当前位置:文档之家› 第10讲椭圆及双曲线的第二定义

第10讲椭圆及双曲线的第二定义

第10讲椭圆及双曲线的第二定义
第10讲椭圆及双曲线的第二定义

第10讲 椭圆及双曲线的第二定义

一. 椭圆

1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (0

的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫椭圆的准线(c

a 2

x :l ±=),常数e 是椭圆的离心率。 2. 焦半径:椭圆上任一点和焦点的连线段的长称为焦半径

设椭圆焦点在x 轴上,F 1,F 2分别为椭圆的左右焦点,P(x 0,y 0)是椭圆上任一点,则

0201a ,a ex PF ex PF -=+=。

(简记为:左+右-) 3. 焦点弦:过椭圆焦点的弦称为椭圆的焦点弦。

设过椭圆的焦点F 1(-c,0)的弦为AB ,其中A(x 1,y 1),B(x 2,y 2),则)(2a AB 21x x e ++=

4. 通径:过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆通径,其长a

2

212b H H = 例1. 椭圆1641002

2

=+y x 上有一点P ,它到右焦点的距离为14,求点P 到左准线的距离。

例2. 若椭圆1342

2

=+y x 内有一点P(1,-1),F 为右焦点,在该椭圆上求一点M ,使得MF MP 2+最小,

并且求最小值

例3. 已知椭圆19252

2

=+y x ,若椭圆上有一点P 到右焦点的距离是1,则点P 的坐标为多少

二. 双曲线

1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (e>1),则动点M 的

轨迹叫做双曲线。

定点F 是双曲线的焦点,定直线l 叫双曲线的准线(c

a 2

x :l ±=),常数e 是双曲线的离心率。 2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径

设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则

0201a ,--a ex PF ex PF -==。若P(x 0,y 0)是双曲线右支上任一点,则

0201-a ,a ex PF ex PF +=+=。

3. 通径:过双曲线的焦点与双曲线的实轴垂直的直线被双曲线所截得的线段称为双曲线的通径,其长

a 2212

b H H =

4. 共轭双曲线:

双曲线1-2222=b y a x 的共轭双曲线是1--22

22=b

y a x ,双曲线与共轭双曲线的离心率分别是e 1,e 2,则有22和1e 1e 12122

21≥+=+e e 性质:(1) 双曲线和它的共轭双曲线有相同的渐近线

(2) 双曲线和它的共轭双曲线有相同的焦距(焦点不同)

例4. 若双曲线1y -322

=x 右支上一点P 到左焦点的距离为34,则P 到右准线的距离为多少

例5. 已知双曲线116y -922

=x ,右焦点为F 2,M 是双曲线右支上一点,定点A(9,2),求25

3MF MA +最小值 练习:已知点A(3,1),F(2,0),在双曲线13y -22=x 上求一点P ,使得F A P 21P +的值最小 例6. 在双曲线19

y -162

2

=x 上,求一点P ,使它到左焦点的距离是它到右焦点距离的2倍。

第三讲---双曲线的第二定义

第三讲 双曲线的第二定义
知识梳理
(一)双曲线的第二定义:平面内一动点 的比为常数 e ? 到一定点 F (c, 0) 的距离与到一定直线 L : x ?
a2 的距离 c
c (e>1) a
定点 F (c, 0) 是双曲线的焦点,定直线 L 是双曲线的准线,常数 e 是双曲线的离心率。 (二)焦点三角形的面积公式。
S?
1 ? r1r2 sin ? ? b 2 tan 2 2
3.双曲线的方程,图形,渐进线方程,准线方程和焦半径公式: 标准方程 图像 渐进线方程
x2 y 2 ? ? 1(a ? 0.b ? 0) a 2 b2
b x a a2 x?? c M 在右支上 r左 =|MF1 |=ex0 ? a y??
y 2 x2 ? ? 1(a ? 0.b ? 0) a 2 b2
a x b a2 y?? c y??
准线方程
半径公式
r右 =|MF2 |=ex 0 ? a M 在左支上 r左 =|MF|=-ex 1 0 ?a r右 =|MF2 |=-ex 0 ? a
典例分析 题型一:与双曲线准线有关的问题 例 1.(1)若双曲线
x2 y 2 ? ? 1 上一点 P 到右焦点的距离等于 13 ,则点 P 到右准线的距离为______ 13 12
x2 y 2 ? ? 1 的离心率为 2,则该双曲线的两条准线间的距离为________ A.若双曲线 m 3
练习:已知双曲线的渐进线方程为 3x ? 2 y ? 0 ,两条准线间的距离为 解:双曲线渐进线方程为 y ? ?
16 13 ,求双曲线的标准方程。 13
3 x 2
1

