当前位置:文档之家› 空间向量及其线性运算练习题及答案

空间向量及其线性运算练习题及答案

空间向量及其线性运算练习题及答案
空间向量及其线性运算练习题及答案

【巩固练习】 一、选择题

1.下列各命题中,不正确的命题的个数为( )

||=a ②()()(,)m m m λλλ?=?∈R a b a b ③()()?+=+?a b c b c a

④22=a b b a

A .4

B .3

C .2

D .1

2.①若A 、B 、C 、D 是空间任意四点,则有0AB BC CD DA +++=; ②|a |-|b |=|a +b |是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在直线平行;

④对空间任意一点O 与不共线的三点A 、B 、C ,若OP xOA yOB zOC =++ (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.其中不正确命题的个数是( ). A .1 B .2 C .3 D .4

3.(2015秋 衡阳校级期中)如图,在四面体ABCD 中,E 、F 分别是棱AD 、BC 的中点,则

向量EF 与AB 、CD 的关系是( )

A .1122EF A

B CD =

+ B .1122EF AB CD =-+ C .1122EF AB CD =- D .11

22

EF AB CD =--

4.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点

A 、

B 、

C 一定共面的是( ) A .OC OB OA OM ++= B .OC OB OA OM --=2

C .OC OB OA OM 3121++

= D .3

1

3131++=

5.(2014秋·福建校级期末)如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若1BE AA xAB yAD =++,则( )

A .12x =-

,12y = B .12x =,1

2y =- C .12x =-,12y =- D .12x =,1

2

y =

6.(2015 四川校级模拟) 已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[)+0,|AB|sin B ||sin AB AC

OP OA AC C

λλ=+∈+∞(

),则点P 的轨迹一定通过

ΔABC 的( )

A. 外心

B.内心

C. 重心

D.垂心

7.已知空间向量A ,B ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( ).

A .A 、

B 、D B .A 、B 、

C C .B 、C 、

D D .A 、C 、D 二、填空题

8.如果两个向量→

-a ,→

-b 不共线,则→

-p 与→-a ,→

-b 共面的充要条件是____________。 9.已知平行六面体''''ABCD A B C D -,化简下列表达式:

(1)''''AB BB D A D D BC +-+-= ; (2)''AC AC AD AA -+-= 。

10.如图,已知空间四边形O ABC ,其对角线为O B 、AC ,M 是边O A 的中点,G 是△ABC 的重心,则用基向量OA 、OB 、OC 表示向量MG 的表达式为 . 11.已知O 是空间任意一点,A 、B 、C 、D 四点满足任意三点均不共线,但四

点共面,且234OA xBO yCO zDO =++u u r u u u r u u u r u u u r

,则2x+3y+4z=________.

三、解答题

12.在空间四边形ABCD 中,连结AC 、BD ,△BCD 的重心为G ,

化简13

22

AB BC DG AD +

--。

A B C O M

N

G

13. 如图,已知空间四边形OABC ,其对角线,OB AC ,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,且2MG GN ,用基底向量,,OA OB OC 表示向量OG

14.如右图,在直四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,CD=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.

证明:直线EE 1∥平面FCC 1.

15. 如图,已知P是平面四边形ABCD所在平面外一点,连接PA、PB、PD.点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.求证:

(1)E、F、G、H四点共面;

(2)平面EFGH∥平面ABCD.

【答案与解析】 1.【答案】D

【解析】①②③正确,④不正确。 2.【答案】C

【解析】①中四点恰好围成一封闭图形,正确;

②中当a 、b 同向时,应有|a|+|b|=|a +b|; ③中a 、b 所在直线可能重合;

④中需满足x +y +z =1,才有P 、A 、B 、C 四点共面.

