当前位置:文档之家› 差速器计算部分

差速器计算部分

差速器计算部分
差速器计算部分

06091606 赵贵权

已知条件:

(1)假设地面的附着系数足够大;

(2)发动机到主传动主动齿轮的传动系数0.96

η=;

w

(3)车速度允许误差为±3%;

(4)工作情况:每天工作16小时,连续运转,载荷较平稳;

(5)工作环境:湿度和粉尘含量设为正常状况,环境最高温度为

30度;

(6)要求齿轮使用寿命为17年(每年按300天计,每天平均十小时);

(7)生产批量:中等;

(8)半轴齿轮,行星齿轮齿数,可参考同类车型选定,也可自己设

计;

(9)差速器转矩比 1.15

s=------1.4之间选取;

(10)安全系数为n=1.2-----1.35之间选取;

(11)主传动比3.2-3.8选取;在此取3.8;

(12)其余参数查相关手册;

第一章主减速器齿轮设计

1主减速器齿轮主要参数的选择

主减速器齿轮的主要参数有主、从动齿轮齿数1z和2z、从动锥齿轮大端分度圆直径

d和端面模数n m主、从动锥齿轮齿面宽1b等。

2

(1)选定主减速器从动齿轮类型、精度及其材料

1)类型: 根据题目要求选用单级主减速器从动齿轮选用标准斜齿圆柱齿轮,有较大的冲击载荷故加工成齿面。

2) 精度等级:家用轿车属于轻型轿车,故选用7级精度。

材料:驱动桥齿轮的工作条件是相当恶劣的,与传动系的其它齿轮相比,具有载荷大,作用时间长,载荷变化多,带冲击等特点。其损坏形式主要有齿轮根部弯曲折断、齿面疲劳点蚀(剥落)、磨损和擦伤等。根据这些情况,对于驱动桥齿轮的材料及热处理应有以下要求:

①具有较高的疲劳弯曲强度和表面接触疲劳强度,以及较好的齿面耐磨性,故齿表面应有高的硬度;

②轮齿心部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断;

③钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律易于控制,以提高产品的质量、缩短制造时间、减少生产成本并将低废品率;

④选择齿轮材料的合金元素时要适合我国的情况。

综上所述主减速器主动齿轮选用渗碳合金钢制造。在此,齿轮所采用的钢为20CrMnTi,查表机械设计基础(第五版)表11-1有:热处理方式:渗碳淬火,其洛式硬度为56 ~62HRC,接触疲劳极限1500MPa,弯曲疲劳极限850MPa。

(2)主减速器主动齿轮的支撑方案选择

主减速器中必须保证主、从动齿轮具有良好的啮合状况,才能使它们很好的工作。齿轮的正确啮合,除与齿轮的加工质量、装配调整及轴承、主减速器壳体的刚度有关外,与齿轮的支撑刚度也密切相关。主动齿轮的支撑

主动齿轮的支撑可分为悬臂式支撑(如图1-2-1)和骑马式支撑(如图1-2-2)两种。

悬臂式支撑结构的特点是在齿轮大端一侧采用较长的轴颈,其上安装两个圆锥滚子轴承。为了减小悬臂长度和增加两支撑件的距离,以改善支撑刚度,应使两轴承圆锥滚子的大端朝外,使作用在齿轮上离开锥顶的轴向力由靠近齿轮的轴承承受,而反向轴向力则由另一轴承承受。为了尽可能地增加支撑刚度,支撑距离应大于2.5倍的悬臂长度,且应比齿轮节圆直径的70%还大,另外靠近齿轮的轴颈应不小于悬臂的尺寸。为了方便拆装,应使靠近齿轮的轴承轴颈比另一轴承的支撑轴颈大些。靠近齿轮的支撑轴承有时也采用圆柱滚子轴承,这时另一轴承必须采用能承受双向轴向力的双列圆锥滚子轴承。支撑刚

度除了与轴承形式、轴颈大小、支撑距离和悬臂长度有关以外,还与轴承与轴及轴承与座孔之间的配合紧度有关。

悬臂式支撑结构简单,支撑刚度较差,用于传递转矩较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。

本设计采用骑马式支撑结构。

(3)主、从动锥齿轮齿数1z和2z选择

主、从动锥齿轮齿数时应考虑如下因素:

对于单级主减速器,当0i较大时,则应尽量使主动齿轮的齿数取值小些,以得到满意的驱动桥离地间隙。当0i≥6时,1z的最小值可取为5,但为了啮合平稳及提高疲劳强度,1z最好大于5。当0i较小(如0i=3.5~5)时,引可取为7~12,但这时常常会因主、从动齿轮齿数太多、尺寸太大而不能保证所要求的桥下离地间隙。为了磨合均匀,主、从动齿轮的齿数1z,2z之间应避免有公约数;为了得到理想的齿面重叠系数,其齿数之和对于载货汽车应不少于40,对于轿车应不少于50。

根据以上原则,查阅相关资料取:

主动轮齿数

z=17;

1

从动轮齿数

z=57;

2

主传动比i=3.4;

齿数比:u=57/17=3.353;

2、 总体设计 (1)各参数的确定 各级转速:

发动机输出转速发n =4500r/min 变速箱输出转速(主减速器输入转速)

14500

/min 1171.19/min 3.54 3.54

n n r r =

==发 主减速器输出转速101171.19

/min 349.3/min 3.6875 3.353

n n r r === 各级功率:

主减速器主动齿轮的功率:

kw w ax 96.7296.076N P m 1=?=*=η

发动机输出功率:

T 1344000

P kw 56.1395509550

kw η*?=

==发发 1P P 56.130.96kw 53.9kw η=*=?=发

各级转矩:

T 134N m =?发

主动齿轮的转矩:1

119550955053.9T N 439.51171.19

P m N m n ??=

=?=? (2) 按齿根弯曲疲劳强度设计

按机械设计公式(6-26)[]3

S F 21d 21n cos 2m ???

?

?

?Φ≥F Y Y Z Y Y KT σεβα

αβ222222(3)

确定公式中各计算参数:

1)因载荷有较重冲击,由机械设计表(6-3)查得使用系数5.1K =A ,故初选载荷系数2K = 2)1T ——主动齿轮上的转矩

1

119550955053.9T N 439.51171.19

P m N m n ??=

=?=?=54.39510N mm ?? 3)βY ——螺旋角系数,由图(6-28)查取:βY =0.90;

β为分度圆螺旋角一般选8°-20°﹙从减小齿轮的振动和噪音角度

来考虑,目前采用大螺旋角,故取β=15°) 4) εY ——重合度系数,由公式(6-13)

=+

=a

Y εε75

.025.00.75

0.250.7181.602

+

= 其中端面重合度a ε由公式(6-7)

βεcos 112.388.121?????