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

椭圆第二定义教学活动设计

椭圆第二定义教学设计 一、背景分析: 本节课是在学生学习完了椭圆定义及其标准方程、椭圆简单几何性质的基础上进行的;是对椭圆性质(离心率)在应用上的进一步认识;着重引出椭圆的第二定义、准线方程,掌握椭圆定义的应用。教学中力求以教师为主导,以学生为主体,充分结合多媒体技术,以“形”为诱导,以椭圆的二个定义为载体,以培养学生的思维能力、探究能力、归纳总结的能力以及等价转化思想为重点的教学思想. 二、教材的地位和作用: 圆锥曲线是解析几何的重要内容,而椭圆又是高考的热点问题之一;能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学好解析几何的关键。而椭圆在教材中具有“承上启下”的作用,从图形和第一定义来看椭圆与圆比较接近,从而对于学生来说学习完圆后再学习椭圆比较容易接受;而椭圆的第二定义即“到定点的距离与到定直线的距离的比是常数的点的轨迹”,正好可以把椭圆、双曲线、抛物线这三种圆锥曲线有机地统一起来,使学生对圆锥曲线有个整体知识体系,所以说这个定义在整章起到了一种“纽带”的作用. 三、学法指导: 以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 四、教学目标

知识目标:椭圆第二定义、准线方程; 能力目标: 1、使学生了解椭圆第二定义给出的背景; 2、了解离心率的几何意义; 3、使学生理解椭圆第二定义、椭圆的准线定义; 4、使学生掌握椭圆的准线方程以及准线方程的应用; 5、使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 五、教学重点:椭圆第二定义、准线方程; 六、教学难点:椭圆的第二定义的简单运用; 七、教学方法:创设问题、启发引导、探究活动、归纳总结. 八、教学过程 (一)、引入课题(上一节的例题得出的结果) 例、椭圆的方程为 116 252 2=+y x ,M 1为椭圆上的点,若点M 1为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且 116 2542 02=+y 代入消去2 0y 得51325169||==MF 【推广】根据上面这个问题的解题思路你能否将椭圆122 22=+b y a x 上任一点),(y x M 到焦点 )0)(0,(>c c F 的距离表示成点M 横坐标x 的函数吗?

2020-2021年高二数学 第八章 圆锥曲线方程: 8.4双曲线的第二定义优秀教案

2019-2020年高二数学第八章圆锥曲线方程: 8.4双曲线的 第二定义优秀教案 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握双曲线的另一种定义及准线的概念 3.掌握等轴双曲线,共轭双曲线等概念 4.进一步对学生进行运动变化和对立统一的观点的教育 教学重点:双曲线的渐近线、离心率、双曲线的另一种定义及其得出过程教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系,双曲线的另一种定义的得出过程 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性

由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 顶点: 特殊点: 实轴:长为2a, a叫做半实轴长 虚轴:长为2b,b叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线的两顶点,作Y轴的平行线,经过作X轴的平行线,四条直线围成一个矩形矩形的两条对角线所在直线方程是(),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样 的双曲线叫做等轴双曲线

等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率 等轴双曲线可以设为:,当时交点在x 轴,当时焦点在y 轴上 5.共渐近线的双曲线系 如果已知一双曲线的渐近线方程为,那么此双曲线方程 就一定是: )0(1)()(2 2 22>±=-k kb y ka x 或写成 6.双曲线的草图 具体做法是:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限从渐近线下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线 7.离心率 双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围: 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它