3. 【答案】C 【解析】:连接AF ,

111111

()()222222

EF AF AE AB AC AD AB AD AC AB CD =-=+-=--=-,

故选:C 。

4. 【答案】D 【解析】由111333

OM OA OB OC =

++ 可得30OM OA OB OC OM OA OM OB OM OC =++?-+-+-= 即AM BM CM =--

所以AM BM CM 与、

在一个平面上,即点M 与点A 、B 、C 一定共面。 5. 【答案】A 【解析】

根据题意,得:

11

()2BE BB BA BC =++

111

22AA BA BC =++

111

22

AA AB AD =-+,

又∵1BE AA xAB yAD =++, ∴12x =-

,12

y = 故选:A 。

6.【答案】C

【解析】

||sin ||sinC AB B AC =,设它们等于t,

1

()OP OA AB AC t

λ∴=+?+

而2AB AC AD +=

1

()AB AC t

λ?+表示与AD 共线的向量AP

而点D 是BC 的中点,所以即P 的轨迹一定通过三角形的重心。故选C 。

7.【答案】A

【解析】∵242BD BC CD a b AB =+=+=,∴A 、B 、D 三点共线,故选A 。 8. 【答案】存在实数对(,x y ),使p xa yb =+.

【解析】由共面定理可得。 9. 【答案】(1)AB ;(2)AD 。 【解析】由加减法的几何意义可得。 10.【答案】 MG =-61OA +31OB +3

1

OC 【解析】如图所示,连AG 延长交BC 于E ,=MA +=

21+32AE =21+32·21(+AC )=21+31(OB -OA )+3

1

(OC -OA )=-

61OA +31OB +3

1

OC .

11.【答案】-1

【解析】 234234O A x B O y C O z D O x O B y O C z O D

=++=---, 由A 、B 、C 、D 四点共面的充要条件,知(―2x)+(―3y)+(―4z)=1,即2x+3y4z=―1。 12.【解析】设E 为BC 的中点,

133

222

AB BC DG AD AB BE AD DG +--=+--

33

22AE AD DG DE DG =--=-

3

3202

GE GE =-?=。

13.

【解析】OG OM MG =+

A

B

C

O

M

N

G

2

312

()231211

[()]2322111()233111633

OM MN

OA ON OM OA OB OC OA OA OB OC OA OA OB OC =+=+-=++-=++-=++ ∴OC OB OA OG 3

1

3161++=

14.【解析】由题意知2AB DC =,

∵F 是AB 的中点,∴1

2

AF AB DC =

=, ∴四边形AFCD 是平行四边形,∴AD FC =。 ∵E ,E 1分别是AD ,AA 1的中点, ∴11111111

2222

EE AE AE AA AD CC FC =-=

-=-。 又1CC 与FC 不共线,

根据向量共面的充要条件可知1EE ,1CC ,FC 共面。

∵EE 1不在平面FCC 1内,∴EE 1∥平面FCC 1。

15. 【解析】

(1)连接PE 、PF 、PG 、PH ,分别延长PE 、PF 、PG 、PH 交对边于M 、M 、Q 、R .

∵E 、F 、G 、H 分别是所在三角形的重心.

∴M 、N 、P 、R 为所在边的中点,顺次连接MNPR 所得四边形为平行四边形.且有 23PE PM =

,23PF PN =,23PG PQ =,2

3

PH PR =. ∵四边形MNQR 为平行四边形,则

222

333

EG PG PE PQ PM MQ =-=-= 2()3MN MR =+22

()()33

PN PM PR PM =-+-

233233322322PF PE PH PE ????

=

-+- ? ?????

EF EH =+.

∴由共面向量定理得E 、F 、G 、H 四点共面.

(2)由(1)知

3

2

MQ EG

=.

∴MQ∥EC,从而EG∥面AC.

333

222

MN PN PM PF PE EF =-=-=,

∴MN∥EF,∴EF∥面AC.

又∵EG∩EF=E,∴平面EFGH∥平面ABCD.