????? ??+-=z z a =111.88 3.2cos15 1.805 1754????-+?= ???????其中端面重合度βε由公式(6-21)下式中

βφπβ

εβtan d 18.30sin b 1***==

Z m

=0.31830.63173tan15°=0.869 5)d Φ——齿宽系数,由表(6-6)硬齿面且非对称布置取d Φ=0.6 6)Fa Y ——齿形系数,标准齿轮,变形系数X=0,且按当量齿数v Z 由图(6-19)查得1Fa Y =2.92,2Fa Y =2.24 当量齿数:

1

3

3

v1Z 17

Z 18.86cos cos 15

β

=

== 2

3

3v2Z 57

Z 62.25cos cos 15

β

=

==

1v Z 和2v Z 均大于17,满足不根切条件。

7)a S Y ——修正应力系数,按当量齿数v Z 由图(6-20)查得1a S Y =1.53,

2Sa Y =1.74

由机械设计基础(第五版)表11-1查得主动齿轮的弯曲疲劳强度极限=1FE σ8502=FE σMPa

由公式(6-16)计算弯曲疲劳许用应力Fmin

N Y ][S FE

F σσ?= 式中

FE σ——弯曲疲劳强度极限,由机械设计基础(第五版)表11-1查得=1FE σ8502=FE σMPa

N Y ——弯曲疲劳强度系数,按应力循环次数N 由图(6-21)渗碳淬

火合金钢查得1N Y =0.90 2N Y =0.91

其中由公式(6-21)有101160601171.191(1730018)7.1010h N n jL ==?????=?

==i N N 12107.10104.0714

?=101.710?

Fmin S ——弯曲疲劳强度计算的最小系数,对于普通齿轮和多数工业用

齿轮,按一般可靠度要求,取Fmin S =1.25 代入上述确定参数计算弯曲疲劳许用应力

MPa

S MPa

S FE F FE F .861825

.1850

91.0Y ][61225

.1850

09.0Y ][Fmin 22N 2Fmin 11N 1=?=?==?=?=

σσσσ

计算小、大齿轮的]

[a F Sa

F Y Y σ并加以比较

0073.0612

53

.192.2][111=?=F Sa Fa Y Y σ 0063.0.8

61874

.124.2][222=?=F Sa Fa Y Y σ 小齿轮数值大

将上述确定参数代入式(3)计算(按小齿轮设计模数)

[]3

S F 21d 21n cos 2m ???

?

?

?Φ≥F Y Y Z Y Y KT σεβα

αβ =3

2

25073.0016

6.08

2.7009.015cos 1026.8422????????

=3.828

按7级精度 由图(6-7)查得动载系数v K =1.12; 由图(6-10)查得齿向载荷分布系数βK =1.08;

由表(6-4)按7级精度查得齿间载荷分布系数=αK =1.2;

由公式(6-1)K=A K 3v K 3βK 3αK =1.531.1231.0831.2=2.17728 修正n m :33t n 22.17728288.3K K m m ===3.938mm

由表(6-1),选取第一系列标准模数m=4mm

中心距()()1241757a 153.222cos 2cos15

m Z Z β

+?+===?mm 取a=154mm

确定螺旋角()()

1241757arccos

arccos

22154

m Z Z a β+?+==?=16° 齿轮主要几何尺寸:

分度圆直径 11m 417d cos cos16Z β?==?=70.74mm 22m 457d cos cos16Z β?==?=237.19mm

验证最小离地间隙 h=车轮滚动半径r –大齿轮分度圆半径2r

=361-237.19/2=242.4mm>190mm 合格

齿宽 d 1b d 0.670.7442.44=Φ?=?= 取40b 2= 45b 1= (为保证轮齿有足够的齿合宽度m m )10~5(b b 21+=)

(3)校核齿面接触疲劳强度

[]H H E u

u bd KT Z Z Z Z σβ

εσ≤±=1

22

11 确定公式中各计算参数:

1)E Z ——弹性系数,按锻钢由表(6-5)查得E Z =189.8MPa 2)εZ ——接触强度重合度系数,按端面重合度βε由图(6-13)查得εZ =0.82

3)H Z ——节点区域系数,按螺旋角β且标准齿轮变位系数X=0由图(6-14)查得H Z =2.41

4)βZ

——螺旋角系数,Z β== 5)前面已求得K =2.835,51 4.39510T N mm =??, b = 40,1d =70.74 由公式(6-11)接触疲劳许用应力Hmin

Hlim

N H Z ][S σσ?= 式中:

由图(6-15)按不允许出现点蚀,查得接触疲劳寿命系数N1Z =0.91,

N2Z =0.92

[]H σ——试验齿轮的接触疲劳极限,由表(11-1)查得

1H l i m σ=2Hlim σ=1500MPa

Hmin S ——接触疲劳强度计算的最小安全系数,对于普通齿轮和多数工

业用齿轮,按一般可靠度要求,取Hmin S =1

计算接触疲劳许用应力 1

1500

1.90Z ][Hmin 1Hlim 1N 1H ?=

?=

S σσ==1365MPa 1

1500

2.90Z ][Hmin 2Hlim 2N 2H ?=

?=S σσ==1380MPa 将确定出的各项数值代入接触强度校核公式,得

189.80.82 2.41953.13MPa

σ=???=1H ][σ≤

所以接触强度满足。

这样设计出的齿轮传动,既满足了齿面接触疲劳强度,又满足了齿根弯曲疲劳强度,并做到结构紧凑,避免浪费。 (4) 标准斜齿圆柱齿轮主要几何尺寸:表1-3-1

第二章 差速器的设计

2、差速器总体设计 (1)传动比的分配

一档变比54.31=i :主传动比: 0 3.353i = 总传动比: 10i 3.54 3.35311.87i i =*=?=总 (2)各运动参数的计算 行星动齿轮的扭矩:

0max w i 134 3.54 3.3530.961526.9M M N m η=**=???=?总 半轴齿轮扭矩:

差速器转矩比为1.2、动载荷影响取安全系数n=1.3;

1.2b

S

M S M ==22222222222(2-2-1) 01526.9.b S M M M N m +==2222(2-2-2)

联立(2-2-1)(2-2-2)式得,S M =694.05N 2m; b 832.86.M N m =

b M 为半轴齿轮所接收的转矩

较高转矩半轴齿轮许用安全转矩为:

