当前位置:文档之家› 第10讲椭圆及双曲线的第二定义讲解学习

第10讲椭圆及双曲线的第二定义讲解学习

第10讲椭圆及双曲线的第二定义讲解学习
第10讲椭圆及双曲线的第二定义讲解学习

第10讲 椭圆及双曲线的第二定义

一. 椭圆

1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e

(0

定点F 是椭圆的焦点,定直线l 叫椭圆的准线(c

a 2

x :l ±=),常数e 是椭圆的离心率。

2. 焦半径:椭圆上任一点和焦点的连线段的长称为焦半径

设椭圆焦点在x 轴上,F 1,F 2分别为椭圆的左右焦点,P(x 0,y 0)是椭圆上任一点,则

0201a ,a ex PF ex PF -=+=。

(简记为:左+右-) 3. 焦点弦:过椭圆焦点的弦称为椭圆的焦点弦。

设过椭圆的焦点F 1(-c,0)的弦为AB ,其中A(x 1,y 1),B(x 2,y 2),则)(2a AB 21x x e ++=

4. 通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,其长

a

2212b H H = 例1. 椭圆16410022

=+y x 上有一点P ,它到右焦点的距离为14,求点P 到左准线的距离。 例2. 若椭圆1342

2

=+y x 内有一点P(1,-1),F 为右焦点,在该椭圆上求一点M ,使得

MF MP 2+最小,并且求最小值

例3. 已知椭圆

192522=+y x ,若椭圆上有一点P 到右焦点的距离是1,则点P 的坐标为多

少?

二. 双曲线

1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e

(e>1),则动点M 的轨迹叫做双曲线。 定点F 是双曲线的焦点,定直线l 叫双曲线的准线(c

a 2

x :l ±=),常数e 是双曲线的离心率。

2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径

设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则0201a ,--a ex PF ex PF -==。若P(x 0,y 0)是双曲线右支上任一点,则0201-a ,a ex PF ex PF +=+=。

第三讲---双曲线的第二定义

第三讲 双曲线的第二定义
知识梳理
(一)双曲线的第二定义:平面内一动点 的比为常数 e ? 到一定点 F (c, 0) 的距离与到一定直线 L : x ?
a2 的距离 c
c (e>1) a
定点 F (c, 0) 是双曲线的焦点,定直线 L 是双曲线的准线,常数 e 是双曲线的离心率。 (二)焦点三角形的面积公式。
S?
1 ? r1r2 sin ? ? b 2 tan 2 2
3.双曲线的方程,图形,渐进线方程,准线方程和焦半径公式: 标准方程 图像 渐进线方程
x2 y 2 ? ? 1(a ? 0.b ? 0) a 2 b2
b x a a2 x?? c M 在右支上 r左 =|MF1 |=ex0 ? a y??
y 2 x2 ? ? 1(a ? 0.b ? 0) a 2 b2
a x b a2 y?? c y??
准线方程
半径公式
r右 =|MF2 |=ex 0 ? a M 在左支上 r左 =|MF|=-ex 1 0 ?a r右 =|MF2 |=-ex 0 ? a
典例分析 题型一:与双曲线准线有关的问题 例 1.(1)若双曲线
x2 y 2 ? ? 1 上一点 P 到右焦点的距离等于 13 ,则点 P 到右准线的距离为______ 13 12
x2 y 2 ? ? 1 的离心率为 2,则该双曲线的两条准线间的距离为________ A.若双曲线 m 3
练习:已知双曲线的渐进线方程为 3x ? 2 y ? 0 ,两条准线间的距离为 解:双曲线渐进线方程为 y ? ?
16 13 ,求双曲线的标准方程。 13
3 x 2
1