空间向量及其运算详细教案

空间向量及其运算 3.1.1 空间向量及其加减运算 教学目标: (1)通过本章的学习,使学生理解空间向量的有关概念。 (2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。 能力目标: (1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。 (2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。(3)培养学生空间向量的应用意识 教学重点: (1)空间向量的有关概念 (2)空间向量的加减运算及其运算律、几何意义。 (3)空间向量的加减运算在空间几何体中的应用 教学难点: (1)空间想象能力的培养,思想方法的理解和应用。 (2)空间向量的加减运算及其几何的应用和理解。 考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想。 易错点:空间向量的加减运算及其几何意义在空间几何体中的应用 教学用具:多媒体 教学方法:研讨、探究、启发引导。 教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。 教学过程: (老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定? (学生):矢量,由大小和方向确定 (学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板? (老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么? (学生)向量 (老师):这三个向量和以前我们学过的向量有什么不同? (学生)这是三个向量不共面 (老师):不共面的向量问题能直接用平面向量来解决么? (学生):不能,得用空间向量 (老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算 (老师):实际上空间向量我们随处可见,同学们能不能举出一些例子? (学生)举例 (老师):然后再演示(课件)几种常见的空间向量身影。(常见的高压电线及支架所在向量,长方体中的三个不共线的边上的向量,平行六面体中的不共线向量) (老师):接下来我们我们就来研究空间向量的知识、概念和特点,空间向量与平面向量既有联系又有区别,我们将通过类比的方法来研究空间向量,首先我们复习回顾一下平面向量

高中数学 空间向量的线性运算教案

用心 爱心 专心 - 1 - 课题:3.1.1空间向量的线性运算 设计人: 审核人: 班级: 组名: 姓名: 日期: 典型例题 例1.已知平行六面体''''D C B A ABCD -(如图),以图中一对顶点构造向量,使 它们分别等于: ; ⑴BC AB + ;⑵'AA AD AB ++ '2 1CC AD AB + +⑶ .⑷ )'(3 1AA AD AB ++ (5)D D AB BC → → → '-+ 1(6)()2 A B A D D D B C → → → → '++ - (7)AB BC C C C D D A → → → → → '''''++++ 例3.已知平行六面ABCD-A1B1C1D1 ,求满足下列各式的x 的值。 11111 )3(2 )2(AC x AD AB AC AC x BD AD =++=-x C D A AB =++1111 )1( 1 C C ' D ' A ' B ' D A )(21,,.2→ →→+=BC AD MN CD AB ABCD N M 求证:的中点, 的棱分别是四面体例D C B A N M

用心 爱心 专心 - 2 - 四.当堂检测 1.在三棱柱111ABC A B C -中,设M 、N 分别为1,BB AC 的中点,则MN 等于( ) A .11()2A C A B B B ++ B .111111()2 B A B C C C ++ C .11()2A C C B B B ++ D .11()2 B B B A B C -- 2.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是 ( )①22AB BC CD DC +++ ②2233AB BC CD DA AC ++++ ③AB CA BD ++ ④AB CB CD AD -+- A .①② B .②③ C .②④ D .①④ 3.在空间四边形ABCD 中,点M 、G 分别是BC 、CD 边的中点,化简 4. 如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1 BA CB +; (2)1 21AA CB AC + +; (3)CB AC AA --1 五.课后练习 1.四棱锥P-ABCD 的底面ABCD 为平行四边形,,,AB a AD b AP c === ,E 为PC 中点, 则向量C E = _______________________; 2.已知长方体 1111 ABC D A B C D -,化简向量表达式 1CB AC AD AA +++= _____________; 3. 1(1) ()2 1(2) ()2 AB BC BD AG AB AC ++-+ a b AD c a ,b,c C D ,. ABC D AB BC AC BD == 空间四边形中,,=,,试用来表示,

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

苏教版高中数学选修2-1《空间向量及其线性运算》教案

空间向量及其线性运算 学习目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件。 学习重点:空间向量的概念、空间向量的线性运算及其性质; 学习难点:空间向量的线性运算及其性质。 学习过程: 一、创设情景 1、平面向量的概念及其运算法则; 2、物体的受力情况分析(如右图)。 二、建构数学 1.空间向量的概念 在空间,我们把具有大小和方向的量叫做向量。 注:(1)空间的一个平移就是一个向量。 (2)向量一般用有向线段表示,同向等长的有向线段表示同一或相等的向量。 (3)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: (1)加法交换律:a b b a +=+ (2)加法结合律:)()(c b a c b a ++=++ (3)数乘分配律:b a b a λλλ+=+)( 3.平行六面体

O 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并 记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量。a 平行于b 记作b a //。 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同一 直线,也可能是平行直线。 5.共线向量定理及其推论 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,使a =λb 。 推论:如果l 为经过已知点A 且平行于已知非零向量a 的直线,那么对于任意一点O , 点P 在直线l 上的充要条件是存在实数t 满足等式 t OA OP +=a ,其中向量a 叫做直线l 的 方向向量。 三、数学运用 1、如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)12 1 AA + +; (3)CB AC AA --1。 解:(1)11CA BA =+; (2)AM AA CB AC =+ +12 1 ; (3)11BA CB AC AA =--。