1005.7973 1.51082.7.X b M M n N m =?=?=

差速器壳收到的转速1045000.96

N 363.95/min i 3.54 3.353

w N r η?=

*==?总 半轴齿轮转速 021N 2=+n n

即 02N 2363.95/min 727.9/min n r r ==?=

(3) 选定差速器从动齿轮类型、精度及其材料

1) 类型: 根据题目要求选用单级主减速器从动齿轮选用标准直齿锥齿轮,有较大的冲击载荷故加工成齿面。

2) 精度等级:由于差速器轮轮齿要求精度低,轻型汽车所用的齿轮传动的精度等级范围为5~8,故选用7级精度。。

3)材料: 差速器齿轮与主减速器齿轮一样,基本上都是用渗碳合金钢制造。目前用于制造差速器锥齿轮的材料为20CrMnTi 、22CrMnTi 和20CrMo 等,故齿轮所采用的钢为20CrMnTi ,查表机械设计基础(第五版)表11-1有:热处理方式:渗碳淬火,其洛式硬度为56 ~62HRC ,接触疲劳极限1500MPa ,弯曲疲劳极限850MPa 。

(4)行星齿轮差速器的确定 1)行星齿轮数目的选择

依照《汽车工程手册》,轿车多用2个行星齿轮,货车汽车和越野汽车多用4个,少数轿车用4个行星齿轮;根据已知条件,本设计取2个行星齿轮。

2)行星齿轮球面半径B R 的确定

差速器的尺寸通常决定于B R ,它就是行星齿轮的安装尺寸,可根据公式3j B B T K R 来确定,

其中,B K ——行星齿轮球面半径系数B K =2.52~2.99,对于有四个行

星齿轮的轿车和公路用车取小值,对于有两个行星齿轮的轿车及有四个行星齿轮的越野车和矿用车取大值;本设计有两个行星齿轮的轿车取大值,取B K =2.9.。

j T ——主减速器从动齿轮所传递的扭矩N m ?,

[]o cs j M T T ==,ce T =1526.9N m ?

3j

B B T K R =

=2.93)预选其节锥距

B R A )99.0~98.0(0=0.9933.4=?=33.1mm

4)行星齿轮与半轴齿轮齿数的选择

为了得到较大的模数,以使齿轮有较高的强度,行星齿轮的

齿数应尽量少,但一般不少于10。半轴齿轮齿数取14~25;半轴齿轮与行星齿轮的齿数比多在1.5~2范围内;左、右半轴齿轮的齿数和必须能被行星齿轮的数目所整除,否则将不能安装。取行星齿轮3Z =16 半轴齿轮4Z =24

5)行星齿轮分度圆锥角δ、模数m 和分度圆直径d 的初步确定 行星齿轮和半轴齿轮的节锥角3γ、4γ计算如下:

316

arctan

3424δ==? 424

arctan 5616

δ==?

当量齿数:

33316

19.317cos cos34v Z δZ =

==≥?

44424

43.317cos cos56v Z δZ =

==≥?

满足不根切条件 合理 6)大端模数m 及分度圆直径d 的计算

0332233.1

sin sin 34 2.3116

A m Z δ?=

=?= 由表(6-1),选取第一系列标准模数m=3mm

分度圆直径mz d =, 3331648d mz ==?=mm 7224324=?==mz d mm 7)压力角α

现在大都选用0322'?的压力角,齿高系数*a h 为0.8,最少齿数

可减少至10,所以初定压力角为0322'? 8) 行星齿轮安装孔直径φ及其深度L 的确定

[]nl

T c σφ1.1103

0?=

16.37mm ==

1.1 1.116.3718L ?==?=mm

式中注解:0T — 差速器传递的转矩0T =1171.19 N.m n — 行星齿轮数;n=2

l — 为行星齿轮支撑面中点到锥顶的距离mm

('≈25.0d l =28.8mm ,

'

2d 为直径,而'2d 28.0d ≈=57.6mm );

[]c σ —20CrMnTi 钢支撑面的许用挤压应力,取为69N/mm 2。

(5)差速器直齿锥齿轮的几何尺寸计算 表2-2-3-1

汽车差速器与主减速器设计毕业设计

摘要 本文介绍了轿车差速器与主减速器的设计建模过程,论述了轿车差速器与主减速器的结构和工作原理,通过对轿车主要参数的分析与计算对差速器和主减速器进行设计,并使用Pro/E对差速器与主减速器进行3D建模,生成2D工程图。完成装配后,对主减速器、差速器进行运动仿真,以论证差速器的差速器原理。 关键词:建模,差速器,主减速器,分析

Abstract This paper discusses the automobile differential design and modeling process of the final drive, and the structure and the principle of automobile differential and the final drive.the car After the analysis and calculation of final drive and differential,to use Pro/E to complete make 3D model of the final drive and differential, then to produce 2D drawings.There is going to analysis the final drive to prove the principle after finishing the composing. Keywords: Modeling, Differential,Final drive,Analysis

目录 摘要........................................................ I Abstract ................................................... II 目录...................................................... III 1绪论 (1) 1.1课题来源 (1) 1.2课题研究现状 (1) 1.2.1国内外汽车行业CAD研究与应用情况 (1) 1.3主减速器的研究现状 (1) 1.4 差速器的研究现状 (2) 1.5 课题研究的主要内容 (3) 2QY7180概念轿车主减速器与差速器总体设计 (4) 2.1QY7180概念轿车主要参数与主减速器、差速器结构选型 (4) 2.1.1QY7180概念轿车的主要参数 (4) 2.1.2QY7180概念轿车主减速器与差速器结构选型 (4) 2.2主减速器与差速器的结构与工作原理 (5) 2.3QY7180概念轿车主减速器主减速比i0的确定 (6) 3主减速器和差速器主要参数选择与计算 (7) 3.1主减速器齿轮计算载荷的确定 (7) 3.1.1按发动机最大转矩和最低档传动比确定从动齿轮的计算转 矩Tce (7) 3.1.2按驱动车轮打滑转矩确定从动齿轮的计算转矩Tcs (7) 3.1.3按日常平均使用转矩来确定从动齿轮的计算转矩 (8) 3.2主减速器齿轮传动设计 (8) 3.2.1按齿面接触强度设计 (8)

