所能贡献的价电子总数,若处理对象是正负离子,则分别加减相应的数值。

(2)写出各原子实符号,并填入由上步计算所得的电子数。填入时应符合多原子的价层占有度。

(3)在不违反上述步骤的原则下,尽量使结构式中的价键数目最多,未共享电子数最少。

(4)计算出每一原子的形式电荷,并标明其电荷分布情况。其中,分子为电中性者最稳定,相反电荷靠近者较稳定,相同电荷距离越远越稳定。

如:NO2

(1)价电子数= 5 + 6 * 2 = 17

(2)

O N O ....=.-......

(3)形式电荷:O(左)= 6 - 6=0, O(右)= 6 - 7= -1, N = 5 – 4 = +1

因此,NO2的Lewis结构为

O N O ....=.-......

+-

3.分子结构的几何形状

写出正确的Lewis结构式后,可按电子对互斥原理,大致描述分子的几何形状。将每对未共享电子及每个键(不论是单键还是双键)都算作一个组:

电子组数为2,几何形状呈直线形

电子组数为3,几何形状呈平面三角形 电子组数为4,几何形状呈四面体形

如 : ——H H

C H || 〉C = ??O ﹕ H O C ———?

??

?||

二 共振论

本世纪30年代,Pauling 提出了共振论学说,发展了Lewis 的结构学说。尽管此理论存在着不少缺陷和使用上的局限性,但由于其简明直观性,有效地解决了许多有机化学问题,所以至今仍为多数有机化学家所重视。 (一)经典共振论

1共振的概念:当一个分子、离子或自由基按价键规则可以写出一个以上的Lewis 结构式时,其真实的结构就是这些共振式的杂化体 如CO 32

O

O

O C

O

O C

O

O

O C O

O δ

δ

δ

2. 共振式的书写规则:

(1)只允许电子移动,原子核位置不动

CH CH =2—2H C +

22CH CH H C =+

不能为 CH 2

CH 2

(2)所有共振式须符合Lewis 结构式(符合其价层占有度)

如:CH 3OH 不可为

C H

H O

H

萘不可为

(3)所有共振式中必须有相等的未成对电子数

如:23H C CH CH ?

=— 22CH CH H C =?

不可为 22H C H C H C ?

?

?

——

3 共振式的稳定性有差别

(1)较稳定的共振式对杂化体贡献较大

23|3CH CH CH C CH =+

——

2

33|CH CH CH C CH -=-+

(Ⅰ) (Ⅱ) (Ⅰ)中的电荷较分散,较稳定 (2)共价键数目越多越稳定

(3)共振式中若所有原子都有完整的价电子层,则较稳定,对杂化体的贡献就较大。

如:32CH O H C ——??

??

+

32CH O CH —+

??

= (较稳定)

(Ⅰ) (Ⅱ) (4)电荷分离的共振式稳定性降低

Cl CH CH —=2 +-=Cl CH CH —2 (不稳定)

(5)负电荷在电负性较高的原子上时较在电负性较低的原子上稳定性高

??→?+=--

HB

B O CH CH —3﹕??

-

=O CH H C —2﹕?→←????

=O CH CH —2﹕- 4.共振与共轭、共振与互变异构

(1)a,共振与共轭本质上相同;b, 共振与共轭存在着形式上的因果关系;c, 共振较共轭具有更明确的“动态”概念;d, 共振较共轭的范围更广泛。 (2)共振与互变异构

共振杂化体既不是共振式的混合物,也不是它们之间的互变异构体。上图中,C 表示A 、B 两个化合物之间的互变异构过渡态,具有正活化能Ea ;D 表示这个化合物由A 、B 两个共振式形成的杂化体,具有负的共振能Er 。真实分子的能量低于所写出的任何一个共振式的能量,实际分子的能量与最稳定共振式的能量差称为共振能。

(二)结构共振论

经典共振论仅仅是一个定性的经验性理论,它在化学结构理论中的领先地位已逐渐被分子轨道理论所代替。70年代,由美国化学家Herndon 等应用量子 化学的非键分子轨道系数,使共振论的定量化问题获得初步解决,由此形成“结

构共振论”,这是价键法与分子轨道法两者互相渗透的产物。 1 交替烃和非交替烃

在共轭体系中,可以将碳原子分为标星的和非标星的两组,如果同一组原子不直接键接,那么称为交替烃(碳原子为奇数的为奇交替烃,偶数的为偶交替烃);不能用标星的方法交替标记的为非交替烃。

如 ********

**CH 2

***

* 为交替烃,

而 *

*

*

则为非交替烃。

任何偶交替烃的分子轨道总是以成键和反键轨道成对出现,任何奇交替烃的分子轨道,除了成键轨道和反键轨道成对出现外,还有一个非键分子轨道。根据量子化学中的零和规则,非标星原子的非键分子轨道系数为零,与非标星原子相连的标星原子的非键分子轨道系数的代数和亦为零。 2 共振结构计数(Structure Counts, 简称SC )

从零和规则出发,可利用非键分子轨道系数计算出共振结构计数: (1)对于奇交替烃(离子或基),求出非键分子轨道的非归一化最简整系数的方法,是对共轭体系作出标星(标星方法可以不同,但以标星原子多于非标星原子为宜)

**

**

****

*

*

*

图中围绕非标星原子的标星原子的非键分子轨道系数的代数和为零。利用归一化条件,取最简整数,如

SC=∑∣C ∣ 所以上述两式的SC 分别为5和12 对苄基来说,5个共振式分别为

(2)偶交替烃:偶交替烃无非键分子轨道,无法求其系数,但若在其基本骨架中任意除去一个成键碳原子,则成为奇交替烃,按上述方法标星,计算被除去的

-1-12

1

-1-121

32

2--.

.

.

.

.

原子的周围系数的绝对值之和,即为SC

SC=3

SC=4

SC=5

(3)交替烃的校正结构计数(Corrected Structure Counts,CSC )

Herndon 认为,上述交替烃,在SC 中有些不参与共振,因此可用上述几个系数的代数和的绝对值,而得到CSC :

SC=5 or 3 CSC=3

CSC=0, 说明缺乏共振稳定作用。 (4)非交替烃

对于非交替烃,可先删去一个原子,使之成为交替烃,然后计数。

SC=1,CSC=1

11

21-1-121

-1

-21

1

2

1

-1

-3

-1

1

1

1

-2

1

--1

1

2

22

-1--1

112---12

211-21-1-1112--2

11

-111

1

-11

-11-111

232

-1

--1

对于两个稠并的奇碳环,则可先除去一个桥碳原子,再按交替烃来计算。

1-1

-1

1

1 SC=

2 SC=2

CSC=0 CSC=2

(5)某些高度对称及高度稠合的多环芳烃,简单计算删去不同的碳原子可能 得到不同结果,产生矛盾,这时要进行一些修正,可参阅有关专论。 3 结构共振论的应用

(1)键序:键序是分子的重要结构参数,表示某个键区的电子云密度,反映其成键能力。设C r 为与碳原子k 相邻的原子的非键分子轨道系数,那么碳原子k 与相邻原子r 之间的键序为:

p kr = |C r |/CSC

如萘的CSC=3,根据非键分子轨道系数,

2

1

-1

-1

1

p 1,2 = 2/3, p 2,3 = 1/3.(每个碳原子上键序的总和等于1)

(2)键长:根据键序,可由下面的公式计算键长: D=146.4–12.5p (单位pm) (3) 共振能

对于简单的苯型化合物,可利用经验公式 RE=1.185lnSC (eV)

对苯、萘、蒽、菲的计算结果分别为0.821, 1.302, 1.643, 1.955eV ,与自洽场分子轨道法计算结果非常接近(分别为0.869, 1.323, 1.600, 1.933eV )。 对于苯型与非苯型共轭体系的通用计算方法,则需要引入其他参数。可参阅有关论著。

三 有机化合物的分子轨道理论 1. Hückel 分子轨道理论(HMO )

HMO 理论以下列近似法为基础:在讨论平面的π电子体系的结构和性质时,因为π电子体系和构成σ骨架的电子轨道相互正交而不重叠,所以利用可以忽略它们之间的相互作用这一点,只把π电子体系孤立抽出进行处理。 (1)直链共轭多烯