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

3.1空间向量及其运算第1课时完美版

§3.1.1空间向量及加减其运算 【学情分析】: 向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等方面也有着广泛的应用。在人教A版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意与平面向量的类比,体会空间向量在解决立体几何问题中的作用。【教学目标】: (1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法 (2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法 (3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解决问题,培养学生的开拓创新能力。 【教学重点】: 空间向量的概念和加减运算 【教学难点】: 空间向量的应用

四.练习巩 固 1.课本P86练习1-3 2.如图,在三棱柱1 11C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +; (2)1AA CB AC ++; (3)CB AC AA --1 解:(1)11CA BA CB =+ (2)11AB AA CB AC =++ (3)11BA CB AC AA =-- 巩固知识,注意区别加 减法的不同处. 五.小结 1.空间向量的概念: 2.空间向量的加减运算 反思归纳 六.作业 课本P97习题3.1,A 组 第1题(1)、(2) 练习与测试: (基础题) 1.举出一些实例,表示三个不在同一平面的向量。 2.说明数字0与空间向量0的区别与联系。 答:空间向量0有方向,而数字0没有方向;空间向量0的长度为0。 3.三个向量a,b,c 互相平行,标出a+b+c. ‘解:分同向与反向讨论(略)。 4.如图,在三棱柱111C B A ABC -中,M 是1BB 的中点, 化简下列各式,并在图中标出化简得到的向量: (1)1BA CB +;

空间向量及其线性运算(教案)

课 题:空间向量及其线性运算 教学目标: 1.运用类比方法,经历向量及其运算由平面向空间推广的过程; 2.了解空间向量的概念,掌握空间向量的线性运算及其性质; 3.理解空间向量共线的充要条件 教学重点:空间向量的概念、空间向量的线性运算及其性质; 教学难点:空间向量的线性运算及其性质。 教学过程: 一、创设情景 1、蚂蚁爬行的问题引入为什么要研究空间向量. 2、平面向量的概念及其运算法则; 二、建构数学 1.空间向量的概念: 在空间,我们把具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量 ⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示 2.空间向量的运算 定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图) b a AB OA OB +=+= b a -=-= )(R a ∈=λλ 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3.平行六面体: 平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A '''',它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。 4.共线向量 与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向 量叫做共线向量或平行向量.a 平行于b 记作b a //. 当我们说向量a 、b 共线(或a //b )时,表示a 、b 的有向线段所在的直线可能是同 一直线,也可能是平行直线. 5.共线向量定理: 共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 的充要条件是存在实数λ,

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

数学选修空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

①几何表示法:_________________________ ②字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ①零向量:__________________________,记作___(零向量的方向具有任意性) ②单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③相等向量:____________________________ ④相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a的积是一个向量,记作λa,其长度和 方向规定如下: (1)|λa|=|λ||a| (2)当λ>0时,λa与a同向; 当λ<0时,λa与a反向; 当λ=0时,λa=0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 数乘分配律:λ(a+b)=λa+λb 数乘结合律:λ(aμ)=a) (λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

空间向量及其运算练习题

空间向量及其运算 基础知识梳理 1.空间向量的有关概念 (1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量. (3)共线向量:表示空间向量的有向线段所在的直线互相______________的向量. (4)共面向量:________________________________的向量. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是________________________. 推论 如图所示,点P 在l 上的充要条件是: OP →=OA →+t a ①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB →. (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a , b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点 O ,有OP →=____________或OP →=xOM →+yOA →+zOB →,其中x +y +z = ______. (3)空间向量基本定理 如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向 量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2 ,则称a 与b __________,记作a ⊥b . ②两向量的数量积 已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律 ①结合律:(λa )·b =____________;②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 4.空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =________________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?______________?____________,____________,______________, a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________,