汽车单级主减速器及差速器的结构设计与强度分析毕业论文

汽车单级主减速器及差速器的结构设计 与强度分析毕业论文 第一章绪论 1.1 选题的背景与意义 通过学校的实习我对汽车的构造及各总成的原理有了一定的了解,同时结合以前课堂学习的理论知识,对于进行汽车一些总成的设计有了一定的理论基础,现选择课题内容为对BJ2022汽车的使用性能的驱动桥(主减速器及差速器)进行设计。通过本课题可以进一步加深对汽车构造、汽车设计及汽车各总成的工作原理,特别是本课题驱动桥中的主减速器及差速器与半轴的认识和了解;同时经过设计过程,了解学习一些现代汽车工业的新设计方法及新技术,对于即将从事汽车行业工作的我也是一种锻炼,为即将的工作做铺垫。 1.2 研究的基本内容 1.2.1 主减速器的作用 汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。而主减速器是在汽车传动系中起降低转速,增大转矩作用的主要部件。当发动机纵置时还具有改变转矩旋转方向的作用。它是依靠齿数少的齿轮带齿数多的齿轮来实现减速的,采用圆锥齿轮传动则可以改变转矩旋转方向。汽车正常行驶时,发动机的转速通常比较高,如果将很高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需要很大,齿轮的半径也相应加大,也就是说变速箱的尺寸会加大。另外,转速下降,扭矩必然增加,也加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、

分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。 1.2.2 主减速器的工作原理 从变速器或分动器经万向传动装置输入驱动桥的转矩首先传到主减速器,主减速器的一对齿轮增大转矩并相应降低转速,以及当发动机纵置时还具有改变转矩的旋转方向。 1.2.3 国内主减速器的状况 现在国家大力发展高速公路网,环保、舒适、快捷成为汽车市场的主旋律。对整车主要总成之一的驱动桥而言,小速比、大扭矩、传动效率高、成本低逐渐成为汽车主减速器技术的发展趋势。 在产品上,国内汽车市场用户主要以承载能力强、齿轮疲劳寿命高、结构先进、易维护等特点的产品为首选。目前己开发的产品,如陕西汉德引进德国撇N 公司技术的485单级减速驱动桥,一汽集团和东风公司的13吨级系列车桥为代表的主减速器技术,都是在有效吸收国外同类产品新技术的基础上,针对国内市场需求开发出来的高性能、高可靠性、高品质的车桥产品。这些产品基本代表了国内车用减速器发展的方向。通过整合和平台化开发,目前国内市场形成了457、460、480、500等众多成型稳定产品,并被用户广泛认可和使用。设计开发上,CAD、CAE等计算机应用技术,以及AUT优AD、UG16、CATIA、proE等设计软件先后应用于主减速器的结构设计和齿轮加工中,有限元分析、数模建立、虚拟试验分析等也被采用;齿轮设计也初步实现了计算机编程的电算化。新一代减速器设计开发的突出特点是:不仅在产品性能参数上进一步进设计上完全遵从模块化设计原则,产品配套实现车型的平台化,造型和结构更加合理,更宜于组织批量生产,更适应现代工业不断发展,更能应对频繁的车型换代和产品系列化的特点,这些都对基础件产品提出愈来愈高的配套要求,需要在产品设计上不断地进行二次开发和持续改进,以满足快速多变的市场需求。

差速器锥齿轮几何尺寸计算用表

序号 项目 计算公式 计算结果 1 行星齿轮齿数 1z ≥10,应尽量取最小值 1z =10 2 半轴齿轮齿数 2z =14~25,且需满足式(3-4) 2z =18 3 模数 m m =5.5mm 4 齿面宽 b=(0.25~0.30)A 0;b ≤10m 16mm 5 工作齿高 m h g 6.1= g h =8.8mm 6 全齿高 051.0788.1+=m h 9.885 7 压力角 α 22.5° 8 轴交角 ∑=90° 90° 9 节圆直径 11mz d =; 22mz d = d2=99 10 节锥角 2 1 1arctan z z =γ,1290γγ-?= 1γ=29.055°, =2γ60.945° 11 节锥距 2 2 110sin 2sin 2γγd d A == 0A =56.625mm 12 周节 t =3.1416m t =17.2788mm 13 齿顶高 21a g a h h h -=;m z z h a ????? ? ??????????? ??+=2 12237.043.0 1a h =5.807mm 2a h =2.993mm 14 齿根高 1f h =1.788m -1a h ; =1.788m -2a h 1f h =3.972mm ; =6.786mm 15 径向间隙 c =h -g h =0.188m +0.051 c =1.085mm 16 齿根角 1δ=01arctan A h f ;0 2 2arctan A h f =δ 1δ=4.012°; 2δ=6.834° 17 面锥角 211δγγ+=o ;122δγγ+=o 1o γ=33.067° 2o γ=67.779°

轮系及其传动比计算

第八章 轮系及其传动比计算 第四十八讲 齿轮系及其分类 如图8—1所示,由一系列齿轮相互啮合而组成的传动系统简称轮系。根据轮系中各齿轮运动形式的不同,轮系分类如下: ???? ? ? ?? ????? ?==?? ?成由几个周转轮系组合而和周转轮系混合而成或混合轮系:由定轴轮系)行星轮系()差动轮系(周转轮系(轴有公转)空间定轴轮系平面定轴轮系 定轴轮系(轴线固定)轮系12F F 图8—1 图8—2 图8—3 定轴轮系中所有齿轮的轴线全部固定,若所有齿轮的轴线全部在同一平面或相互平行的平面内,则称为平面定轴轮系,如图8—1所示,若所有齿轮的轴线并不全部在同一平面或相互平行的平面内,则称为空间定轴轮系;若轮系中有一个或几个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转,如图8—2,8—3所示,则这种轮系称为周转轮系,其中绕着固定轴线回转的这种齿轮称为中心轮(或太阳轮),即绕自身轴线回转又绕着其它齿轮的固定 轴线回转的齿轮称为行星轮,支撑行星轮的构 图8—4 件称为系杆(或转臂或行星架),在周转轮系中,一般都以中心轮或系杆作为运动的输入或输出构件,常称其为周转轮系的基本构件;周转轮系还可按其所具有的自由度数目作进一步的划分;若周转轮系的自由度为2,则称其为差动轮系如图8—2所示,为了确定这种轮系的运动,须给定两个构件以独立运动规律,若周转轮系的自由度为1,如图8—3所示,则称其为行星轮系,为了确定这种轮系的运动,只须给定轮系中一个构件以独立运动规律即可;在各种实际机械中所用的轮系,往往既包含定轴轮系部分,又包含周转轮系部分,或者由几部分周转轮系组成,这种复杂的轮系称为复合轮系如图8—4所示,该复合轮系可分为左边的周转轮系和右边的定轴轮系两部分。