椭圆的第二定义应用

椭圆的第二定义应用 班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意: ①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距

离为()

A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100 x + 236y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +216y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质 一、知识要点 椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数 )10(<<= e a c e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义. e d MF =| |∴ 准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2 =.根据对 称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆122 22=+b x a y 的准线方程是c a y 2 ±=. 焦半径公式: 由椭圆的第二定义可得: 右焦半径公式为ex a c a x e ed MF -|-|||2 ===右; 左焦半径公式为ex a c a x e ed MF +===|)-(-|||2 左 二、典型例题 例1、求椭圆 116 252 2=+y x 的右焦点和右准线;左焦点和左准线; 练习:椭圆8192 2 =+y x 的长轴长为_________,短轴长为_________,半焦距为_________,

离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________. 例2、已知椭圆方程136 1002 2=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF , 求P 到右准线的距离. 例3、已知点M 为椭圆116 252 2=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求 ||3 5 ||1MF MA +的最小值. 变式、若椭圆:3 \* MERGEFORMAT 13 42 2=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMAT MF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

圆锥曲线第二定义在一些题目中的应用(供参考)

圆锥曲线第二定义在一些题目中的应用 北京一零一中学数学组 何效员 圆锥曲线的第二定义:平面上到定点与到定直线的距离的比为常数e 的点的轨迹是圆锥曲线概念的重要组成部分,它揭示了圆锥曲线之间的内在联系,是圆锥曲线在极坐标系下 具有统一形式的基本保证。利用圆锥曲线的第二定义,在某些情形下,可以更方便的求解一些题目。 但当我们利用第二定义时,有时候会忽略一个条件,即平面上的这个定点不能在定直线上,否则得到的曲线不是圆锥曲线。如:考虑坐标平面上,到定点(1,1)与到定直线1x =的距离之比为常数e 的点的轨迹讨论如下: ① 当1e =时,点的轨迹方程为1,(1)y x =≠, 直线去掉一点; ② 当1e >时,点的轨迹方程为211(1),y e x -=±-- (1)x ≠,两条直线去掉一点; ③ 当1e <时,点的轨迹不存在。 下面我们就一些具体的题目来体会第二定义的妙用。 例1 已知椭圆22 143 x y +=内一点(1,1)P -,F 为右焦点,椭圆上有一点M 使 ||2||MP MF +的值最小,求点M 的坐标。 分析:若按常规思路,设点(,)M x y ,右焦点(1,0)F , 则2222 ||2||(1)(1)2(1)MP MF x y x y +=-+++-+, 求其最小值无疑是困难,观察2||MF ,设M 点到右准线的距离d , ||1 2 MF c e d a ===,2||MF d ∴=,这样 ||2||MP MF +就转化为在椭圆上寻找一点到(1,1)P -的距离与到直线2 4a x c == M P F M x = 4 O y x

的距离和最小,当且仅当MP ⊥直线4x =时,点M 在点P 和直线4x =之间时取得,此时M 的坐标为26 ( ,1)3 -. 例2 已知椭圆方程为22 221(0)y x a b a b +=>>,求与这个椭圆有公共焦点的双曲线,使得 它们的交点为顶点的四边形的面积最大,并求出相应的四边形的顶点坐标。 分析:本体若通过椭圆与双曲线方程联立求解交点坐标, 继而讨论四边形面积的表达式,求出使面积最大时 的双曲线方程,计算会十分麻烦,考虑到椭圆和双 曲线有共同的焦点,不妨利用第二定义求解。 设所求双曲线方程为 22 2 21(,0)y x m n m n -=>,其中 22222c a b m n =-=+,设两曲线在第一象限内的交点111(,)P x y ,12,l l 分别为椭圆,双曲线的上准线,过1P 作11PQ l ⊥于Q ,1 2PR l ⊥于R , 22 1211111||||||||||c a c m PF e PQ e PR y y a c m c === -=-, 2211()()a m m y a y c c ∴-=-,解得 1am y c =,代入椭圆方程22221y x a b +=,得 1bn x c = ,利用双曲线与椭圆的对称性知 22 1122 4422abmn m n S x y ab ab c c +==≤?=,等号当且仅当22m n c ==时取得,故所求双曲线方程为22 2 2 2 a b y x --=,相应的四个顶点坐标为22(,)b a ±±. 例3 已知椭圆()22 2210x y a b a b +=>>的两个焦点分别为()1,0F c -和()2,0F c ,过点