对于由通式C n H n+2表示的直链共轭烯烃,HMO 法把其π轨道的波函数作为2p 原子轨道的线性组合:

ψ=c 1φ1+ c 2φ2+ c 3φ3+…+ c n φn

式中φ是参加共轭的碳原子的p 原子轨道,c 是待定系数,由变分法原理确定。在变分法运算中经过一系列近似的计算法,对于有n 个p 轨道的直链共轭多烯的分子轨道的能量E j , 可用如下公式计算: E j =α+2βcosj π/(n+1) j=1,2,…,n

1

1

-1

-1

其中E j表示第j个分子轨道的能量,α相当于原子轨道的能量,称为库仑积分;β表示两个原子轨道相互作用时的能量,称为交换积分、共振积分或键积分,它

是一个负值。根据该公式可以方便地计算出直链共轭多烯的分子轨道能级。

关于某碳原子r的2p原子轨道对第j个分子轨道的贡献相对应的系数,也可用一个公式算出:

C r,j=[2/(n+1)]1/2sin[rjπ/(n+1)]

式中j=1,2,…;n为碳原子的数目,r为分子轨道中第个r个碳原子,可为1,2,3,…。例如对1,3-丁二烯进行简单运算,可以得到:

ψ1=0.3717φ1+ 0.6015φ2+ 0.6015φ3+0.3717φ4

ψ2=0.6015φ1+ 0.3717φ2- 0.3717φ3-0.6015φ4

ψ3=0.6015φ1- 0.3717φ2- 0.3717φ3+0.6015φ4

ψ1=0.3717φ1-0.6015φ2+ 0.6015φ3-0.3717φ4

这种波函数形式还可以用分子轨道图形表示。从2p轨道的位相(即原子轨道系数的正、负号)变化,可看到分子轨道的节点数各为0,1,2,3个。节点越多,能量越高。相邻原子上原子轨道系数的符号改变相当于二者之间的反键作用;

而相邻原子上原子轨道系数符号相同,即有成键作用。对于成键轨道ψ1和ψ2来

说,成键相互作用数目比反键相互作用数目多,而反键轨道的情况相反。这种对系数的考察,可方便地帮助了解有机反应的许多情况,如周环反应等。

(2)环状共轭多烯

对于单环平面共轭多烯,可按下式求出分子轨道的能量:

E k=α+2βcos(2πk/n) k=0,1,2,…,n-1

其中n为环上碳原子的数目,但k并不对应π分子轨道能级的真实顺序。最低分子轨道是k=0,其次是k=1和k= n-1(二度简并),再次是k=2和k= n-2(二度简并),以次类推。

HMO理论在处理环状共轭多烯相对稳定性及芳香性等方面都取得很大成功。

平面单环体系的分子轨道能级图的特征是具有一个最低能级的成键轨道,另外就是能级较高的成对简并轨道,直至最高能级的反键轨道。如果参加π体系的轨道数是偶数,则有单一的最高能级轨道;如果是奇数,则有一对简并的最高能级轨道。

为了求得一个具有k个原子的环体系的分子轨道能级,20世纪50年代,Frost 等人用图形方法表示Hückel方程:在一个半径为2β的圆中,画一个具有k个顶点的正多边形,使其一个顶点位于圆的最低点,从水平中线至每一顶点的垂直距离代表一个以β为单位的能级。如k=3~8时的能级图如下所示:

a-β

a+2βa

a-2β

a+2β

a

a-1.618β

a+0.618β

a+2β

a

a -2β

a -βa a+β

a+2β

a -1.802βa a -0.445β

a+1.247β

a+2β

a -2β

a -1.41β

a+1.41β

a a+2β

图中虚线以下为成键轨道,虚线以上为反键轨道,水平线为α(原子轨道能级)。由于β为负值,如有α+m β轨道,则其能量低于原子轨道,α-m β的能量则高于原子轨道。

π体系的总能量为填充有电子的轨道能量之和。如苯,ΣE π=6α+8β,比假设的环己三烯低2β,即为其共振能。 Hückel 指出,π电子对填入上述能级图时,当电子对的总数是奇数(π电子总数为4n+2,n=0,1,2,3,…)时,才产生闭壳结构(所有电子都是成对的);如果π电子对的总数是偶数(π电子总数为4n ,n=0,1,2,3,…),则最后一对电子将是一个双重简并能级的唯一占据者。因此,每一个电子将各进入一个轨道,自旋平行,形成开壳结构。因为开壳结构分子通常是高度活泼的,所以4n 个π电子的环在化学性质上不稳定。π电子数必须是2,6,10,14,…时才能形成填充满了的闭壳结构,呈芳香性。 根据Hückel 规则可以简单、直观、方便地判别物质是否具有芳香性,但这一方法也有一定的局限性:一般只适用于n 为不大于6的整数以及单环的平面共轭分子。如果n 大于7以及复杂的多环分子,则有许多例外的情况。

有些环状共轭体系,虽有π电子离域,但不仅没有使其稳定化,反而较其相应的开链体系分子的性质还要活泼,这种体系是属于反芳香性(antiaromaticity)的,如环丁二烯、平面环辛四烯、环丙烯负离子及环戊二烯正离子等。反芳香性属于4n 电子体系。

某些4n 体系与其相应的开链物相比,在热力学上既不表现活泼、也不表现稳定,则该体系可归属于非芳香性(nonaromaticity )。如船式结构的环辛四烯。由于其立体结构较稳定,很容易分离得到,具有一般多烯的化学性质,所以是非芳香性物质。类似的物质还有:

O

O

O

S

O

O

当一个或者多个芳香环之间通过一个单键相连,这时可将单键忽略,直接判断化合物的芳香性问题。如下列化合物都有芳香性:

2. HMO 理论对分子性质的描述方法

(1)电荷密度:共轭分子中π电子在整个分子中运动速度极快,因此分子中电荷是用在某给定区域中电子存在几率表示的,共轭分子中第i 个分子轨道为

Φi =C i 1Ψ1+C i 2Ψ2+…+C i n Ψn Ψ为原子轨道

按归一化原理+

+C C i i 2221…C in 2+ = 1 第i 个分子轨道中的电子在原子1,2,… n 周围存在的几率分别是 C i 21 , C i 2

2… 这也等于对原子1,2,… n 的电荷贡献,即

2

)(ir

i r C q = 若电子电荷为e ,则原子1,2,… n 分别具有的部分电荷值为-e C i 21 , -, …-e

C in 2 ,总和应等于e 。若每一个分子轨道有两个π电子,则在原子r 上的总电荷为 q r = 2 (

C r

2

1 +

C r 22

+ … +

C

mr 2 ) = ∑=m

i i r

q 1

)

( 例:丁二烯分子轨道Φ1及Φ2分别被四个电子所占据,因此在原子1及原

子2上电荷密度为

q 1 = 2 ( C 211 + C 2

21 ) = 2 (226015.03717.0+) = 1 q 2 = 2 ( C 2

12 + C 222 ) = 2 (223717.06015.0+) = 1

(2)键级:键级也称为键序,是指分子中两个相邻原子间的成键强度,键级与

相邻两原子轨道电子云重叠有关,因此键级可用分子轨道中两相邻原子的原子轨道系数乘积表示。占据第i 个分子轨道的π电子对键级rs 的贡献为

p

i rs

)( = C C is ir

若分子的占据分子轨道为 Φ1 … Φi ,各分子轨道上电子数为ν 1 … νi ,则相邻的r , s 原子间的总键级为:

is ir ir i rs i rs

C C V p V p

∑∑==)

(

若两个原子不直接相连,则其键级为0,习惯上将σ键的键级作为1,则相连

的 r , s 原子间的总键级为

rs rs

p P

+=1 p rs 越接近1,双键特征越大

(3)自由价:原子在成键过程中尚未充分利用的部分原子价,称为自由价。在HMO 理论中,分子中某原子r 和其周围原子间的键级总和N r 称为该原子的成键度。自由价F r 即为此原子的最大成键度与成键度之差。(计算N r 时,将所有σ键键级作为1)