差速器开题报告

山东科技大学 本科毕业设计(论文)开题报告 题目 学院名称机械电子工程学院 专业班级机械设计制造及其自动化07-4 学生姓名魏循中 学号 200703021225 指导教师李学艺 填表时间: 2011年 3月 21 日 填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用a4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。篇二:汽车差速器毕业设计开题报告 轻型载货汽车的差速器设计 2. 课题研究背景和意义 目前国内轻型货车乃至重型货车的差速器产品的技术基本来源于美国、德国、日本等几个传统的工业国家,我国现有的技术基本上是引进国外技术而发展的,在目前看来有了一定的成果和规模,但是们目前我国的差速器没有自己的核心技术产品,开发能力依然很弱、影响了整车新车的开发成本,所以在差速器开发的技术开发上还有很长的路要走。 在汽车行业发展初期,法国雷诺汽车公司的创始人雷诺发明了汽车差速器,汽车差速器作为汽车必不可少的部件之一曾被汽车专家誉为“小零件大功用”。汽车差速器是汽车传动中的最重要的部件之一,它有三大作用:首先是将发动机输出的动力传输到车轮上;其次,将主减速器已经增加的扭矩一分为二的分配给左右两根半轴;然后,它担任汽车主减速齿轮,在动力传输至车轮前将传动系的转速减下来,将动力传到车轮上,同时允许两侧车轮以不同的轮速转动。差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 3. 1国内外发展动态 从目前来看,我国差速器行业已经顺利完成了由小到大的转变,正处于由大到强的发展阶段。由小到大是一个量变的过程,科学发展观对它的影响或许仅限于速度和时间,但由大到强却是一个质变的过程,能否顺利完成这一蜕变,科学发展观起着至关重要的作用。然而,在这个转型和调整的关键时刻,提高汽车车辆差速器的精度、可靠性是中国差速器行业的紧迫任务。近年来年中国汽车差速器市场发展迅速,产品产出持续扩张,国家产业政策鼓励汽车差速器产业向高技术产品方向发展,国内企业新增投资项目投资逐渐增多。投资者对汽车差速器行业的关注越来越密切,这使得汽车差速器行业的发展需求增大。对国外而言,国外的那些差速器生产企业的研究水平已经很高,而且还在不断地进步,年销售额达到18亿美金的伊顿公司汽车集团是全球化的汽车零部件制造供应商,主要产品包括发动机气体管理部分及动力控制系统,其中属于动力控制系统的差速器类产品年销售量达250万只,在同类产品居领导地位。国内的差速器起步较晚,目前的发展主要靠引进消化国外产品来满足需求。 3.2差速器的发展趋势 差速器作为车辆上必不可少的重要传动零件,要使车辆的舒适性以及通过性有所提高,

货车汽车后桥差速器的设计计算说明书

货车汽车后桥差速器的设计计算说明书

第一章驱动桥结构方案分析 由于要求设计的是货车的后驱动桥,一般选用非断开式结构以与非独立悬架相适应,该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。 驱动桥的结构形式有多种,基本形式有三种如下: 1)中央单级减速驱动桥。此是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。 2)中央双级驱动桥。在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装入圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”(即系列化,通用化,标准化)程度高,桥壳、主减速器等均可通用,锥齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,锥齿轮有2个规格。 由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作为一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。 3)中央单级、轮边减速驱动桥。轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥;另一类为圆柱行星齿轮式轮边减速驱动桥。 ①圆锥行星齿轮式轮边减速桥。由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边

传动比计算

126 §5-6 定轴轮系传动比的计算 一、轮系的基本概念 ● 轮系:由一系列相互啮合的齿轮组成的传动系统; ● 轮系的分类: 定轴轮系: 所有齿轮轴线的位置固定不动; 周 转轮系:至少有一个齿轮的轴线不固定; ● 定轴轮系的分类: 平面定轴轮系:轴线平行; 空间定轴轮系:不一定平行; ● 轮系的传动比: 轮系中首、末两轮的角速度(或转速)之比,包括两轮的角速比的大小和转向关系。 传动比的大小:当首轮用“1”、末轮用“k ”表示时,其传动比的大小为: i 1k = ω1/ωk =n 1/n k 传动比的方向:首末两轮的转向关系。 相互啮合的两个齿轮的转向关系: 二、平面定轴轮系传动比的计算 特点: ●轮系由圆柱齿轮组成,轴线互相平行; ●传动比有正负之分: 首末两轮转向相同为“+”,相反为“-”。 1、传动比大小 设Ⅰ为输入轴,Ⅴ为输出轴; 各轮的齿数用Z 来表示;

127 角速度用ω表示; 首先计算各对齿轮的传动比: 所以: 结论: 定轴轮系的传动比等于各对齿轮传动比的连乘积,其值等于各对齿轮的从动轮齿数的乘积与主动轮齿数的乘积之比; 2、传动比方向 在计算传动比时,应计入传动比的符号: 首末两轮转向相同为“+”,相反为“-”。 (1)公式法 式中:m 为外啮合圆柱齿轮的对数 举例: (2)箭头标注法 采用直接在图中标注箭头的方法来确定首末两轮的转向,转向相同为“+”,相反为“-”。 举例: 12 2112z z i ==ωω322233 3 2z i z ωωωω''' = = = 334 34443z i z ωωωω' '' ===4 55 445z z i = = ωω1 1211) 1(--== k k m k k z z z z i ω ω

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

BJ2022汽车单级主减速器及差速器的结构设计与强度分析-毕业设计说明书

毕业设计说明书 BJ2022汽车单级主减速器及差速器的结构设计与强度分析 学生姓名:学号:学院: 专业: 指导教师: 2012年6月0801074117 机电工程学院地面武器机动工程

BJ2022汽车单级主减速器及差速器的结构设计与强度分析 摘要 汽车主减速器及差速器是汽车传动中最重要的部件之一。它能够将万向传动装置传来的发动机转矩传给驱动车轮,以实现降速增扭。 本次设计的是有关BJ2022汽车的主减速器和差速器,并要使其具有通过性。本次设计的内容包括有:方案选择,结构的优化与改进。齿轮与齿轮轴的设计与校核。并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。 方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核。 主减速器及差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 关键词:驱动桥,主减速器,差速器,半轴

