当前位置:文档之家› 02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案

02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案

02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案
02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法答案

第二章 电路的分析方法

P39 习题二 2-1

题2-1图 题2-1等效图 解:

334424144I R R I R I R R I ?=?+???

?

??+? ①

33341445I R E I I R R I R ?-=??

?

???++ ② 344443363I I I I =+???

??+,344215I I = 34815I I =

3R

2R

4R

5R

3I

1I

5I

4I

E +

- 1R

2I

33444621I I I I -=??

?

??++,345623I I -=

3410123I I -=,34506015I I -=,A 29

30

,302933=

=I I 代入 ①A 29

16,

29

3081544=

?=?I I 另外,戴维南等效图

A 29549

296I 5==

回归原图 3355I R I R E ?=?-,所以 A 29

3042954

163=?

-=I 2-2答 由并联输出功率400w 所以每个R

获得功率R

U P 2

,W 1004400==

)(484,2201002

Ω==R R

改串联后:W 254

22220P P 222=?===总消耗输出R U 2-3

题2-3等效图

Ω=++?=++?=

313212123121112111R R R R R R ,Ω=++?=++?=13213

223121123122R R R R R R

Ω=++?=++?=

2

1

3213123121123133R R R R R R

)(913910312

953125225

231ab Ω=+=+=+

?

+

=R 2-4

题2-4 △-Y 变换(一)图

a

2

b

c

题2-4 △-Y 变换(二)图

题2-4 △-Y 变换(三)图

题2-4 等效星型图

2-5 解:

c

题2-5 (a)图

2-6 用两种电源等效互换的方法,求电路中5Ω电阻上消耗的功率。

题2-5 (b)图

Ω

题2-5 (c)图

题2-5 (d)图

习题2-6图

解:由两源互换,原图可变为下图

A 19

4

215=--,所以:W 551252=?=?=R I P 2-7

题2-7 图

Ω2

2

Ω5

15V

+

-

1A 2V

+ + -

-

4V 1I

解:① I

I I

I

I I 44.011648.012010221=--=++

I

I I I I I I 102905150102121=-=-=++ I I I 15)(44021=+-,I 16450=

A 8

225

A 16450==

I 16

2250

1501=-I 所以 :A 8

75A 1615016225024001==-=I

16

4500

292=-I A 435161401645004640164500401162==-=-?=I

② i

sg i

R I R E U 12

∑∑+∑

=

V 2225418.0310290150414.018.0110

4.0116

8.0120=+++=++++=U

所以:A 8

225414450=?==R U I

W 3164162254822522

2

R ≈=

???

?

??==R I P 2-8 试用支路电流法和节点电压法求如图所示各支路的电流。

题2-8图

① 1

2133215050251000I I I I I I I =-=-=++ 1

1331)3(1015)(507502I I I I I -?=-==+

A 1,A 2

1

321=-==I I I

② i

sg i

R I R E U 12

∑∑+∑

=

V 5050

3501505015015010

5010050255025==+++++=U

所以: 123A 2

1

5025,A 150

100I U I U

I =-=-=

=-= 2-9 用叠加原理求图中的电流I 。

+

+

+

-

- - 100V 25V Ω50

Ω50

I

2I

1I

U

25V

Ω50

题 2-8参考方向图

题2-9 图

解:由叠加原理可知原图可变为下(a )、(b )两图之和。

"'I I I +=

(a)中 A 5

2

2

32'-=+-

=I (b)中 A 5

9A 3233"=?+=I

所以 A 5

11-=I

2-10 用叠加原理求如图所示电路中的电压ab U 及元件ab 消耗的功率。(电阻单位为Ω)

Ω1 Ω2

Ω3

Ω4

2V +

-

'I

(a )

Ω3

Ω2

Ω4 Ω1

A 3

"I

)(b

题2-10图

解:由叠加原理可有:

(a)图中:A 16

612'=+=

I ,

(b )图中A 5.256

66

"=?+=I 所以:A 5.3"'=+=I I I

故 W 5.735.321V ;2165.32ab ab =?==-=?-=R I P U

2-11 题图a )中,V 10,,V 12ab 4321=====U R R R R E 。若将理想电压源去掉后,如图b ),试问此时=ab U ?