F r = N max -N r = N max - ΣP rs

N max =4.732, 则F r = 4.732-N r

(4)分子图:将共轭分子的电荷密度、键级及自由价在分子骨架上表示出来,则成分子图。

例如1,3-丁二烯的分子图:

0.838 0.391 0.391 0.838

0.894 0.447 0.894

CH 2 CH CH CH 2 1.000 1.000 1.000 1.000

《有机化合物的结构特点》教案

第二节有机化合物的结构特点 教学目标: 1.知识与技能:掌握有机化合物的结构特点 2.过程与方法:通过练习掌握有机化合物的结构。 3.情感态度和价值观:在学习过程中培养归纳能力和自学能力。教学重点:有机化合物的结构特点 教学难点:有机化合物的结构特点法 教学过程: 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型

第二课时 [思考回忆]同系物、同分异构体的定义?(学生思考回答,老师板书) [板书] 二、有机化合物的同分异构现象、同分异构体的含义 同分异构体现象:化合物具有相同的分子式,但具有不同的结构现象,叫做同分异构体现象。 同分异构体:分子式相同, 结构不同的化合物互称为同分异构体。 (同系物:结构相似,在分子组成上相差一个或若干个CH2原子团的物质互称为同系物。) [知识导航1] 引导学生再从同系物和同分异构体的定义出发小结上述2答案,从中得出对“同分异构”的理解: (1)“同分”——相同分子式(2)“异构”——结构不同 分子中原子的排列顺序或结合方式不同、性质不同。 (“异构”可以是象上述②与③是碳链异构,也可以是像⑥与⑦是官能团异构)“同系物”的理解:(1)结构相似———一定是属于同一类物质; (2)分子组成上相差一个或若干个CH2原子团——分子式不同[学生自主学习,完成《自我检测1》] 《自我检测1》 下列五种有机物中,互为同分异构体;互为同一

物质; 互为同系物。 ① ② ③ ④ CH 2=CH -CH 3 ⑤ CH 2=CH -CH=CH 2 [知识导航2] (1)由①和②是同分异构体,得出“异构”还可以是位置异构; (2)②和③互为同一物质,巩固烯烃的命名法; (3)由①和④是同系物,但与⑤不算同系物,深化对“同系物”概念中“结构相似”的含义理解。(不仅要含官能团相同,且官能团的数目也要相同。) (4)归纳有机物中同分异构体的类型;由此揭示出,有机物的同分异构现象产生的本质原因是什么?(同分异现象是由于组成有机化合物分子中的原子具有不同的结合顺序和结合方式产生的,这也是有机化合物数量庞大的原因之一。除此之外的其他同分异构现象,如顺反异构、对映异构将分别在后续章节中介绍。) [板书] 二、同分异构体的类型和判断方法 1.同分异构体的类型: a.碳链异构:指碳原子的连接次序不同引起的异构 b.官能团异构:官能团不同引起的异构 CH 3-CH -CH=CH 2 ︱ CH 3 CH 3︱ CH 3-C=CH -CH 3 CH 3-CH=C ︱ CH 3 CH 3 ︱

最经典总结-有机化合物结构与性质

有机化合物结构与性质 考点一官能团的结构与性质 Z 真题感悟hen ti gan wu (课前) 1.(2018·全国Ⅲ·9)苯乙烯是重要的化工原料。下列有关苯乙烯的说法错误的是(C) A.与液溴混合后加入铁粉可发生取代反应 B.能使酸性高锰酸钾溶液褪色 C.与氯化氢反应可以生成氯代苯乙烯 D.在催化剂存在下可以制得聚苯乙烯 [解析]C错:与氯化氢的反应是发生在碳碳双键上的加成反应,产物是氯代苯乙烷。A对:“铁粉”“液溴”是苯乙烯()在苯环上发生溴代反应的条件。B对:含有碳碳双键,能使酸性高锰酸钾溶液褪色。D对: 含有碳碳双键,能发生加聚反应生成聚苯乙烯。 2.(2018·北京·10)一种芳纶纤维的拉伸强度比钢丝还高,广泛用作防护材料。其结构片段如下图。

下列关于该高分子的说法正确的是(B) A.完全水解产物的单个分子中,苯环上的氢原子具有不同的化学环境 B.完全水解产物的单个分子中,含有官能团—COOH或—NH2 C.氢键对该高分子的性能没有影响 D.结构简式为 [解析]B对:该高分子完全水解生成和,分别含有官能团—COOH、—NH2。A错:水解生成的单个分子是对称结构,苯环上的氢原子具有相同的化学环境。C错:氢键对高分子的性能有影响。D错:该高分子化合物的结构简 式为。 3.(2017·江苏)萜类化合物广泛存在于动植物体内,关于下列萜类化合物的说法正确的是(C) A.a和b都属于芳香族化合物 B.a和c分子中所有碳原子均处于同一平面上 C.a、b和c均能使酸性KMnO4溶液褪色 D.b和c均能与新制的Cu(OH)2反应生成红色沉淀 [解析]a中没有苯环,不属于芳香族化合物,A项错误;a、c中所有碳原子不可能共平面,B项错误;a中的碳碳双键、b中的羟基以及与苯环相连的甲基、c中的醛基均可以被酸性KMnO4溶液氧化,C项正确;与新制Cu(OH)2反应的官能团为醛基,只有c可以与新制Cu(OH)2反应,而b不能,D项错误。

有机化合物的结构概念与结构理论

有机化合物的结构概念与结构理论 在测定实验式及相对分子质量后,对于一个有机分子的认识,并没有得到解决,因为往往好几个有机化合物都具有相同的分子式,而它们的物理、化学性质则并不相同。1822年,魏勒和李比息分别先后发现了异氰酸银和雷酸银,分析证明均由Ag,N,C,O各一个原子组成,但物理、化学性质完全不同。后来柏则里经过仔细研究,证明这种现象的确是存在的,他把这种分子式相同而结构不同的现象,称为同分异构现象(简称异构现象)。两个或两个以上具有相同组成的物质,称为同分异构体。他还解释,异构体的不同是因分子中各个原子结合的方式不同而产生的,这种不同的结合称为结构。自从发现这个现象后,有机化学面临一个问题,就是如何测定这些结构,如得不到解决,不能算是一门科学,后来经过不断的探索与思考,逐渐建立了正确的结构概念。 1.凯库勒(Kekulé,A.)及古柏尔(Couper,A.)的两个重要基本规则(1857年) (1)碳原子是四价的:无论在简单的或复杂的化合物里,碳原子和其它原 子的数目总保持着一定的比例。例如CH 4,CHCl 3 ,CO 2 ,凯库勒认为每一种原子 都有一定的化合力,凯库勒把这种力叫作atomcity,按意译应为“原子化合力”或“原子力”,后来人们称为价(valence)。碳是四价的,氢、氯是一价的,氧是二价的。若用一条短线代表一价,则CH 3 Cl可用下面四个式子表示: 事实上CH 3 Cl只有一个化合物,因此他们还注意到碳原子的四个价键是相等的。 (2)碳原子自相结合成键:在有机化学发展史上,类型学说占有重要地位。

它的创始人热拉尔(Gerhardt ,C.,1853)认为有机化合物是按照四种类型——氢型、盐酸型、水型和氨型——中一个氢被一个有机基团取代衍生出来的,例如它们被乙基取代: 这个学说在建立有机化合物体系过程中,起了很大的推动作用,把当时杂乱无章的各种化合物,归纳到一个体系之内,并按照这个学说预言很多新化合物,在后来一一被发现。凯库勒在此基础上提出了新的类型即甲烷类型,他把其它的碳氢化合物也放在这一类型之内,如乙烷就是甲基甲烷: 这一类型说明碳与碳之间也可以用一价自相结合成为一个碳链,例如两个或三个碳原子自相结合成键后,还剩下没有用去的价键均与氢结合,就得到C 2H 6,C 3H 8。 上面两个式子,代表着分子中原子的种类、数目和排列的次序,称为构造式。构造式中每一条线代表一个价键,称为键。如果两个原子各用一个价键结合,这种键称为单键;在有些化合物中,还可用两个价键或叁个价键彼此自相