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

6 第6讲 空间向量的运算及应用

第6讲 空间向量的运算及应用 1.空间向量的有关定理 (1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底. 2.两个向量的数量积(与平面向量基本相同) (1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π 2, 则称向量a ,b 互相垂直,记作a ⊥b . (2)两向量的数量积 两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质 ①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ?a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |. (4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律); ③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算 (1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3), λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥ b ?a 1b 1+a 2b 2+a 3b 3=0, a ∥ b ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ),

【2021】第7章 第5节 空间向量的运算及应用 Word版含答案

第五节空间向量的运算及应用 [考点要求] 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. (对应学生用书第130页 ) 1.空间向量的有关概念 名称定义 空间向量在空间中,具有大小和方向的量 相等向量方向相同且模相等的向量 相反向量方向相反且模相等的向量 共线向量(或平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量平行于同一个平面的向量 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. - 1 -

(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a+y b+z c,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos 〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用 设a=(a1,a2,a3),b=(b1,b2,b3). 5.空间位置关系的向量表示 - 1 -

向量的线性运算经典测试题及答案解析

向量的线性运算经典测试题及答案解析 一、选择题 1.若2a b c +=r r ,3a b c -=r r ,而且c r ≠0,a r 与r b 是( ) A .a r 与r b 是相等向量 B .a r 与r b 是平行向量 C .a r 与r b 方向相同,长度不等 D .a r 与r b 方向相反,长度相等 【答案】B 【解析】 【分析】 根据已知条件求得52a c =r r ,1b 2 c =-r r ,由此确定a r 与b r 位置和数量关系. 【详解】 解:由2a b c +=r r ,3a b c -=r r ,而且c r ≠0,得到:52a c =r r ,1b 2 c =-r r , 所以a r 与b r 方向相反,且|a r |=5|b r |. 观察选项,只有选项B 符合题意. 故选:B . 【点睛】 本题考查了平面向量的知识,属于基础题,注意对平面向量这一基础概念的熟练掌握. 2.下列命题中,真命题的个数为( ) ①方向相同 ②方向相反 ③有相等的模 ④ 方向相同 A .0 B .1 C .2 D .3 【答案】C 【解析】 【分析】 直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则 方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但 的模不一定,③错误; 对于④,若 ,则 能推出 的方向相同,但 的方向相同,得到 ④错误. 所以正确命题的个数是2个,故选:C. 【点睛】 本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.

3.如图,已知向量a r ,b r ,c r ,那么下列结论正确的是( ) A .a b c +=r r r B .b c a +=r r r C .a c b +=r r r D .a c b +=-r r r 【答案】D 【解析】 【分析】 【详解】 由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r , 即a c b +=-r r r 故选D . 4.下列判断正确的是( ) A .0a a -=r r B .如果a b =r r ,那么a b =r r C .若向量a r 与b 均为单位向量,那么a b =r r D .对于非零向量b r ,如果()0a k b k =?≠r r ,那么//a b r r 【答案】D 【解析】 【分析】 根据向量的概念、性质以及向量的运算即可得出答案. 【详解】 A. -r r a a 等于0向量,而不是等于0,所以A 错误; B. 如果a b =r r ,说明两个向量长度相等,但是方向不一定相同,所以B 错误; C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误; D. 对于非零向量b r ,如果()0a k b k =?≠r r ,即可得到两个向量是共线向量,可得到//a b r r ,故D 正确. 故答案为D. 【点睛】

(教案)空间向量及其运算

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +OB ). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

2020_2021学年新教材高中数学第1章空间向量与立体几何1.1空间向量及其运算1.1.

1.1 空间向量及其运算 1.1.1 空间向量及其线性运算 学习目标核心素养 1.理解空间向量的概念.(难点) 2.掌握空间向量的线性运算.(重点) 3.掌握共线向量定理、共面向量定理及推 论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的 数学抽象核心素养. 2.借助向量的线性运算、共线向量及共面向量 的学习,提升学生的直观想象和逻辑推理的核 心素养. 国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程? 图1 图2 如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢? 1.空间向量 (1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法: ①几何表示法:空间向量用有向线段表示; ②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:AB → ,其模记为|a|或|AB → |. 2.几类常见的空间向量 名称方向模记法 零向量任意00 单位向量任意1 相反向量相反相等 a的相反向量:-a AB → 的相反向量:BA →