椭圆第二定义教学活动设计

椭圆第二定义教学设计 一、背景分析: 本节课是在学生学习完了椭圆定义及其标准方程、椭圆简单几何性质的基础上进行的;是对椭圆性质(离心率)在应用上的进一步认识;着重引出椭圆的第二定义、准线方程,掌握椭圆定义的应用。教学中力求以教师为主导,以学生为主体,充分结合多媒体技术,以“形”为诱导,以椭圆的二个定义为载体,以培养学生的思维能力、探究能力、归纳总结的能力以及等价转化思想为重点的教学思想. 二、教材的地位和作用: 圆锥曲线是解析几何的重要内容,而椭圆又是高考的热点问题之一;能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学好解析几何的关键。而椭圆在教材中具有“承上启下”的作用,从图形和第一定义来看椭圆与圆比较接近,从而对于学生来说学习完圆后再学习椭圆比较容易接受;而椭圆的第二定义即“到定点的距离与到定直线的距离的比是常数的点的轨迹”,正好可以把椭圆、双曲线、抛物线这三种圆锥曲线有机地统一起来,使学生对圆锥曲线有个整体知识体系,所以说这个定义在整章起到了一种“纽带”的作用. 三、学法指导: 以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 四、教学目标

知识目标:椭圆第二定义、准线方程; 能力目标: 1、使学生了解椭圆第二定义给出的背景; 2、了解离心率的几何意义; 3、使学生理解椭圆第二定义、椭圆的准线定义; 4、使学生掌握椭圆的准线方程以及准线方程的应用; 5、使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 五、教学重点:椭圆第二定义、准线方程; 六、教学难点:椭圆的第二定义的简单运用; 七、教学方法:创设问题、启发引导、探究活动、归纳总结. 八、教学过程 (一)、引入课题(上一节的例题得出的结果) 例、椭圆的方程为 116 252 2=+y x ,M 1为椭圆上的点,若点M 1为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且 116 2542 02=+y 代入消去2 0y 得51325169||==MF 【推广】根据上面这个问题的解题思路你能否将椭圆122 22=+b y a x 上任一点),(y x M 到焦点 )0)(0,(>c c F 的距离表示成点M 横坐标x 的函数吗?

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

2020-2021年高二数学 第八章 圆锥曲线方程: 8.4双曲线的第二定义优秀教案

2019-2020年高二数学第八章圆锥曲线方程: 8.4双曲线的 第二定义优秀教案 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握双曲线的另一种定义及准线的概念 3.掌握等轴双曲线,共轭双曲线等概念 4.进一步对学生进行运动变化和对立统一的观点的教育 教学重点:双曲线的渐近线、离心率、双曲线的另一种定义及其得出过程教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系,双曲线的另一种定义的得出过程 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性

由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 顶点: 特殊点: 实轴:长为2a, a叫做半实轴长 虚轴:长为2b,b叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线的两顶点,作Y轴的平行线,经过作X轴的平行线,四条直线围成一个矩形矩形的两条对角线所在直线方程是(),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样 的双曲线叫做等轴双曲线

等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率 等轴双曲线可以设为:,当时交点在x 轴,当时焦点在y 轴上 5.共渐近线的双曲线系 如果已知一双曲线的渐近线方程为,那么此双曲线方程 就一定是: )0(1)()(2 2 22>±=-k kb y ka x 或写成 6.双曲线的草图 具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线 7.离心率 双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围: 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它

椭圆的第二定义应用

椭圆的第二定义应用 班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意: ①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距

离为()

A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100 x + 236y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +216y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。

椭圆的标准方程教案

河北阜城中学--高二数学组 组题人:高泽宁 审核人:沈志华 日期:2019年 月 日 …………○…………内…………○…………装…………○…………订…………○ 学校: 姓名:___________ 班级:___________ 考号:___________ …………○…………内…………○…………装…………○…………订…………○ 第 1 页 共 3 页 学习目标: 1:熟练掌握椭圆的定义。 2:熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆并确定椭圆的标准方程。 学习重点:椭圆的定义及标准方程。 学习难点:椭圆的定义及标准方程的推导。 教学过程: 一:椭圆概念的引入: 1:动画演示:(1)天体行星和卫星运行的轨道。 (2)立体几何中作圆的一种直观图。 2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的F 1,F 2两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。 分析:在这个运动过程中,什么是不变的? 答:两个定点,绳长。 即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 3:由此总结椭圆定义: 平面内与两个定点F 1,F 2的距离之和等于常熟(大于)的点的轨迹叫作椭圆, 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 说明 注意椭圆定义中容易遗漏的两处地方: (1)两个定点------两点间距离确定。 (2) 绳长------轨迹上任意点到两定点距离和确定。 思考: 改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 绳长能小于两图钉之间的距离吗? 二:根据定义推导椭圆标准方程: 1:复习求轨迹方程的基本步骤: 2:推导:取过焦点21F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴。 设P (x,y )为椭圆上的任意一点,椭圆的焦距是2c ( c>0). 则:)0,()0,(21c F c F -,又设M 与F 1,F 2距离之和等于2a (常数) {}a PF PF P P 221=+=∴ 221)(y c x PF ++= 又, a y c x y c x 2)()(2222=+-+++∴,化简,得: )()(22222222c a a y a x c a -=+-,由定义c a 22> 022>-∴c a 令222b c a =-∴代入,得: 222222b a y a x b =+,两边同除22b a 得: 选修2-1 第一章 2.2.2 椭圆的标准方程 教案 试卷类型 学案 ※ 数学是一切知识的最高形式----柏拉图 条件 结论 2a>|F1F2| 动点的轨迹是椭圆 2a =|F1F2| 动点的轨迹是线段F1F2 2a<|F1F2| 动点不存在,因此轨迹不存在