有机化合物结构的表示方法

有机化合物结构的表示方法(拓展应用) 一.学习目标 学会用结构式、结构简式和键线式来表示常见有机化合物的结构 二.重点难点 结构简式表示有机化合物的结构 三.知识梳理 【练习】写出下列有机物的电子式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 1. 结构式的书写 (1)结构式定义 (2)书写注意点 【练习】写出下列有机物的结构式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 2.结构简式书写: (1)定义 (2)书写注意点 ①表示原子间形成单键的“—”可以省略 ②“C=C”和“C≡C”中的“=”和“≡”不能省略。但醛基、羰基、羧基可以简写为“-CHO”、“-CO-”、“-COOH” ③不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 【练习】写出下列有机物的结构简式 乙烷、乙烯、乙炔、乙醇、乙酸、乙醛 3.键线式: 定义:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。 【练习】写出下列有机物的键线式 丙烷、丙烯、丙炔、丙醇、丙酸、丙醛

CH 3CH 2CH 2CH 3CH 3CHCH 2CH 3 3 CH 3CH CHCH 3 注意事项: (1)一般表示3个以上碳原子的有机物;弄清碳原子的杂化方式 (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C=C 、C ≡C 键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 【小结】有机化合物结构的表示方法 电子式 结构式 结构简式 键线式 【过关训练】 C C C C H H H H _________________________、___________________________ C C C C Br H Br H H _______________________、___________________________ C C C C H H H H H H H H ____________________________、___________________________ 3.有机化合物的结构简式可进一步简化,如: 略 去碳 氢 元素短线替换 省略短线 双键叁键保留

有机化合物地结构与性质

有机化合物的结构与性质 有机化学能充分体现出“结构决定性质,性质反映结构”的规律。有机化合物的结构与碳原子的成键方式有关。碳原子最外层4个电子,得失电子都不容易,主要以共价键与其它原子结合。依据共用电子对数可将碳原子形成的共价键分为单键、双键、三键这三类;依据共用电子对是否有偏向可分为极性键和非极性键;依据原子轨道重叠成键的方式又分为σ键、π键,有的还存在大π键。碳原子成键方式的多样性决定有机化合物大多存在同分异构现象,常见的同分异构有碳骨架异构、官能团位置异构、官能团类别异构。官能团决定有机化合物的化学特性,官能团的相互影响会使有机化合物具有某些特性。 【重点难点】 重点:不同类有机物中碳原子不同的成键方式和同分异构体。 难点:有机物的结构与碳原子成键方式的关系及如何书写有机物的同分异构体。 【知识讲解】 烃分子中有,烃的衍生物中有-x、-OH、 等不同的官能团,这些官能团决定了有机化合物具有各 自典型的性质。学习有机化合物,必须明确“结构决定性质,性质反映结构”。有机化合物的结构是以分子中碳原子结合成的碳骨架为基础的,故首先要研究碳原子的结合方式——成键情况。 一、碳原子的成键方式 上节已把有机物分为链状有机化合物和环状有机化合物,这就是根据碳骨架的形状来分的,烃中又有烷烃、烯烃和炔烃,这是根据碳原子形成不同的碳碳键来分的。 1、单键、双键和三键 碳原子最外层4个电子,要形成最外层8个电子的稳定结构,每个碳原子需共用4对电子。若每个碳原子分别与4个碳原子各形成一对共用电子,形成的该共价键为单键。若两个碳原 子间共用两对电子的共价键称为双键,用表示。若两个碳原子间共用三对电子的共价键称为三键,用表示。下面介绍几种常见有机物的成键情况。 (1)中碳原子成键情况和空间构型 的电子式为,结构式为,空间构型为正四面体,键角为109.5°(或109°28′)。 C原子的轨道表示式为,参与成键时,形成杂化轨道。中分子中C原子形成sp3杂化轨道:,形成了四个完全相同的杂化轨道,分别与H原

书写有机化合物结构式的基本规则

书写有机化合物结构式的基本规则 一、原子团书写规则 一些常见原子团的名称和书写规则。 乙基:—CH2CH3,—C2H5,C2H5— 羧基:—COOH,HOOC—,—CO2H 醛基:—CHO,OHC— 卤原子:—Cl,Cl—,—Br,Br— 甲氧基:—OCH3,CH3O— 甲酯基:—COOCH3,CH3OOC— 二、直接结合规则 无论是原子团的书写,还是结构式的书写,遵守直接结合规则是重要的原则之一。所谓直接结合规则,就是说在写结构式时,应当把各个原子或原子团按照它们在分子中结合的方式和次序而连接起来。下面举一些结构式书写的例子,进一步说明该规则的应用。 想正确书写结构简式,首先得知道该物质的官能团及碳骨架,对各官能团的结构简式要比较明确,不能省的碳碳双键及碳碳三键要写好,书写完成后,本着以下原则检查,每个碳原子成四个键,氧原子成两个键,氮原子成三个键,氢原子成一个键。对于葡萄糖来说,要知道它是一种链状的多羟基醛,有一个醛基(-CHO),另外的五个碳上各有一个羟基(-OH),其余为氢原子,CH2OH—CHOH—CHOH—CHOH—CHOH—CHO或CH2OH(CHOH)4CHO都行,注意“2”和“4”都是右下角标。 1.省略“C-H”键(与氢原子相连的键一般都是可以省的,有时可以不省是为了使其结构更清晰易辨)CH3-CH2-CH2-CH=CH2 2.省略“C-C”键(但官能团不能省略如C=C,碳碳叁键)CH3CH2CH2CH=CH2 3.缩写某些原子团CH3(CH2)2CH=CH2 4.工业上常有一些不太规范的写法,如把CH2=CH2写成CH2CH2,这种习惯甚至在中学化学的某些资料中也偶有出现。但对于中学生,应按规范方式书写。 例1.苯和萘结构式的写法。 例2.环己烷结构式的写法。 例3.其它各类化合物结构式的写法。 烷烃:CH3CH2CH3(H3CCH2CH3)(丙烷) 烯烃:CH2=CH2(H2C=CH2)(乙烯) CH3CH=CH2(CH2=CHCH3)(丙烯) 炔烃:CH≡CH(HC≡CH)(乙炔)

高中化学 有机化合物的结构特点教案新人教版

第二节有机化合物的结构特点(教学设计) 第一课时 一.有机物中碳原子的成键特点与简单有机分子的空间构型 教学内容教 学 环 节 教学活动 设计意图 教师活动学生活动 ——引 入 有机物种类繁多,有很多有机物的分子 组成相同,但性质却有很大差异,为什 么? 结构决定性质, 结构不同,性质 不同。 明确研究有机 物的思路:组成 —结构—性质。 有机分子的结构是三维 的设 置 情 景 多媒体播放化学史话:有机化合物的三 维结构。思考:为什么范特霍夫和勒贝 尔提出的立体化学理论能解决困扰19世 纪化学家的难题? 思考、回答激发学生兴趣, 同时让学生认 识到人们对事 物的认识是逐 渐深入的。 有机物中碳原子的成键 特点交 流 与 讨 论 指导学生搭建甲烷、乙烯、乙炔、苯等 有机物的球棍模型并进行交流与讨论。 讨论:碳原子最 外层中子数是 多少?怎样才 能达到8电子 稳定结构?碳 原子的成键方 式有哪些?碳 原子的价键总 数是多少?什 么叫单键、双 键、叁键?什么 叫不饱和碳原 子? 通过观察讨论, 让学生在探究 中认识有机物 中碳原子的成 键特点。 有机物中碳原子的成键 特点归 纳 板 书 有机物中碳原子的成键特征:1、碳原子 含有4个价电子,易跟多种原子形成共 价键。 2、易形成单键、双键、叁键、碳链、碳 环等多种复杂结构单元。 3、碳原子价键总数为4。 不饱和碳原子:是指连接双键、叁键或 在苯环上的碳原子(所连原子的数目少 于4)。 师生共同小结。通过归纳,帮助 学生理清思路。