BJ2022 car single stage and the structure of the main reducer differential design and strength analysis ABSTRACT Automobil reduction final drive and differential is one of the best impossible parts in automobile gearing. It can chang speed and driving tuist within a big scope . The problem of this design is BJ2022 car differential unit ,it’ s properly in common use . The design of scheme, the better design and improvement of structure ,the design and calibration of gear and gear shiftes , and the select of bearings , and also the design explain the construction of differential action . The ting of the scheme desierment main deside. The drive ratio of gear,according to orginal design parameter and constrasting the same type reduction final drive ang differential assay . It realize planet gear in the design of structure . It put to use alteration better gears transmission in the design of gear , and compare the root contact tired strength of some important gears and the face twirl tired strength . It eraphaize pay attention to the place of gears. Compare the strength of the biggest load dangraes section. It require structure simple and accord with demand in select of bearings . The Lord reducer to improve the car driving and differential stability and its through sex has a unique function, is one of the focal points of automotive design. Key words : Drive axle,Main reducer,Differential,Axle

普通锥齿轮差速器设计

第一章绪论 汽车行驶时,左、右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎符合、胎面磨损程度不同以及制造误差等因素的影响,也会引起左、右车轮因滚动半径不同而使左、右车轮行程不等。如果驱动桥的左、右、车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性能恶化。为了防止这些现象的发生,汽车左、右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 本次设计选择的是对称锥齿轮式差速器中的普通锥齿轮式差速器。

第二章 普通锥齿轮差速器基本原理 普通锥齿轮差速器由于结构简单、工作平稳可靠,一直广泛用于一般使用条件下的汽车驱动桥中。图2-1为其示意图,图中ω0为差速器壳的角速度; ω1、ω2分别为左、右两半轴的角速 度;To 为差速器壳接受的转矩;T r 为 差速器的内摩擦力矩;T 1、T 2分别为左、右两半轴对差速器的 反转矩。 图2-1 普通锥齿轮式差速器示意图 根据运动分析可得 ω1+ω2=2ω0 (2 - 1) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当差速器壳体不转时,左右半轴将等速反向旋转。 根据力矩平衡可得 T0 T2T1T0T1-T2{ =+= (2 - 2) 差速器性能常以锁紧系数k 是来表征,定义为差速器的内摩擦力矩与差速器壳接受的转矩之比,由下式确定 K=r T /0T (2 - 3) 结合式(5—24)可得 k ) -0.5T0(1T1k ) 0.5T0(1T2{ =+= (2 - 4) 定义快慢转半轴的转矩比kb=T2/T1,则kb 与k 之间有

汽车差速器的设计与分析

摘要 本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

目录 1.引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (3) 1.4毕业设计初始数据的来源与依据 (4) 1.5本章小结 (5) 2.差速器的设计方案 (6) 2.1差速器的方案选择及结构分析 (6) 2.2差速器的工作原理 (7) 2.3本章小结 (9) 3.差速器非标准零件的设计 (10) 3.1对称式行星齿轮的设计计算 (10) 3.1.1对称式差速器齿轮参数的确定 (10) 3.1.2差速器齿轮的几何计算图表 (15) 3.1.3差速器齿轮的强度计算 (17) 3.1.4差速器齿轮材料的选择 (18) 3.1.5差速器齿轮的设计方案 (19) 3.2差速器行星齿轮轴的设计计算 (19) 3.2.1行星齿轮轴的分类及选用 (19) 3.2.2行星齿轮轴的尺寸设计 (20) 3.2.3行星齿轮轴材料的选择 (20) 3.3差速器垫圈的设计计算 (20) 3.3.1半轴齿轮平垫圈的尺寸设计 (21) 3.3.2行星齿轮球面垫圈的尺寸设计 (21) 3.4本章小结 (21) 4.差速器标准零件的选用 (22)

差速器设计3.31分析

差速器设计 在车辆行驶过程中,会碰到多种情形的车况,导致左右车轮的行走的里程不同,即左右车轮会以不同的速度行驶,即会有左右车轮的转速不同。例如: (1)汽车在进行转弯时,外侧的车轮要经过更多的路程,速度要比内侧车轮速度大; (2)当车辆上的货物装的左右不均匀时,两侧车轮也会产生速度差; (3)当两侧车轮的气压不相等时,会导致车轮外径大小不同,导致速度差; (4)当一侧车轮碰到有阻碍,另一侧没有阻碍或是两侧车轮都碰到阻碍,但阻碍的情况不同时,也会有速度差; (5)当两侧车轮的磨损状况不同时,也会导致车轮大小不同,或者是受到的摩檫力矩大小不同,产生速度差; 所以从上述列出的几种情况中可以得出这样一个结论,即使是在直线道路上行驶,左右车轮也会不可避免地出现速度差。如果此时两侧车轮是由一根驱动轴驱动,那么传给两侧车轮的转速一样,那么无论是在什么路况下行驶,必然会发生车轮的滑移或者滑转现象。在这种情况下,轮胎的损耗将比正常情况下的损耗剧烈,同时也使得发动机的功率得不到充分的发挥。另一方面也会使得车辆不能按照预订的要求行驶,可能造成危险。为了使车轮相对地面的滑磨尽量减少,因此在驱动桥中安装有差速器,并通过两侧半轴驱动车轮,使得两侧的车轮可以以不同的速度行驶,使车轮接近纯滚动。 差速器按结构可分为齿轮式、凸轮式、涡轮式和牙嵌式等多种型式。在一般用途的汽车上,差速器常选择对称锥齿轮式差速器。它的特点是,左右两个半轴齿轮大小相同,然后将转矩分配给左右两个驱动轮。因此此次设计选用对称式锥齿轮式差速器。 差速器结构: P147图 差速器壳由左右两半组成,用螺栓固定在一起整个壳体的两端以锥形滚柱轴承支承在主传动壳体的支座内,上面用螺钉固定着轴承盖。两轴承的外端装有调整圈,用以调整轴承的紧度。并能配合主动齿轮轴轴承壳与壳体之间的调整垫片,调整主动,从动锥齿轮的啮合间隙和啮合印痕。为了防止松动,在调整圈外缘齿间装有锁片,锁片用螺钉固定在轴承盖上。 十字轴的4个轴颈分别装在差速器壳的轴孔内,其中心线与差速器的分界面重合。从动齿轮固定在差速器壳体上,当从动齿轮转动时,便带动差速器壳体和十字轴一起转动。 4个行星齿轮分别活动地装在十字轴轴颈上,两个半轴齿轮分别装在十字轴的左右两侧,与4个行星齿轮常啮合,半轴齿轮的延长套内表面制有花键,与半轴内端部用花键连接,这样就把十字轴传来的动力经4个行星齿轮和2个半轴齿轮分别传给两个半轴。行星齿轮背面做成球面,以保证更好地使半轴齿轮正确啮和以及定中心。 行星齿轮和半轴齿轮在转动时,其背面和差速器壳体会造成相互磨损,为减少磨损,在它们之间要装有止推垫片,那么就可用垫片的磨损来减少差速器和半轴的磨损,当磨损到一定程度时,只需更换垫片即可,这样既延长了主要零件的使用寿命,又便于维修。另外,差速器工作时,齿轮又和各轴颈及支座之间有相对的转动,为保证它们之间的润滑,在十字轴上铣有平面,并在齿轮的齿间钻有小孔,供润滑油循环进行润滑。在差速器壳上还制有窗孔,以确保壳中的润滑油能进出差速器。 差速器工作原理 P148