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

圆锥曲线第二定义在一些题目中的应用(供参考)

圆锥曲线第二定义在一些题目中的应用 北京一零一中学数学组 何效员 圆锥曲线的第二定义:平面上到定点与到定直线的距离的比为常数e 的点的轨迹是圆锥曲线概念的重要组成部分,它揭示了圆锥曲线之间的内在联系,是圆锥曲线在极坐标系下 具有统一形式的基本保证。利用圆锥曲线的第二定义,在某些情形下,可以更方便的求解一些题目。 但当我们利用第二定义时,有时候会忽略一个条件,即平面上的这个定点不能在定直线上,否则得到的曲线不是圆锥曲线。如:考虑坐标平面上,到定点(1,1)与到定直线1x =的距离之比为常数e 的点的轨迹讨论如下: ① 当1e =时,点的轨迹方程为1,(1)y x =≠, 直线去掉一点; ② 当1e >时,点的轨迹方程为211(1),y e x -=±-- (1)x ≠,两条直线去掉一点; ③ 当1e <时,点的轨迹不存在。 下面我们就一些具体的题目来体会第二定义的妙用。 例1 已知椭圆22 143 x y +=内一点(1,1)P -,F 为右焦点,椭圆上有一点M 使 ||2||MP MF +的值最小,求点M 的坐标。 分析:若按常规思路,设点(,)M x y ,右焦点(1,0)F , 则2222 ||2||(1)(1)2(1)MP MF x y x y +=-+++-+, 求其最小值无疑是困难,观察2||MF ,设M 点到右准线的距离d , ||1 2 MF c e d a ===,2||MF d ∴=,这样 ||2||MP MF +就转化为在椭圆上寻找一点到(1,1)P -的距离与到直线2 4a x c == M P F M x = 4 O y x

的距离和最小,当且仅当MP ⊥直线4x =时,点M 在点P 和直线4x =之间时取得,此时M 的坐标为26 ( ,1)3 -. 例2 已知椭圆方程为22 221(0)y x a b a b +=>>,求与这个椭圆有公共焦点的双曲线,使得 它们的交点为顶点的四边形的面积最大,并求出相应的四边形的顶点坐标。 分析:本体若通过椭圆与双曲线方程联立求解交点坐标, 继而讨论四边形面积的表达式,求出使面积最大时 的双曲线方程,计算会十分麻烦,考虑到椭圆和双 曲线有共同的焦点,不妨利用第二定义求解。 设所求双曲线方程为 22 2 21(,0)y x m n m n -=>,其中 22222c a b m n =-=+,设两曲线在第一象限内的交点111(,)P x y ,12,l l 分别为椭圆,双曲线的上准线,过1P 作11PQ l ⊥于Q ,1 2PR l ⊥于R , 22 1211111||||||||||c a c m PF e PQ e PR y y a c m c === -=-, 2211()()a m m y a y c c ∴-=-,解得 1am y c =,代入椭圆方程22221y x a b +=,得 1bn x c = ,利用双曲线与椭圆的对称性知 22 1122 4422abmn m n S x y ab ab c c +==≤?=,等号当且仅当22m n c ==时取得,故所求双曲线方程为22 2 2 2 a b y x --=,相应的四个顶点坐标为22(,)b a ±±. 例3 已知椭圆()22 2210x y a b a b +=>>的两个焦点分别为()1,0F c -和()2,0F c ,过点