相等向量相同相等a=b 3.空间向量的线性运算 (1)向量的加法、减法 空间向量的 运算 加法OB→=OA→+OC→=a+b 减法CA→=OA→-OC→=a-b 加法运算律 ①交换律:a+b=b+a ②结合律:(a+b)+c=a+(b+c) ①定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa与向量a方向相同; 当λ<0时,λa与向量a方向相反; 当λ=0时,λa=0;λa的长度是a的长度的|λ|倍. ②运算律 a.结合律:λ(μa)=μ(λa)=(λμ)a. b.分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb. 思考:向量运算的结果与向量起点的选择有关系吗? [提示]没有关系. 4.共线向量 (1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l上取非零向量a,与向量a平行的非零向量称为直线l的方向向量. 规定:零向量与任意向量平行,即对任意向量a,都有0∥a. (3)共线向量定理:对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb. (4)如图,O是直线l上一点,在直线l上取非零向量a,则对于直线l上任意一点P,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP → =λa. 5.共面向量 (1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存

空间向量的运算及应用

空间向量的运算及应用 [考纲传真]1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理. 【知识通关】 1.空间向量的有关概念 (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底. 3.两个向量的数量积 (1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉. (2)空间向量数量积的运算律: ①结合律:(λa)·b=λ(a·b); ②交换律:a·b=b·a; ③分配律:a·(b+c)=a·b+a·c. 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 5.空间位置关系的向量表示 1.对空间任一点O ,若OP →=xOA →+yOB → (x +y =1),则P ,A ,B 三点共线. 2.对空间任一点O ,若OP →=xOA →+yOB →+zOC → (x +y +z =1),则P ,A ,B ,C 四点共面. 3.平面的法向量的确定:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为??? n· a =0,n· b =0. 【基础自测】 1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)空间中任意两非零向量a ,b 共面.( ) (2)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA → =0.( ) (3)设{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( ) [答案] (1)√ (2)√ (3)× (4)×

空间向量及其线性运算

空间向量及其线性运算 目标认知 学习目标: 1.了解空间向量的概念,体会向量由平面向空间的推广过程。 2.掌握空间向量的线性运算,掌握向量共线的充要条件. 3.掌握空间向量的数量积,能运用向量的数量积判断向量的共线与垂直. 重点: 空间向量的线性运算和空间向量的数量积;空间向量共线与垂直的充要条件. 难点: 空间向量的数量积,空间向量共线与垂直的充要条件. 学习策略: 把向量的研究范围从平面扩大到空间,就得到空间向量,因此,空间向量是平面向量的推广,学习空间向量的相关概念及其运算时,完全类比平面向量的概念及其运算。 知识要点梳理 知识点一:空间向量的相关概念 1.空间向量的定义: 在空间,我们把具有大小和方向的量叫做向量。 与平面向量一样,空间向量也用有向线段表示;记作:或。 注意: (1)空间中点的一个平移就是一个向量; (2)数学中讨论的向量与向量的起点无关,只与大小和方向有关,只要不改变大小和方向,空间向量 可在空间内任意平移,故我们称之为自由向量。 2.空间向量的长度(模): 表示空间向量的有向线段的长度叫做向量的长度或模,记作或 3.空间向量的有关概念: 零向量:长度为0或者说起点和终点重合的向量,记为。 单位向量:长度为1的空间向量,即. 相等向量:方向相同且模相等的向量。 相反向量:方向相反但模相等的向量。 共线向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平 行向量.平行于记作.

共面向量:平行于同一个平面的向量,叫做共面向量。 两个规定: (1)与任意向量平行; (2)与任意向量垂直。 注意: ①当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可 能是平行直线. ②向量在空间中是可以平移的.空间任意两个向量都可以平移到同一个平面内,因此我们说空间任意两 个向量是共面的. 4.两个向量的夹角 已知两非零向量,在空间任取一点O,作向量,,则叫做与的夹角,记作。 规定: 当或时,向量与平行,记作 当时,向量与垂直,记作 知识点二:空间向量的加减法 因为空间任意两个向量是共面的.定义空间向量的加法、减法、数乘向量及运算律与平面向量一样。 (1)空间向量的加减法运算 ①如图,若, 则= ②如图,若

相关主题
文本预览
相关文档 最新文档