简单有机分 子的空间结 构及 碳原子的成键方式与分子空间构型的关系观 察 与 思 考 观察甲烷、乙烯、乙炔、苯等有机物的 球棍模型,思考碳原子的成键方式与分 子的空间构型、键角有什么关系? 分别用一个甲基取代以上模型中的一个 氢原子,甲基中的碳原子与原结构有什 么关系? 分组、动手搭建 球棍模型。填 P19表2-1并思 考:碳原子的成 键方式与键角、 分子的空间构 型间有什么关 系? 从二维到三维, 切身体会有机 分子的立体结 构。归纳碳原子 成键方式与空 间构型的关系。 碳原子的成键方式与分子空间构型 的关系归 纳 分 析 —C——C= 四面体型平面型 =C= —C≡ 直线型直线型平面型 默记理清思路 分子空间构 型迁 移 应 用 观察以下有机物结构: CH3 CH2CH3 (1) C = C H H (2) H--C≡C--CH2CH3 (3) —C≡C—CH=CF2、 思考:(1)最 多有几个碳原 子共面?(2) 最多有几个碳 原子共线?(3) 有几个不饱和 碳原子? 应用巩固 杂化轨道与有机化合物空间形状观 看 动 画 轨道播放杂化的动画过程,碳原子成键 过程及分子的空间构型。 观看、思考 激发兴趣,帮助 学生自学,有助 于认识立体异 构。 碳原子的成键特征与有机分子的空间构型整 理 与 归 纳 1、有机物中常见的共价键:C-C、C=C、 C≡C、C-H、C-O、C-X、C=O、C≡N、 C-N、苯环 2、碳原子价键总数为4(单键、双键和 叁键的价键数分别为1、2和3)。 3、双键中有一个键较易断裂,叁键中有 两个键较易断裂。 4、不饱和碳原子是指连接双键、叁键或 在苯环上的碳原子(所连原子的数 目少于4)。 5、分子的空间构型: (1)四面体:CH4、CH3CI、CCI4 (2)平面型:CH2=CH2、苯 (3)直线型:CH≡CH 师生共同整理 归纳 整理归纳 学业评价迁 移 应 展示幻灯片:课堂练习 学生练习巩固

有机化合物的结构和性质

第一章有机化合物的结构和性质 [教学目的]: 掌握有机化合物的特点 掌握有机化合物中共价键的性质及共价键的均裂、异裂 了解有机化学中的酸碱概念及有机化合物的分类 了解有机化学的发展 [教学重点]: 共价键的性质及共价键的均裂、异裂 [教学难点]: 有机化学中的酸碱概念-布伦斯特,路易斯酸碱定义 [教学方法]: 以教师讲授为主 [教学手段]: 多媒体教学和板书相结合 [辅导]: 课后 [学时分配]: 1学时 [作业]: [教学内容]: 有机化合物和有机化学 有机化合物的特点 有机化合物中的共价键 有机化合物中共价键的性质 共价键的断裂 有机化学中的酸碱概念 有机化合物的分类 有机化学的发展及学习有机化学的重要性

1.1有机化合物和有机化学 有机化学(organic chemistry)是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法学的科学,是化学学科的一个分支,它的研究对象是有机化合物。 什么是有机化合物呢?早期化学家将所有物质按其来源分为两类,人们把从生物体(植物或动物)中获得的物质定义为有机化合物,无机化合物则被认为是从非生物或矿物中得到的。 现在绝大多数有机物已不是从天然的有机体内取得,但是由于历史和习惯的关系,仍保留着“有机”这个名词。 1.1.1有机化学发展简史 象人类认识其它事物一样,人们对有机化合物和有机化学的认识也是逐步深化的。人类使用有机物质虽已有很长的历史,但是对纯物质的认识和取得是比较近代的事情。直到十八世纪末期,才开始由动植物取得一系列较纯的有机物质。 如:1773年首次由尿内取得纯的尿素. 1805年由鸦片内取得第一个生物碱--吗啡. * 1828年,德国化学家,维勒(wohler,F)首次人工用氰酸铵合成了尿素。 * 从19世纪初至中期有机化学成为一门学科,建立了经典的有机结构理论。 1857年凯库勒提出了碳是四价的学说。 1858年,库帕(Couper,A·S)提出:“有机化合物分子中碳原子都是四价的,而且互相结合成碳链。”构成了有机化学结构理论基础。 1861年,布特列洛夫提出了化学结构的观点,指出分子中各原子以一定化学力按照一定次序结合,这称为分子结构;一个有机化合物具有一定的结构,其结构决定了它的性质;而该化合物结构又是从其性质推导出来的;分子中各原子之间存在着互相影响。 1865年,凯库勒提出了苯的构造式。 1874年,范特霍夫(V ant Hoff.J.H)和勒贝尔(Le Bel,J.A)分别提出碳四面体构型学说,建立了分子的立体概念,说明了旋光异构现象。 1885年,拜尔(V on Baeyer.A)提出张力学说。 至此,经典的有机结构理论基本建立起来。 20世纪建立了现代有机结构理论。 1916年,路易斯(Lewis,G.N)提出了共价键电子理论。 20世纪30年代,量子力学原理和方法引入化学领域以后,建立了量子化学。 20世纪60年代,合成了维生素B12,发现了分子轨道守恒原理。

有机化合物的结构

有机化合物的结构 专题二有机物的结构与分类 第一单元有机化合物的结构 【教学目标】有机物中碳原子的成键特点 2 .有机物分子的空间构型与碳原子成键方式的关系有机物结构的表示方法:结构式 结构简式 键线式同分异构现象同分异构体的种类及确定方法【教学重点】有机物分子的空间构型与碳原子成键方式的关系 【教学难点】同分异构现象 【教学方法】自主探究法、分析法等 【教学课时】2课时 【教学过程】 第一课时 【问】你认为造成有机化合物性质差异的主要原因有哪些? 形成元素种类不同 有机物性质不同 元素结合方式不同 一有机物中碳原子的成键特点

C ——形成四根共价建 H ——形成一根共价建 O ——形成两根共价建 N ——形成三根共价建 思考:你认为下面两种图示表示的是一种物质还是 两种物质?为什么? 这两种图示表示的其实是同一种物质,它其实是一个空 间四面体,在这个结构中单键可以旋转。根据所学内容,完成下表 有机物甲烷乙烯乙炔苯 分子式 结构式 分子构型 碳碳键成键特点 其中单键可以旋转,双键和三键不能旋转 【问】有机物的分子构型和碳碳键的成键方式有什么关系呢?(结合课件讲述) 饱和碳原子——sp3杂化四面体型 双键碳原子——sp2杂化平面型 叁键碳原子——sp杂化直线型 苯环中碳原子——sp2 平面型

例:例1:以下物质中最多能有几个碳原子共面?最多有几个碳原子能在一条直线上? CH3-CH=CH-C≡C-CF3 例2 该分子中,处于同一平面的原子最多有几个? 二有机物结构的表示方法 1 结构式——完整的表示出有机物分子中每个原子的成键情况。 2 结构简式——结构式的缩减形式 书写规则: (1)结构式中表示单键的“——”可以省略,例如乙烷的结构简式为:CH3CH3 (2)“C=C”和“C≡C”中的“=”和“≡”不能省略。例如乙烯的结构简式不能写为:CH2CH2,但是醛基、羧基则可简写为—CHO和—COOH (3)准确表示分子中原子的成键情况。如乙醇的结构简式可写成CH3CH2OH或C2H5OH而不能写成OHCH2CH 键线式——只要求表示出碳碳键以及与碳原子相连的基团,图示中的一个拐点和终点均表示一个碳原子。 【完成教材P23问题解决】 【过渡】你知道为什么有机物的种类会有这么多吗?其实这与有机物中存在同分异构现象有关,同分异构现象我们在高一的时候已经学过,你还记得吗?