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

椭圆的第二定义含解析

课题:椭圆的第二定义 【学习目标】 1、掌握椭圆的第二定义; 2、能应用椭圆的第二定义解决相关问题; 一、椭圆中的基本元素 (1).基本量: a 、b 、c 、e 几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: a c e b a c =-=,222 (2).基本点:顶点、焦点、中心 (3).基本线: 对称轴 二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ????==?????? | ,由此得c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222 a c b -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a =<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c =.根据椭圆的对称性,相 应于焦点(0)F c '-,的准线方程是2a x c =-,所以椭圆有两条准线.

可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义. 【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。 中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c a 2 三.第二定义的应用 1、求下列椭圆的焦点坐标和准线 (1)136 1002 2=+y x (2)8222=+y x 2、椭圆 136 1002 2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) .12 C 3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______; 4、离心率e= 2 2,且两准线间的距离为4的椭圆的标准方程为________________________; 5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________; 6、求中心在原点,一条准线方程是x=3,离心率为 3 5 的椭圆标准方程.

高中高二数学椭圆的第二定义

高二数学椭圆的第二定义、参数方程、直线与椭圆的位置关系知识精 讲 一. 本周教学内容: 椭圆的第二定义、参数方程、直线与椭圆的位置关系 [知识点] 1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数 e c a e M =<< () 01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e是椭圆的离心率。 注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 2 2 2 22 100 +=>> ()() 方程是,对应于左焦点,的准线为左准线 x a c F c x a c =-=- 2 1 2 () ②e的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 2. 焦半径及焦半径公式: 椭圆上一个点到焦点的距离叫做椭圆上这个点的焦半径。 对于椭圆,设,为椭圆上一点,由第二定义:x a y b a b P x y 22 2 10 2 +=>> ()() 左焦半径∴· 左 左 r x a c c a r ex c a a c a ex 20 2 + ==+=+ 右焦半径右 右 r a c x c a r a ex 2 - =?=- 3. 椭圆参数方程 问题:如图以原点为圆心,分别以a、b(a>b>0)为半径作两个圆,点B是大圆半径OA 与小圆的交点,过点A作AN⊥Ox,垂足为N,过点B作BN⊥AN,垂足为M,求当半径OA绕

O 旋转时点M 的轨迹的参数方程。 解:设点的坐标是,,是以为始边,为终边的正角,取为M x y ()??Ox OA 参数。 那么∴x ON OA y NM OB x a y b ======?? ?||cos ||sin cos sin ()?? ?? 1 这就是椭圆参数方程:为参数时,称为“离心角”?? 说明:<1> 对上述方程(1)消参即 x a y b x a y b ==?? ??????+=cos sin ??22221普通方程 <2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。 4. 补充 名称 方程 参数几何意义 直线 x x t y y t t =+=+?? ?00cos sin ()αα为参数 P x y 000(),定点,α倾斜角,t P P =0, P (x ,y )动点 圆 x a r y b r =+=+?? ?cos sin ()θ θθ为参数 A (a ,b )圆心,r 半径, P (x ,y )动点,θ旋转角 椭圆 x a y b ==?? ? cos sin ()? ??为参数 a 长半轴长,b 短半轴长 ?离心角不是与的夹角()OM Ox 一般地,θ?π、取,[]02 5. 直线与椭圆位置关系: (1)相离

椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用 一、随圆的第二定义(比值定义): 若),e e d MF 为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。 注:①其中F 为定点,F (C ,0),d 为M 到定直线L :c a x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知112 16,)3,2(2 2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。 分析:此题主要在于MF 2的转化,由第二定义:2 1==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。再求最小值可较快的求出。 解:作图,过M 作l MN ⊥于N , L 为右准线:8=x , 由第二定义,知: 2 1==e d MF , MN d MF ==∴2 ,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,

即:l AM ⊥时,MF MA 2+为最小; 且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10 [评注]: (1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+= 证明:作图, 由第二定义:e c a x PF =+ 201 即:a ex c a x e c a x e PF r +=+=+?==02 02011)( 又a PF PF 221=+ 0012)(22ex a ex a a r a r -=+-=-=∴ 注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出 c a a e a r c a ea a r -=-?+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a , (,P c a PF 01--=为时

椭圆第二定义

椭圆第二定义 学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 教学目标 知识目标:椭圆第二定义、准线方程; 能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用; 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取 的精神. 教学过程: 学生探究过程:复习回顾 1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为 3 2 2,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4 2 27± =y ). 2.短轴长为8,离心率为 5 3 的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ?的周长为 20 . 引入课题 【习题4(教材P50例6)】椭圆的方程为 116 252 2=+y x ,M 1,M 2为椭圆上的点 ① 求点M 1(4,2.4)到焦点F (3,0)的距离 2.6 . ② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且1162542 02=+y 代入消去2 0y 得5 1325169||==MF

第10讲椭圆及双曲线的第二定义

第10讲 椭圆及双曲线的第二定义 一. 椭圆 1. 第二定义:动点M 到定点F 的距离和它到定直线l (F 不在l 上)的距离之比等于常数e (01),则动点M 的 轨迹叫做双曲线。 定点F 是双曲线的焦点,定直线l 叫双曲线的准线(c a 2 x :l ±=),常数e 是双曲线的离心率。 2. 焦半径:双曲线上任一点和焦点的连线段的长称为焦半径 设双曲线焦点在x 轴上,F 1,F 2分别为双曲线的左右焦点,若P(x 0,y 0)是双曲线左支上任一点,则 0201a ,--a ex PF ex PF -==。若P(x 0,y 0)是双曲线右支上任一点,则 0201-a ,a ex PF ex PF +=+=。 3. 通径:过双曲线的焦点与双曲线的实轴垂直的直线被双曲线所截得的线段称为双曲线的通径,其长 a 2212 b H H = 4. 共轭双曲线:

椭圆第一定义与第二定义的统一

高中二年级数学(人教版) 椭圆第一定义与第二定义 的统一

椭圆第一定义与第二定义的统一 一、学习目标与任务 学习目标描述 知识方面: 1.复习巩固椭圆的第一定义; 2.认识椭圆的第二定义,椭圆的准线,离心率等概念; 3.通过“几何画板”的实际操作,了解离心率对椭圆扁平程度的影响; 4.通过椭圆构造实验,引入双曲线,初步理解圆锥曲线的统一定义; 能力方面: 1.学会利用软件“几何画板”以不同的方法探求椭圆的轨迹; 2.学会改变模拟数据进行数学实验; 3.学会在网络环境下的合作学习与交流。 学习内容与学习任务说明 问题1:如图,点B是半径为r的圆A的一个定点,点C是圆A上的一个动点,线段BC的垂直平分线l交直线AC于点N,求点N的轨迹。 实验1:将点B在圆A内部左右拖动,观察点N的轨迹有哪些变化。 深入:由实验1继续利用“几何画板”作图,观察椭圆的几何性质,作出椭圆的准线,理解椭圆的第二定义。 实验2:将点B拖到圆外离点A不同距离的地方,观察点N的轨迹有哪些变化。 二、学习者特征分析 (说明学生的学习特点、学习习惯、学习交往特点等) 学生已经掌握了椭圆的第一定义,以及相关的一些“几何画板”简单操作。高中的学生具有较抽象的思维能力,喜欢自己探索、发现问题和解决问题。 三、学习环境选择与学习资源设计 1、学习环境选择(打√)