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

椭圆的定义及其标准方程教学设计

课题:§椭圆的定义及其标准方程 鹿城中学田光海 一、教案背景: 1.面向对象:高中二年级学生 2. 学科:数学 3. 课时:2课时 4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1 第二章圆锥曲线与方程§椭圆及其标准方程 二. 教材分析 本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章的重点内容之一。 1. 教法分析结合生活经验观察发现、启发引导、探究合作。在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。利用多媒体课件, 精心构建学生自主探究的教学平台,启发引导学生观察, 想象, 思考, 实践, 从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识, 体验成功。主要采用探究实践、启发与讲练相结合。 2. 学法分析从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。 从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语 言转换能力 从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”

的水平,如何给椭圆以数学描述如何“定性” “定量”地描述椭圆是学 生关注的问题,也是学习的重点问题。他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。 3.教学目标 知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准 方程的两种形式,会运用待定系数法求椭圆的标准方程。 过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法坐标法,并渗透数形结合、等价转化的数学思想方法。 情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。 4.教学重点与难点 重点:椭圆的定义和椭圆标准方程的两种形式 难点:椭圆的标准方程的建立和推导教学方法 5.教学准备 通过百度搜索与椭圆有关的图片资料,利用百度搜索相关的教学资料制作多媒体课件,自制教具:绘图板、图钉、细绳。 三、教学过程

椭圆的极坐标方程及其应用

椭圆的极坐标方程及其应用 如图,倾斜角为θ且过椭圆22 22:1(0)x y C a b a b +=>>的右焦点2F 的直线l 交椭圆C 于,P Q 两点,椭圆 C 的离心率为e ,焦准距为p ,请利用椭圆的第二定义推导22,,PF QF PQ ,并证明: 22 11 PF QF +为定值 改为:抛物线 2 2(0)y px p => 呢? 例1.(10年全国Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的 直线与C 相交于,A B 两点.若3AF FB =,求k 。 练习1. (10年辽宁理科)设椭圆C :22 221(0)x y a b a b +=>>的右焦点为F ,过点F 的直线l 与椭圆C 相交于 A , B 两点,直线l 的倾斜角为60o ,2AF FB =,求椭圆C 的离心率; 例2. (07年全国Ⅰ)已知椭圆22 132 x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P ,求四边形ABCD 的面积的最值. 练习2. (05年全国Ⅱ)P 、Q 、M 、N 四点都在椭圆12 2 2 =+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知.0,,=?且线与共线与求四边形PMQN 的面积的最小值和最大值. 例3. (07年重庆理)如图,中心在原点O 的椭圆的右焦点为)0,3(F ,右准线l 的方程为12=x . (Ⅰ)求椭圆的方程; (Ⅱ)在椭圆上任取三个不同点123,,P P P ,使133221FP P FP P FP P ∠=∠=∠,证明: | |1 ||1||1321FP FP FP ++为定值,并求此定值.

椭圆教学设计(人教版)教学教材

《椭圆及其标准方程》教学设计龙城高级中学胡宇娟

(一)指导思想与理论依据 1、本节课的设计力图体现“教师为主导,学生为主体”的教学思想。在教 学的过程中始终本着“教师是课堂教学的组织者、引导者、合作者”的原则,让学生通过实验、观察、思考、分析、推理、交流、合作、反思等过程建构新知识,并初步学会从数学的角度去观察事物和思考问题,产生学习数学的浓厚兴趣。 2、在“椭圆的标准方程”的引入与推导中,遵循学生的认识规律,运用“实 验——猜想——推导——应用”的思想方法,逐步由感性到理性地认识定理,揭示知识的发生、发展过程;遵循现代教育理论中的“要把学生学习知识当作认识事物的过程来进行教学”的观点。 3、数学学习的核心是思考,离开思考就没有真正的数学。针对这节课的内 容:教师提问;学生操作、观察、思考、讨论;教师再演示、点评,最大限度地调动学生积极参与教学活动。在教学重难点处适当放慢节奏,给学生充分的时间与空间进行思考与讨论,教师适时给予适当的思维点拨,必要的可进行大面积提问,让学生做课堂的主人,充分发表自己的观点,交流、汇集思想。这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力。另外通过学法指导,引导学生思维向更深更广发展,以培养学生良好的思维品质,并为以后进一步学习椭圆的几何性质及双曲线和抛物线作好辅垫。 (二)教学背景分析 A、学情分析 1、能力分析 ①学生已初步掌握用坐标法研究直线和圆的方程; ②对含有两个根式方程的化简能力薄弱。 2、认知分析 ①学生已初步熟悉求曲线方程的基本步骤; 共 8 页第1页