有机物组成和结构的几种表示方法

有机物组成和结构的几种表示方法 比较乙酸、水、乙醇、碳酸分子中羟基氢的活泼性

烷烃的系统命名 (1)最长、最多定主链 a.选择最长碳链作为主链。 b.当有几条不同的碳链时,选择含支链最多的一条作为主链。如 含6个碳原子的链有A、B两条,因A有三个支链,含支链最多,故应选A为主链。 (2)编号位要遵循“近”、“简”、“小” a.以离支链较近的主链一端为起点编号,即首先要考虑“近”。 b.有两个不同的支链,且分别处于距主链两端同近的位置,则从较简单的支链一端开始编号。即同“近”,考虑“简”。 c.若有两个相同的支链,且分别处于距主链两端同近的位置,而中间还有其他支链,从主链的两个方向编号,可得两种不同的编号系列,两系列中各位次和最小者即为正确的编号,即同“近”、同“简”,考虑“小”。如 (3)写名称 按主链的碳原子数称为相应的某烷,在其前面写出支链的位号和名称。原则是:先简后繁,相同合并,位号指明。阿拉伯数字用“,”相隔,汉字与阿拉伯数字用“-”连接。 例如: 3.烯烃和炔烃的命名 (1)选主链:将含有双键或三键的最长碳链作为主链,称为“某烯”或“某炔”。 (2)定号位:从距离双键或三键最近的一端对主链碳原子编号。

(3)写名称:将支链作为取代基,写在“某烯”或“某炔”的前面,并用阿拉伯数字标明 双键或三键的位置。 例如:命名为3-甲基-1-丁炔。 4.苯的同系物命名 (1)苯作为母体,其他基团作为取代基。 例如:苯分子中的氢原子被甲基取代后生成甲苯,被乙基取代后生成乙苯,如果两个氢原子被两个甲基取代后生成二甲苯,有三种同分异构体,可分别用邻、间、对表示。 (2)将某个甲基所在的碳原子的位置编为1号,选取最小位次给另一个甲基编号。 寻找同分异构体的数目 1.记忆法 记住已掌握的常见的异构体数目,例如:①凡只含一个碳原子的分子均无异构体。甲烷、乙烷、新戊烷(看作CH4的四甲基取代物)、2,2,3,3-四甲基丁烷(看作C2H6的六甲基取代物)、苯、环己烷、C2H2、C2H4等分子的一卤代物只有1种;②丁烷、丁炔、丙基、丙醇有2种;③戊烷、丁烯、戊炔有3种;④丁基、C8H10(芳香烃)有4种。 2.基元法 如丁基有4种,则丁醇、戊醛、戊酸都有4种。 3.换元法 即有机物A的n溴代物和m溴代物,当m+n等于A(不含支链)中的氢原子数时,则n 溴代物和m溴代物的同分异构体数目相等。例如二氯苯C6H4Cl2有3种,当二氯苯中的H和Cl互换后,每种二氯苯对应一种四氯苯,故四氯苯也有3种。 4.等效氢法 即有机物中有几种氢原子,其一元取代物就有几种,这是判断该有机物一元取代物种数的方法之一。等效氢一般判断原则:①同一碳原子上的H是等效的;②同一碳原子上所连甲基上的H是等效的;③处于镜面对称位置上的氢原子是等效的。

有机化合物的结构特点

《有机化合物的结构特点》课后练习 1.(双选)以下有关碳原子的成键特点的说法正确的是() A.在有机化合物中,碳原子一般以四个共用电子对与另外的原子形成四个共价键 B.在有机化合物中,碳元素只显-4价 C.在烃中,碳原子之间只形成链状 D.碳原子既可形成有机化合物,也可形成无机物 【解析】在有机化合物中,碳元素不一定只显-4价,如在CH3Cl中,碳显-2价,B项错误;在烃中碳原子之间也可以形成环状,如环已烷,C项错误。 【答案】AD 2.下列结构式从成键情况看不合理的是() 【解析】根据几种原子的成键特点分析:碳原子和硅原子形成4个共价键,氢原子形成1个共价键,氧原子形成2个共价键,氮原子形成3个共价键,D中C、Si成键不合理。 【答案】 D 3.下列各组物质中属于同分异构体的是()

【解析】因为苯分子中不存在单双键交替的结构,而是一种特殊的化学键,因此A 项中两种结构简式表示的是同一种物质。B项也是同种物质。C项中两种结构可认为是CH4分子中的两个氢原子被—CH3取代,甲烷的二取代物只有一种结构,故C项中两种结构表示同一种物质。D项中两物质分子式相同,但碳架结构不同,互为同分异构体。 【答案】 D 4.下列说法中正确的是() A.相对分子质量相同,组成元素也相同的化合物一定是同分异构体 B.凡是分子组成相差一个或若干个CH2原子团的物质,彼此一定是同系物 C.两种物质的组成元素相同,各元素的质量分数也相同,则两者一定是同分异构体D.分子式相同的不同有机物一定互为同分异构体 【解析】A项,分子式不一定相同,如C10H8与C9H20,A错;互为同系物必须满足两个条件:①结构相似,②在分子组成上相差一个或若干个CH2原子团,两者缺一不可,B 错;对于C项则仅是最简式相同,分子式不一定相同;D中明确了物质的分子式相同,却又是不同的化合物,则必然是同分异构体,满足同分异构体的条件,故D正确。 【答案】 D 5.下列式子是某学生书写的C5H12的同分异构体的结构简式()

有机化合物结构理论

第二章有机化合物的结构理论 从有机化合物的分类方法中,可以看出同分异构现象在有机化学中占有相当重要的地位。同分异构体有相同数目相同种类的原子,但原子间连接的次序和空间取向不同,即结构上的不同使分子式一样的化合物包含着不同的化合物组成。因此,有机化学的学习研究必须从结构上着手才能抓住本质而不致误入歧途。结构问题如得不到正确认识和解决,那就像Wohler在1835年所说的:“有机化学是充满最特殊事物的热带丛林,却又是一个恐怖的无边际的丛林,无人敢进去,因为相像的找不到出路。”不解决结构问题,就不可能学习研究有机化学和有机化合物本身。 1857年,Kekule指出每一种原子都有一定的化合力,这种化合力就是价,碳原子的价为四价。可以说有机化学的结构学说就是在此基础是发展起来的。1913年,Bohr提出的原子结构理论,产生了原子价的电子学说,标志着经典的结构理论已经过渡到结构的电子理论了。 形成分子的驱动力是因为分子比原子稳定,原子形成分子后能量得到释放。分子中化学键的形成使体系能量降低,而化学键的断裂总是需要吸收能量。但是,原子又是如何结合起来才形成分子的呢?要正确回答这个问题就比较困难了。1917年Kossel和Lewis分别提出,化学键由电子组成,可分为离子键和共价键两大类。反应时,原子将失去或得到电子,使结构接近惰性气体的结构。化学变化仅仅涉及核外的电子即价电子的反应,表示键的短线即是一对成对电子,这些观点已经成为现代价键理论的基础。1926年,Schrodinger等提出了说明原子结构中的电子运动的量子力学理论,而绝大多数化学家都运用了Schrodinger的波动方程理论,使我们对有机化合物结构问题的探索和了解也具有了现代量子理论基础。 2.1 原子轨道 描述原子中单个电子运动状态的波函数叫做原子轨道(atomic orbital)。例如氢原子,若将原子核定为坐标原点,则单个电子在空间运动状态可由正坐标系x,y,z或球极坐标系r,θ,φ来确定。那么,描述该电子在空间运动状态的波函数,即原子轨道,可用φ(x,y,z)或φ(r,θ,φ)来表示。 Schrodinger方程是表述微观物体运动的方程。用Schrodinger方程求解氢原子中电子运动状态时,得到主量子数n,副量子数l,磁量子数m三个量子数,它们之间的关系为:主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的,主量子数n的取值为1,2,3…等正整数。n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2代表电子离核的平均距离比第一层稍远的一层,即第二电子层。 副量子数l又称角量子数。当n给定时,l可取值为0,1,2,3…(n-1)。在每一个主量子数n中,有n个副量子数,其最大值为n-1。副量子数l的物理意义之一是表示原子轨道(或电子云)的形状,其二是表示同一电子层中具有不同状态的亚层。例如,n=3时,l 可取值为0,1,2。即在第三层电子层上有三个亚层,分别为s,p,d亚层。为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数。例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层。表2.1列出了主量子数n,副量子数l及相应电子层、亚层之间的