(1)Web教室(2)局域网 (3)城域网 (4)校园网√(5)Internet √(6)其它 2、学习资源类型(打√) (1)课件(网络课件)(2)工具√(3)专题学习网站 (4)多媒体资源库(5)案例库√ 6)题库 (7)网络课程(8)其它√ 3、学习资源内容简要说明(说明名称、网址、主要内容) 教师设计制作了多个椭圆的构造实验,把它放在校园网上。利用几何画板让学生自己探索构造椭圆,并深入思考是否可以推广变化为圆锥曲线的统一定义。 四、学习情境创设 1、学习情境类型(打√) (1)真实情境(2)问题性情境√ (3)虚拟情境(4)其它 2、学习情境设计 以具体的数学问题结合“几何画板”有趣的数学实验引起学生的学习兴趣和探究欲望。下面的每一个具体的问题都结合动态的数学实验,让学生利用“几何画板”自己动手“做”,探究椭圆构造的方法,以及和其他圆锥曲线(双曲线、抛物线)的联系。 五、学习活动组织 1.学生学习设计

高中数学双曲线的第二定义

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗 双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数()0c e c a a = >>的点的轨迹是双曲线,其中,定点F 叫做双曲线的焦点,定直线l 叫做双曲线的准线,常数e 是双曲线的离心率。 1、离心率: (1)定义:双曲线的焦距与实轴长的比a c a c e ==22,叫做双曲线的离心率; (2)范围:1>e ; (3)双曲线形状与e 的关系: 1122 222-=-=-==e a c a a c a b k ; 因此e 的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔; (1)双曲线的形状张口随着渐近线的位置变化而变化; (2)渐近线的位置(倾斜)情况又受到其斜率制约; 2、准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线c a x l 2 2:=; 位置关系:02>>≥c a a x ,焦点到准线的距离c b p 2 =(也叫焦参数); 对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2 1:-=;相 对于上焦点),0(2c F 对应着上准线c a y l 2 2:=。 3

每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗双曲线上任意一点M 与双曲线焦点12F F 、的连线段,叫做双曲线的焦半径。 设双曲线)0,0( 122 22>>=-b a b y a x ,21,F F 是其左右焦点, e d MF =11 , ∴ e c a x MF =+ 2 01,∴10MF a ex =+;同理 20MF a ex =-; 即:焦点在x 轴上的双曲线的焦半径公式:1020 MF a ex MF a ex ?=+?? =-?? 同理:焦点在y 轴上的双曲线的焦半径公式:1020 MF a ey MF a ey ?=+??=-??( 其中12F F 、分 别是双曲线的下、上焦点) 点评:双曲线焦半径公式与椭圆的焦半径公式的区别在于其带绝对值符号,如果 要去绝对值,需要对点的位置进行讨论。两种形式的区别可以记为:左加右减,下加上减(带绝对值号)。 4、焦点弦: 过焦点的直线截双曲线所成的弦。 焦点弦公式:可以通过两次焦半径公式得到,设两交点()()1122,,A x y B x y 、, (1)当双曲线焦点在x 轴上时,焦点弦只和两交点的横坐标有关, ①过左焦点与左支交于两点时:()122c AB a x x a =-- +; ②过右焦点与右支交于两点时:()122c AB a x x a =-++。 (2)当双曲线焦点在y 轴上时,焦点弦只和两交点的纵坐标有关, ①过下焦点与下支交于两点时:()122c AB a y y a =--+; ②过上焦点与上支交于两点时:()122c AB a y y a =-++。 5、通径:过焦点且垂直于对称轴的弦。直接应用焦点弦公式,得到a b d 2 2=。