椭圆的第二定义含解析

课题:椭圆的第二定义 【学习目标】 1、掌握椭圆的第二定义; 2、能应用椭圆的第二定义解决相关问题; 一、椭圆中的基本元素 (1).基本量: a 、b 、c 、e 几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: a c e b a c =-=,222 (2).基本点:顶点、焦点、中心 (3).基本线: 对称轴 二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ????==?????? | ,由此得c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222 a c b -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a =<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c =.根据椭圆的对称性,相 应于焦点(0)F c '-,的准线方程是2a x c =-,所以椭圆有两条准线.

可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义. 【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。 中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c a 2 三.第二定义的应用 1、求下列椭圆的焦点坐标和准线 (1)136 1002 2=+y x (2)8222=+y x 2、椭圆 136 1002 2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) .12 C 3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______; 4、离心率e= 2 2,且两准线间的距离为4的椭圆的标准方程为________________________; 5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________; 6、求中心在原点,一条准线方程是x=3,离心率为 3 5 的椭圆标准方程.

椭圆定义教案

椭圆 一 定义 二 标准方程和几何性质 三 典型例题 1.已知椭圆116 252 2=+y x 上的一点P ,到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .7 2.中心在原点,焦点在横轴上,长轴长为4,短轴长为2,则椭圆方程是( ) A. 22143x y += B. 22 134 x y += C. 2214x y += D. 2214y x += 3.与椭圆4x 2+9y 2 =36有相同焦点,且短轴长为45的椭圆方程是( ) A 185801452012520120 252222222 2=+=+=+=+y x D y x C y x B y x 4.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( ) A. 1- B. 1 C. 5 D. 5.若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( ) A. 12 B. 2 C. D. 2 6.椭圆两焦点为 1(4,0)F -,2(4,0)F ,P 在椭圆上,若 △12PF F 的面积的最大值为12,则椭圆方程为( ) A. 22 1169 x y += B . 221259x y += C . 2212516x y += D . 221254x y += 7.椭圆的两个焦点是F 1(-1, 0), F 2(1, 0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则该椭圆方程是( )。 A 16x 2+9y 2=1 B 16x 2+12y 2=1 C 4x 2+3y 2=1 D 3x 2+4 y 2=1 8.椭圆的两个焦点和中心,将长轴的距离四等分,则它的焦点与短轴端点连线的夹角为( ) (A)450 (B)600 (C)900 (D)120

椭圆的定义教学设计

椭圆的定义教学设计 The definition of ellipse teaching design

椭圆的定义教学设计 前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 (第1课时)教案 教学目标:1、掌握椭圆的定义,椭圆标准方程的两种形式及其推导过程。 2、通过椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高运用坐标法解决几何问题的能力。 3、培养学生用数学的眼光观察生活,探索科学的思维习惯,培养学生的观察能力和探索能力。 教学重点:椭圆定义及椭圆标准方程的两种形式。 教学难点:椭圆标准方程的建立和推导。 教学过程: 情景设置:

教师:我们这节课讲的是椭圆及其标准方程,哪位同学能说出几个椭圆在实际生活及自然界的例子? 教师:我们要学会观察生活,而且要学会用我们的知识去分析和研究我们观察到的东西。 探索研究: 教师:椭圆在生活中这么普遍,那么哪位同学会画椭圆吗?(找学生回答) 教师演示椭圆的画法。 教师:哪位同学能用数学语言定义一下椭圆(找学生回答)教师强调以下几点: ①平面内 ②两个定点 ③常数大于两定点间距离 教师:我们现在知道什么是椭圆了,可是我们数学要研究一个曲线这还远远不够吧?首先要求出这个曲线的方程,然后通过方程研究曲线的性质。 教师:那么椭圆的方程怎么求呢?求曲线方程方法和步骤有哪些? (同学回答,教师小结)

椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用 一、随圆的第二定义(比值定义): 若),e e d MF 为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。 注:①其中F 为定点,F (C ,0),d 为M 到定直线L :c a x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知112 16,)3,2(2 2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。 分析:此题主要在于MF 2的转化,由第二定义:2 1==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。再求最小值可较快的求出。 解:作图,过M 作l MN ⊥于N , L 为右准线:8=x , 由第二定义,知: 2 1==e d MF , MN d MF ==∴2 ,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,

即:l AM ⊥时,MF MA 2+为最小; 且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10 [评注]: (1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+= 证明:作图, 由第二定义:e c a x PF =+ 201 即:a ex c a x e c a x e PF r +=+=+?==02 02011)( 又a PF PF 221=+ 0012)(22ex a ex a a r a r -=+-=-=∴ 注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出 c a a e a r c a ea a r -=-?+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a , (,P c a PF 01--=为时

《椭圆的定义及其标准方程》教学设计

课题:§2.1.1椭圆的定义及其标准方程 鹿城中学田光海 一、教案背景: 1.面向对象:高中二年级学生 2.学科:数学 3.课时:2课时 4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§2.1.1椭圆及其标准方程 二. 教材分析 本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章的重点内容之一。 1. 教法分析 结合生活经验观察发现、启发引导、探究合作。在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。主要采用探究实践、启发与讲练相结合。 2. 学法分析

从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。 从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。 从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。 3.教学目标 知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。 过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。 情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。

椭圆第二定义

椭圆第二定义 学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 教学目标 知识目标:椭圆第二定义、准线方程; 能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用; 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取 的精神. 教学过程: 学生探究过程:复习回顾 1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为 3 2 2,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4 2 27± =y ). 2.短轴长为8,离心率为 5 3 的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ?的周长为 20 . 引入课题 【习题4(教材P50例6)】椭圆的方程为 116 252 2=+y x ,M 1,M 2为椭圆上的点 ① 求点M 1(4,2.4)到焦点F (3,0)的距离 2.6 . ② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且1162542 02=+y 代入消去2 0y 得5 1325169||==MF

椭圆及其标准方程教学设计与反思

《椭圆及其标准方程》教学设计及反思 扶风高中任海岐 教学目标: (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程. (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力. (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神. 教学重点:椭圆的定义和椭圆的标准方程. 教学难点:椭圆标准方程的推导. 教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力. 教具准备:多媒体课件和自制教具:绘图板、图钉、细绳. 教学过程 (一)设置情景,引出课题: 1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实 物和图片,让学生从感性上认识椭圆. 2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规律”运动的轨迹。 提问:点M运动时,F 1、F 2 移动了吗?点M按照什么条件运动形成的轨迹是 椭圆?

下面请同学们在绘图板上作图,思考绘图板上提出的问题: 1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何? 2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3.当绳长小于两图钉之间的距离时,还能画出图形吗? .(二)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? 2、研讨探究 问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点M,有 ,尝试推导椭圆的方程。 思考:如何建立坐标系,使求出的方程更为简单? 将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。 方案一方案二

第10讲椭圆及双曲线的第二定义

第10讲 椭圆及双曲线的第二定义 一. 椭圆 1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (01),则动点M 的 轨迹叫做双曲线。 定点F 是双曲线的焦点,定直线l 叫双曲线的准线(c a 2 x :l ±=),常数e 是双曲线的离心率。 2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径 设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则 0201a ,--a ex PF ex PF -==。若P(x 0,y 0)是双曲线右支上任一点,则 0201-a ,a ex PF ex PF +=+=。 3. 通径:过双曲线的焦点与双曲线的实轴垂直的直线被双曲线所截得的线段称为双曲线的通径,其长 a 2212 b H H = 4. 共轭双曲线:

相关主题
文本预览
相关文档 最新文档