常见有机化合物缩写及结构式

常见的有机化合物缩写及结构式A/MMA丙烯腈/甲基丙烯酸甲酯共聚物 AA丙烯酸 AAS丙烯酸酯-丙烯酸酯-苯乙烯共聚物 ABFN 偶氮(二)甲酰胺ABN 偶氮(二)异丁腈 ABPS 壬基苯氧基丙烷磺酸钠 B 英文缩写全称 BAA 正丁醛苯胺缩合物 BAC 碱式氯化铝 BACN 新型阻燃剂 BAD 双水杨酸双酚A酯 BAL 2,3-巯(基)丙醇 BBP 邻苯二甲酸丁苄酯 BBS N-叔丁基-乙-苯并噻唑次磺酰胺 BC 叶酸 BCD β-环糊精 BCG 苯顺二醇 BCNU 氯化亚硝脲 BD 丁二烯 BE 丙烯酸乳胶外墙涂料 BEE 苯偶姻乙醚 BFRM 硼纤维增强塑料 BG 丁二醇 BGE 反应性稀释剂 BHA 特丁基-4羟基茴香醚 BHT 二丁基羟基甲苯 BL 丁内酯 BLE 丙酮-二苯胺高温缩合物 BLP 粉末涂料流平剂

BMA 甲基丙烯酸丁酯 BMC 团状模塑料 BMU 氨基树脂皮革鞣剂 BN 氮化硼 BNE 新型环氧树脂 BNS β-萘磺酸甲醛低缩合物 BOA 己二酸辛苄酯 BOP 邻苯二甲酰丁辛酯 BOPP 双轴向聚丙烯 BP 苯甲醇 BPA 双酚A BPBG 邻苯二甲酸丁(乙醇酸乙酯)酯 BPF 双酚F BPMC 2-仲丁基苯基-N-甲基氨基酸酯BPO 过氧化苯甲酰 BPP 过氧化特戊酸特丁酯 BPPD 过氧化二碳酸二苯氧化酯 BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚) BPTP 聚对苯二甲酸丁二醇酯 BR 丁二烯橡胶 BRN 青红光硫化黑 BROC 二溴(代)甲酚环氧丙基醚 BS 丁二烯-苯乙烯共聚物 BS-1S 新型密封胶 BSH 苯磺酰肼 BSU N,N’-双(三甲基硅烷)脲 BT 聚丁烯-1热塑性塑料 BTA 苯并三唑 BTX 苯-甲苯-二甲苯混合物 BX 渗透剂

全国高考化学易错集 专题16有机化合物的结构与性质

专题16 有机化合物的结构与性质 1.BHT是一种常用的食品抗氧化剂,从出发合成BHT的方法有如下两种。下列说法不正确的是( ) A.推测BHT在水中的溶解度小于苯酚 B.BHT与都能使酸性KMnO4褪色 C.方法一和方法二的反应类型都是加成反应 D. BHT与具有完全相同的官能团 答案 C 2.咖啡酸具有止血功效,存在于多种中药中,其结构简式为,则下列有关说法正确的是( ) A.该物质中苯环上的一氯化物有2种 B.1 mol该物质可以与1.5 mol碳酸钠溶液反应生成1.5 mol CO2 C.既能发生取代反应,也能发生加成反应 D.所有碳原子不可能都在同一个平面上 解析A中其苯环上的一氯代物有3种;B项苯酚的酸性弱于碳酸,所以酚羟基与碳酸钠溶液反应不能生成CO2;C项碳碳双键可以发生加成反应,苯环上可以发生取代反应;D项苯环上的6个碳原子在同一个平面上,双键两端的碳原子也在同一个平面上,所以所有碳原子可能都在同一个平面上。

答案 C 3.下列说法正确的是( ) A.与丙三醇互为同系物 B.高聚物与的单体相同 C.按系统命名法,化合物的名称为2甲基3,4乙基己烷 D.等物质的量的甲烷和乙酸完全燃烧时,耗氧量相等,生成的CO2的量也相等 答案 B 4.下列说法不正确的是( ) A.分子式是C3H8O的所有同分异构体共3种 B.纤维素、蔗糖、葡萄糖和脂肪在一定条件下都可发生水解反应 C.用乙醇和浓H2SO4制备乙烯时,不可用水浴加热控制反应的温度 D.迷迭香酸结构如图: 1 mol 迷迭香酸最多能和含6 mol NaOH的水溶液完全反应解析分子式为C3H8O的所有同分异构体有CH3CH2CH2OH(正丙醇)、(CH3)2CHOH(异丙醇)、CH3CH2OCH3(甲乙醚),共3种,A项正确;纤维素、蔗糖和脂肪在一定条件下都可发生水解反应,葡萄糖是单糖,不能发生水解反应,B项错误;用乙醇和浓H2SO4制备乙烯时,控制反应的温度为170℃,水的沸点为100℃,故水浴加热达不到反应温度,C项正确;根据有机物结构可知,1 mol该有机物有4 mol酚羟基、1 mol羧基、1 mol酯基与NaOH反应,根据反应原理,1 mol该有机物一定条件下能与含6 mol NaOH的水溶液完全反应,D项正确。 答案 B 5.中药狼把草全草浸剂给动物注射,有镇静、降压及轻度增大心跳振幅的作用。有机物M是中药狼把草的

有机化合物结构与性质的关系

有机化合物结构与性质的关系 枣庄二中林德恒 一、教材分析 本节教材是有机化学基础模块中较为重要的一节,通过本节内容的学习有助于学生对有机化合物进行系统而有序的认识及研究,为后续的学习提供指导。学生在初中化学及《化学2(必修)》中学习过一些有机化合物的结构、性质和用途,但其认识的方式是一个个独立的典型代表物,主要是从应用的角度掌握这些代表物的性质,对它们结构的认识也比较浅显,还没有意识到有机化合物性质与结构的关系。通过本节的学习,可以帮助学生初步树立“官能团的结构决定有机化合物的化学特性”、“不同基团间的相互作用会对有机化合物的性质产生影响”等观念,知道官能团中键的极性、碳原子的饱和程度与有机化合物的化学性质有关系。 二、设计思路 在《化学2(必修)》中学习了关于乙醇、乙酸的结构和化学性质,在本节内容开始组织学生回顾并讨论乙醇、乙酸的化学性质,要求学生通过板演并改正方程式,结合球棍模型分析二者的结构,归纳官能团的结构与有机化合物性质的关系;利用画概念图的方式启发学生讨论本节学习心得,总结认识有机化合物的方法和规律。 三、知识与技能 1、了解官能团、不同基团间的相互影响与有机化合物性质的关系。 2、掌握由结构预测性质的一般程序,初步建立不同基团间相互影响的观点。 四、情感态度与价值观 初步形成“结构决定性质、性质反映结构”的意识。 五、教学方法 教师引导学生自主学习归纳总结 六、教学设备 一体机、球棍模型

七、教后反思 本节课是利用学生学习过的典型的有机化合物间的化学反应进行分析,加以对比讨论从而总结出有机物的性质与官能团的关系,并且利用对比反应讨论出相同官能团受到所连接的集团的影响而体现出了不同的性质。在课堂中,倡导学生利用“合作、自主和探究”的学习方式,也为有机化学的学习提供了很好的典例。 教学中我的思路是充分利用学生已经学过的相关的有机物的性质的方程式加以讨论分析,我再进行归纳性总结,并且该部分内容会在以后的物质的性质学习中加以体现。对于本节课我的感觉是既激发了学生学习的积极性与主动性,又培养了学生学习的兴趣。