汽车主减速器及差速器的结构设计与强度分析毕业设计

目录 摘要.......................................................... I II Abstract........................................................ I V 1 绪论. (1) 课题研究背景 (1) 课题研究目的及意义 (1) 课题研究内容 (2) 研究对象主要参数 (3) 2 汽车主减速器的设计 (3) 汽车主减速器概述 (3) 汽车主减速器的工作原理 (3) 轿车主减速器结构方案选择与分析 (4) 轿车主减速器基本参数的选择与计算 (5) 轿车主减速器传动比i0的确定 (5) 主减速器计算载荷的确定 (5) 主减速器锥齿轮基本参数的选择 (7) 主减速器锥齿轮主要几何参数的计算 (8) 轿车主减速器螺旋锥齿轮强度计算 (10) 3 差速器的设计 (14) 差速器概述 (14) 差速器的工作原理 (14) 差速器的结构形式选择 (15) 普通锥齿轮差速器齿轮设计 (15) 差速器齿轮主要参数的选择 (15) 差速器齿轮主要几何参数的计算 (17) 普通锥齿轮差速器齿轮强度计算 (18) 4 汽车主减速器及差速器的三维实体建模 (20)

主减速器的三维实体建模 (20) 主减速器三维建模分析与设计思路 (20) 主减速器螺旋锥齿轮的主要建模过程 (21) 差速器的三维实体建模 (26) 差速器半轴直齿锥齿轮的主要建模过程 (26) 差速器壳的主要建模过程 (27) 汽车主减速器及差速器的装配 (28) 5 汽车主减速器及差速器主要部件的强度分析 (30) 强度分析简介 (30) 差速器壳体的强度分析 (30) 半轴的强度分析 (35) 6 结论 (39) 参考文献 (40) 致谢 (41)

轮系传动比计算(机械基础)教案

轮系传动比计算(机械基础)教案

教案首页

科目:机械基础(第四版)授课班级:08级模具(1)班 授课地点:多媒体教室(一)室课时:2课时

课题:§6—2 定轴轮系的传动比 授课方式:讲授 教学内容:定轴轮系的传动比及其计算举例 教学目标:能熟练进行定轴轮系传动比的计算方法及各轮回转方向的判定 选用教具:三角板、圆规、平行轴定轴轮系模型、非平行轴定轴轮系模型 教学方法:演示法、循序渐进教学法、典型例题法 第一部分:教学过程 一、复习导入新课(约7分钟) (一)组织教学(2分钟) 学生点名考勤,课前6S检查,总结表扬上次优秀作业学生,调节课堂气氛,调动学生主动性。 (二)教学回顾(2分钟) 1、什么是轮系? 2、轮系有什么应用特点? 3、轮系的分类依据是什么?可分为哪几类? 4、什么是定轴轮系?(让学生回顾上次课的内容) (三)复习,新课导入(2分钟) 演示减速器、车床主轴箱、钟表机构等,我们看到的这些都是定轴轮系的应用,请问:我们生活中常见钟表里的时针走一圈,分针走了12圈,秒针走了720圈,那么由时针到秒针是如何实现传动的?时针把运动传到秒针时,其转速大小有何变化?具体比值如何确定? (四)教学内容介绍(1分钟) 重点:定轴轮系的传动路线的分析、传动比的计算及各轮回转方向的判定。 难点:非平行轴定轴轮系传动比公式推导及各轮回转方向的判定。 二、新课讲解(约32分钟) (一)定轴轮系的传动比概念(2分钟) 教师先展示定轴轮系模型,引导学生参与到演示教学中来,通过一对齿轮的传动比概念,教师提出问题:定轴轮系的传动比是否就是输入轴的转速与输出轴的转速之比?引发学生思考。演示得出定轴轮系的概念:定轴轮系的传动比是指首末两轮的转速之比。 (二)知识分解(12分钟)

差速器设计说明书

学号成绩 汽车专业综合实践说明书 设计名称:汽车差速器设计 设计时间 2012年 6月 系别机电工程系 专业汽车服务工程 班级 姓名 指导教师 2012 年 06 月 18日

目 录 任务设计书 已知条件:(1)假设地面的附着系数足够大; (2)发动机到主传动主动齿轮的传动效率96.0=w η; (3)车速度允许误差为±3%; (4)工作情况:每天工作16小时,连续运转,载荷较平稳; (5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为30 度; (6)要求齿轮使用寿命为17年(每年按300天计,每天平均10小时); (7)生产批量:中等。 (8)半轴齿轮、行星齿轮齿数,可参考同类车型选定,也可自己设计。 (9)主传动比、转矩比参数选择不得雷同。 差速器的功用类型及组成 差速器——能使同一驱动桥的左右车轮或两驱动桥之间以不同角速度旋转,并传递转矩的机构。起轮间差速作用的称为轮间差速器,起桥间作用的称桥间(轴间)差速器。轮间差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动车轮作纯滚动。 1.齿轮式差速器 齿轮式差速器有圆锥齿轮式和圆柱齿轮式两种。 按两侧的输出转矩是否相等,齿轮差速器有对称式(等转矩式)和不对称式(不等转矩式)。目前汽车上广泛采用的是对称式锥齿轮差速器,具有结构简单、质量较小等优点,应用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。其结构见下图:

2.滑块凸轮式差速器 图二—2为双排径向滑块凸轮式差速器。 差速器的主动件是与差速器壳1连接在一起的套,套上有两排径向孔,滑块2装于孔中并可作径向滑动。滑块两端分别与差速器的从动元件内凸轮4和外凸轮3接触。内、外凸轮分别与左、右半轴用花键连接。当差速器传递动力时,主动套带动滑块并通过滑块带动内、外凸轮旋转,同时允许内、外凸轮转速不等。理论上凸轮形线应是阿基米德螺线,为加工简单起见,可用圆弧曲线代替。