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x =-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程 11 32 2=+y x 2:证明:如图,作PP /⊥l 与P ,QQ /⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/,e QQ QF =/ ;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 为正三角形,且椭圆固定,则PQ 确定,于是PQ 的垂直平分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM // ,由第2问的结论可得: COS //MM Q ∠= M Q MM / / =PQ PQ e 321= 2 2 31= e ,//MM Q ∠为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x =- 223变题:已知椭圆)0(122 22>>=+b a b y a x ,PQ 是过 F 且与x 轴不垂直的弦,若在其左准线l 上存在点 R 使?PQR 为正三角形,求椭圆的离心率的范围。 解析:同上,由椭圆的第二定义和正三角形的性质, RM 3

椭圆的第一定义与基本性质的练习题(精)

椭圆的第一定义与基本性质的练习题 1.椭圆2x2+3y2=6的焦距是 A.2 B.2(- C.2 D.2(+ 2.方程4x2+Ry2=1的曲线是焦点在y轴上的椭圆,则R的取值范围是 A.R>0 B.0

10.椭圆的焦点、,P为椭圆上的一点,已知,则△的面积为()(A)9 (B)12 (C)10 (D)8 11.AB为过椭圆+=1中心的弦,F(c,0为椭圆的右焦点,则△AFB面积的最大值是 A.b2 B.ab C.ac D.bc 12.若椭圆的两个焦点为F1(-4,0、F2(4,0,椭圆的弦AB过点F1,且△ABF2的周长为20,那么该椭圆的方程为__________. 14.与椭圆具有相同的离心率且过点(2,-)的椭圆的标准方程是_____ 15.椭圆+ =1的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是__________. 椭圆的第二定义与性质的练习题 16.点M到一个定点F(0,2的距离和它到一条定直线y=8的距离之比是1∶2,则M点的轨迹方程是__________. 17.如果椭圆的两个焦点将长轴三等分,那么这个椭圆的两条准线间的距离是焦距的 A.4倍 B.9倍 C.12倍 D.18倍 18.设点A(-2,,椭圆+ =1的右焦点为F,点P在椭圆上移动.当|PA|+2|PF|取最小值时,P点的坐标是__________. 19.设椭圆+=1(a>b>0的左焦点为F1(-2,0,左准线l1与x轴交于点N(-3,0,过点N且倾斜角为30°的直线l交椭圆于A、B两点. (1求直线l和椭圆的方程; (2求证:点F1(-2,0在以线段AB为直径的圆上.

椭圆的第二定义(比值定义)的应用(精)

椭圆的第二定义(比值定义)的应用 陈文 教学目标:1椭圆的比值定义,准线的定义 2、使学生理解椭圆的比值定义,并掌握基本应用方法 3、对学生进行对应统一的教育 教学重点:椭圆的比值定义的应用 教学难点:随圆的准线方程的应用 教学方法:学导式 教学过程: 一、复习 前节我们学习了随圆的第二定义(比值定义): 若则M的轨迹是以F为焦点,L为准线的椭圆。

注:①其中F为定点,F(C,0),d为M到定直线L:的距离 ②F与L是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知的右焦点,点M为椭圆的动点,求的最小值,并求出此时点M的坐标。 分析:此题主要在于的转化,由第二定义: ,可得出,即为M到L(右准线)的距离。再求最小值可较快的求出。

解:如图所示,过M作于N,L为右准线:,由第二定义,知:, 要使为最小值,即:为“最小”,由图知: 当A、M、N共线,即:时,为最小;且最小值为A到L的距离=10,此时,可设,代入椭圆方程中,解得: 故:当时,为的最小值为10

[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设为椭圆的一点,离心率为e,P到左焦点F1和右焦点F2的距离分别为r1,r2 求证: 证明如图,由第二定义: 即:

又 注:①上述结论,称为椭圆中的焦半径公式 ②得出 即 当 当

[练习](1)过的左焦点F作倾斜角为300 的直线交椭 圆于A、B两点,则弦AB的长为 2 分析: 只需求(用联立方程后,韦达定理的方法可解)(学生完成) (2)的左、右焦点,P为椭圆上的一点,若则P到左准线的距离为 24 分析:由焦半径公式,设得

相关主题
文本预览
相关文档 最新文档