第一章有机化合物结构理论汇总

第一章有机化合物的结构理论 研究有机化合物,首先要研究其电子结构和成键作用,研究有机物中多原子间主要的共价键结合,对其描述可用价键理论和分子轨道理论。 一.Lewis结构模型 1.几个基本概念 Lewis结构是有机化学中常用的,最简单的成键模型。它基于以下的概念:离子键的成键能力来自相反电荷的静电引力,共价键的结合力,则来自原子间电子对的共享。Lewis结构的起点是原子和共价电子。用元素符号表示原子实(atomic core)——核和内层电子。原子实所带的正电荷数目等于价电子数,此正电荷称为原子实电荷。第三周期以后的元素的d电子包括在其原子实内。 价层占有度:与每个原子紧相邻的总电子数为起其价层占有度(Valence Shell Occupancy),它等于该原子外层未共享电子总数及该原子各键上成键电子总数之和,如H的VSO≤2,第二周期原子VSO≤8,第三周期原子VSO≤10,12. 形式电荷(Formal Charge) FC = 原子实电荷 - 电子主权数(Electron Ownership) EO = 未共享电子数 + 成键电子数/2 如:HO 中,H的FC = 1–1 = 0 ,O的FC = 6–7 = -1 在一个结构式中,形式电荷的代数和必等于该结构的总电荷。2.Lewis结构的书写程序: (1)计算出各原子所能贡献的价电子总数,若处理对象是正负离子,则分别加减相应的数值。 (2)写出各原子实符号,并填入由上步计算所得的电子数。填入时应符合多原子的价层占有度。 (3)在不违反上述步骤的原则下,尽量使结构式中的价键数目最多,未共享电子数最少。 (4)计算出每一原子的形式电荷,并标明其电荷分布情况。其中,分子为电中性者最稳定,相反电荷靠近者较稳定,相同电荷距离越远越稳定。 如:NO2 (1)价电子数= 5 + 6 * 2 = 17 (2) O N O ....=.-...... (3)形式电荷:O(左)= 6 - 6=0, O(右)= 6 - 7= -1, N = 5 – 4 = +1 因此,NO2的Lewis结构为 O N O ....=.-...... +- 3.分子结构的几何形状 写出正确的Lewis结构式后,可按电子对互斥原理,大致描述分子的几何形状。将每对未共享电子及每个键(不论是单键还是双键)都算作一个组: 电子组数为2,几何形状呈直线形

有机化合物结构的表示方法(学案)

有机化合物结构的表示方法(学案) 沛县湖西中学 李世敏 课标要求 学会用结构式、结构简式和键线式来表示常见有机化合物的结构。 学习纲要 1. 结构式的书写 (1)结构式定义 (2)书写注意点 2.结构简式书写: (1)定义 (2)书写注意点 不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。 3.键线式: 定义:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。每个交点、端点代表一个碳原子,每一条线段 代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。 注意事项: (1)一般表示3个以上碳原子的有机物; (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C=C 、C ≡C 键等官能团; (4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。 (5)计算分子式时不能忘记顶端的碳原子。 拓展应用: 有机化合物结构的表示方法 电子式 结构式 结构简式 键线式 【基础训练】 1略去 碳 氢 元素符号 短线替换 共用电子对 省略短线 双键叁键保留

CH 3CH 2CH 2CH 3CH 3CHCH 2CH 3 3 CH 3CH CHCH 3 2C C C C H H H H 、 C C C C H Br H Br H H H 、 C C C C H H H H H H H 、 3.有机化合物的结构简式可进一步简化,如: 请写出下列有机物分子的分子式: ⑴ ; ⑵ ; ⑶Cl ;⑷ ;

(5) O O ;(6) O OH。 有机化合物的结构 沛县湖西中学李世敏 课标要求 1.了解有机化合物中碳原子的三种成键方式及其空间取向; 2.掌握甲烷、乙烯、乙炔分子的组成和空间构型; 3.理解杂化轨道理论是怎样解释有机化合物的空间形状的。 学习纲要 1.有机物中碳原子的成键特点 (1)在有机物中,碳原子有个价电子,碳呈价。 (2)碳原子既可与其它原子形成共价键,碳原子之间也可相互成键,既可以形成键,也可以形成键或键。(成键方式多) 【说明】①有机物常见共价键:C-C、C=C、C≡C、C-H、C-O、C=O、C-X、C≡N、C-N、苯环。 ②在有机物分子中,仅以单键方式成键的碳原子称为饱和碳原子;连接在双键、叁键或在苯环上的碳原子(所连原子的数目少于4)称为不饱和碳原子。 ③C—C单键可以旋转而C=C(或三键)不能旋转。 (3)多个碳原子可以相互结合成长短不一的碳链和碳环,碳链和碳环还可以相互结合。 [练习]写出甲烷和乙烯的分子式、电子式、结构式结和构简式。 甲烷的化学式: 甲烷的电子式: 甲烷的结构式: [小结] 甲烷是立体结构, C原子和四个氢原子不处于同一平面,正四面体。 乙烯的分子式: 乙烯的电子式:

《有机化合物的结构》教案(苏教版)

专题二 有机物的结构与分类 第一单元 有机化合物的结构 要点:1有机物中碳原子的成键特点 2 有机物分子的空间构型与碳原子成键方式的关系 3 有机物结构的表示方法:结构式 结构简式 键线式 4 同分异构现象 5 同分异构体的种类及确定方法 第一课时 【问】你认为造成有机化合物性质差异的主要原因有哪些? 形成元素种类不同 有机物性质不同 元素结合方式不同 一 有机物中碳原子的成键特点 C ——形成四根共价建 H ——形成一根共价建 O ——形成两根共价建 N ——形成三根共价建 思考:你认为下面两种图示表示的是一种物质还是两种物质?为什么? 这两种图示表示的其实是同一种物质,它其实是一个空间四面体,在这个结构中单键可以旋转。根据所学内容,完成下表 其中单键可以旋转,双键和三键不能旋转 【问】有机物的分子构型和碳碳键的成键方式有什么关系呢?(结合课件讲述) 饱和碳原子——sp 3 杂化 四面体型 双键碳原子——sp 2 杂化 平面型 叁键碳原子——sp 杂化 直线型 苯环中碳原子——sp 2 平面型 例:例1:以下物质中最多能有几个碳原子共面?最多有几个碳原子能在一条直线上? CH 3-CH =CH -C ≡C -CF 3

例2 该分子中,处于同一平面的原子最多有几个? 二有机物结构的表示方法 1 结构式——完整的表示出有机物分子中每个原子的成键情况。 2 结构简式——结构式的缩减形式 书写规则: (1)结构式中表示单键的“——”可以省略,例如乙烷的结构简式为:CH3CH3 (2)“C=C”和“C≡C”中的“=”和“≡”不能省略。例如乙烯的结构简式不能写为:CH2CH2,但是醛基、羧基则可简写为—CHO和—COOH (3)准确表示分子中原子的成键情况。如乙醇的结构简式可写成CH3CH2OH或C2H5OH 而不能写成OHCH2CH3 3 键线式——只要求表示出碳碳键以及与碳原子相连的基团,图示中的一个拐点和终点均表示一个碳原子。 【完成教材P23问题解决】 【过渡】你知道为什么有机物的种类会有这么多吗?其实这与有机物中存在同分异构现象有关,同分异构现象我们在高一的时候已经学过,你还记得吗? 三同分异构体 1 同分异构现象的概念 有机物中存在分子式相同,结构不同的现象叫做同分异构现象,具有同分异构现象的化合物互称为同分异构体。 【课后思考】1你知道有哪些通分异构现象吗?请举例说明: 2 分子式为C7H16的有机物可能的结构简式有哪些?你是如何推断的? 第二课时 【讨论】学生回答以上问题 2 同分异构体的种类 1)碳链异构——由于碳原子的排列方式不同引起的同分异构现象 (A)首先写出无支链的烷烃碳链,即得到一种异构体的碳架结构。 (B )在主链上减一个碳作为一个支链(甲基),连在此碳链上得出含甲基的同分异构体。(C)在主链上减两个碳作为一个乙基支链或两个甲基的各类通分异构体。 【例】根据以上规则重新确定分子式为C7H16的有机物的同分异构体 【思考】那么是否所有的有机物都有同分异构体呢? CH4有同分异构体吗?CH3CH3有同分异构体吗?CH3CH2CH3有同分异构体吗?(D)3C以下的烷烃无同分异构体 【学生讨论】已知烯烃的分子式为C n H2n,那么分子式为C4H8的烯烃,可能的结构简式 有哪些? (2)官能团位置异构 在有机物中,有机物官能团位置的不同也会导致同分异构现象,上面这个问题就说明了这一点。再比如:丙醇就有两种同分异构体:CH3CH2CH2OH 和CH3CHCH3

相关主题
文本预览
相关文档 最新文档