行星齿轮传动比最简计算方法公式法

行星齿轮传动比计算 在《机械原理》上,行星齿轮求解是通过列一系列方程式求解,其求解过程繁琐容易出错,其实用不着如此,只要理解了传动比e ab i 的含义,就可以很快地直接写出行星齿轮的传动比,其关键是掌握几个根据e ab i 的含义推导出来公式,随便多复杂的行星齿轮传动机构,根据这几个公式都能从头写到尾直接把其传动比写出来,而不要象《机械原理》里面所讲的方法列出一大堆方程式来求解。 一式求解行星齿轮传动比有三个基本的公式 1=+c ba a bc i i ――――――――――――――――――――――――1 a cx a bx a bc i i i = ―――――――――――――――――――――――――2 a cb a bc i i 1= ――――――――――――――――――――――――――3 熟练掌握了这三个公式后,不管什么形式的行星齿轮传动机构用这些公式代进去后就能直接将传动比写出来了。关键是要善于选择中间的一些部件作为参照,使其最后形成都是定轴传动,所以这些参照基本都是一些行星架等 例如象论坛中“大模王”兄弟所举的例子:

在此例中,要求出e ab i =?,如果行星架固定不动的话,这道题目就简单多了,就是一定轴 传动。所以我们要想办法把e ab i 变成一定轴传动,所以可以根据公式a cx a bx a bc i i i =将x 加进去, 所以可以得出:e bx e ax e ab i i i =要想变成定轴传动,就要把x 放到上面去,所以这里就要运用第 一个公式1=+c ba a bc i i 了,所以)1()1(x be x ae e bx e ax e ab i i i i i --==所以现在e ab i 就变成了两个定轴传动之间的关系式了。定轴传动的传动比就好办了,直接写出来就可以了。 即)1()1())1(1())1(1()1()1(01 c e b d a e c e b d c e a c x be x ae e bx e ax e ab Z Z Z Z Z Z Z Z Z Z Z Z Z Z i i i i i ?-+=?--?--=--== 再例如下面的传动机构: 已知其各轮的齿数为z 1=100,z 2=101,z 2’ =100 ,z 3=99。其输入件对输出件1的传动比i H1 )1(11133 1311H H H H i i i i -===这样就把行星传动的计算转换为定轴传动了,所以将齿数代 入公式得出1H i =10000 最后愿我的这篇小文章能够给大家带来一点点帮助,我就心满意足了,在此感谢我读大学时的机械原理老师沈守范教授。 注: H ab i =±所有从动轮齿数的连乘积所有主动轮齿数的连乘积 ( 正负号不表示周转轮系中a 轮和b 轮的实际转向关系,而表示转化轮系中a 轮和b 轮的转向关系。转向相同取正,相反取负。 不能省略正负号,此处正负号关系着传动比的计算数值!)

机械毕业设计(论文)-汽车差速器设计与分析【全套图纸】

机械毕业设计(论文)-汽车差速器设计与分析【全套图纸】

摘要 摘要 在去年金融危机的影响下,汽车产业结构的重组给汽车的发展带来了新的机遇,与汽车相关的各行各业更加注重汽车的质量。差速器作为汽车必不可少的组成部分之一也在汽车市场上产生了激烈的竞争。此次就是针对汽车差速器这一零件进行设计的。本次设计主要对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件设计计算,同时也介绍了差速器的发展现状和差速器的种类。对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解。再设计出合理适用的差速器的同时也对差速器相关的行业有了一定得认识。通过绘制差速器的组件图也让我在学习方面得到了提高。 关键词:差速器、齿轮结构、设计计算 全套图纸,加153893706

Abstract Abstract In the last year under the impact of financial crisis, automotive industrial restructuring brought about by the development of motor vehicles to new opportunities, and automotive related businesses pay more attention to the quality of cars.Differential as an integral part of car, one of the automotive market also resulted in fierce competition.The differential is the spare parts for motor vehicles designed.The design of the main drivers on the installation of the bridge in between the two axle differential design, mainly related to the differential struct -ure of non-standard parts such as gear parts and standards for design and calculation, but also introduced the development of differential status and the type of differential. For differential selection and the principle of the program have also made a brief note. Reference in the desi -gn of a large amount of literature on the role of differential structure and have a more thoro -ugh understanding. Re-engineering the application of a reasonable differential at the same time also has been related industries must be aware of. Differential through the mapping component map also let me in the field of learning has been improved. Keywords:differential, gear structure,design

汽车差速器的设计与分析毕业论文

本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了 差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明。在设计中参考了大量的文献,因此对差速器的结构和作用有了更透彻的了解,通过利用CATIA软件对差速器进行建模工作,也让我在学习方面得到了提高。 关键词:半轴,差速器,齿轮结构

1. 引言 (1) 1.1汽车差速器研究的背景及意义 (1) 1.2汽车差速器国内外研究现状 (1) 1.2.1国外差速器生产企业的研究现状 (1) 1.2.2我国差速器行业市场的发展以及研究现状 (2) 1.3汽车差速器的功用及其分类 (4) 1.4毕业设计初始数据的来源与依据 (5) 1.5本章小结 (6) 2. 差速器的设计方案 (7) 2.1差速器的方案选择及结构分析 (7) 2.2差速器的工作原理 (8) 2.3本章小结 (11) 3. 差速器非标准零件的设计 (12) 3.1 对称式行星齿轮的设计计算 (12) 3.1.1对称式差速器齿轮参数的确定 (12) 3.1.2差速器齿轮的几何计算图表 (17) 3.1.3差速器齿轮的强度计算 (19) 3.1.4差速器齿轮材料的选择 (20) 3.1.5差速器齿轮的设计方案 (21) 3.2差速器行星齿轮轴的设计计算 (21) 3.2.1行星齿轮轴的分类及选用 (21)

322行星齿轮轴的尺寸设计 (22) 323行星齿轮轴材料的选择 (22) 3.3差速器垫圈的设计计算 (22) 3.3.1半轴齿轮平垫圈的尺寸设计 (23) 3.3.2行星齿轮球面垫圈的尺寸设计 (23) 3.4本章小结 (24) 4. 差速器标准零件的选用 (25) 4.1螺栓的选用和螺栓的材料 (25) 4.2螺母的选用和螺母的材料 (25) 4.3差速器轴承的选用 (26) 4.4十字轴键的选用 (26) 4.5本章小结 (26) 5. 差速器总成的装配和调整 (27) 5.1差速器总成的装配 (27) 5.2差速器零部件的调整 (27) 5.3本章小结 (27) 附图 (29) 参考文献 (30) 致谢 (32)

相关主题
文本预览
相关文档 最新文档