Ω6 Ω

12V

5A

a

b

I

Ω6 Ω 12V

a

b

'I (a)

+

Ω6 5A

"I

(b

解:由叠加原理可知,b)图等于a)图减c)图,即:两电流源共同作用的响应,等于总的响应减去电压源单独作用的响应。

由已知,V 10=U 而C)图中 ,V 34"=?=R R

E

U 所以:V 7310"'=-=-=U U U

2-12 求:(1)题图中端点a 、b 处的戴维南和诺顿等效电路。

(2)如果用1Ω电流表跨接在a 、b 处,将通过多大电流?

R

=

c)

题2-12图 解:

Ω=+??=3

4

21212ab R V 3

10

1211022110b a ab

=?+-?+=-=V V U

所以,等效戴维南电路与诺顿电路如下:

Ω=12R 时 A 7103

4113

10ab =+?=

I

所以电流表的读数约为1.43A

2-13 应用戴维南定理求图中1Ω电阻的电流。

解: 由于1Ω为研究对象,所以与电流源串联的2Ω和理想电压源并联的5Ω每个电阻对1Ω不起作用,因此电路图为(b )

V 310 Ω3

4 a

b + -

.5A 2

Ω3

4 a

b

等效戴维南电路

等效诺顿电路

①将1Ω电阻开路,如(c )图,V 3010104b a ab =-?=-=V V U ②去源后,如(d )图:

Ω=4ab R

戴维南等效电路如(e )图

A 61

430

=+=

I 2-14 试用戴维南定理和诺顿定理求图中负载L R 上的电流。

(b)

4

(c )

(d )

1Ω I

(e )

题2-14图

解:由戴维南定理,等效图如下图(a ),

①V 1102

220ab ==U

②去源 Ω=?=25100

5050ab R

化简后见(b )图

A 15

22

5025110L =+=

I 而诺顿等效电路如图(c ):A 5

2250

2200==I

a b 50Ω 50Ω

220V

ab U +

-

(a )

110V + - 25Ω

50Ω b

a

(b )

A 15

22

522315025250=?=+=

I I 2-15

解:

题2-15图 ①当V 120,==U I ②当0=U ,A 310412

3

m I =?=

故当),0(+∞∈R 时,R 中的I 与U 的点的轨迹为直线中在第一象限中的线段。

50Ω

b

a

I (c

a )

b )

第二章电路的基本分析方法1

第二章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为 2.4Ω。这两个电阻的阻值分别为_ _4Ω ___和__6Ω。 = 1 Ω。 2. 下图所示的电路,A、B之间的等效电阻R AB = 3 Ω。 3. 下图所示的电路,A、B之间的等效电阻R AB A 2Ω B 4. 下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R = 60 Ω。 AB 5.下图所示电路中的A、B两点间的等效电阻为___12KΩ________.若图中所示的电流I=6mA,则流经6K电阻的电流为__2mA _____;图中所示方向的电压 U为____12V____.此6K电阻消耗的功率为__24mW_________。 A U 6. 下图所示电路中,ab两端的等效电阻为 12Ω,cd两端的等效电阻

为 4Ω。 7.下图所示电路a、b间的等效电阻Rab为 4 Ω。 8. 下图所示电路中,ab两点间的电压ab U为 10 V。 9. 下图所示电路中,已知 U S =3V, I S = 3 A 时,支路电流I才等于2A。 Ω 1 3 10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为理想电压源。 11.已知一个有源二端网络的开路电压为20V,其短路电流为5A,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为 25W 。12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理,电流 源应看作开路,电压源应看作短路。 13.用叠加定理分析下图电路时,当电流源单独作用时的I 1 = 1A ,当 电压源单独作用时的I 1= 1A ,当电压源、电流源共同时的I 1 =

电工学简明教程(第二版)第十章课后答案

判断图中各个电路能不能放大交流信号 解:a )PNP 型,有偏置电阻,电容极性正确,电压极性正确,可以放大 B )NPN 型,电压极性正确,电容极性正确,但无集电极电阻,无法将集电极的电流变化转化为电压变化,无法实现电压放大 C )能,但无发射极电阻,无法稳定静态工作点 D )输入信号被短路,集电结正偏,无法实现放大 如图,V U CC 12 =,Ω=k R C 2,Ω=k R E 2,Ω=k R B 300,晶体管的50=β。电路有两个输出端。试求1)电压放大倍数i o u U U A &&11=和i o u U U A &&11= 2)输出电阻1o r 和2o r

解:先求静态值 mA I A R R U I U I R I R U I R I R V U E B E CC B BE B E B B BE E E B B CC 53.130)1()1(12=?=++≈? +++=++==μββ Ω=++=k I r B be 07.126) 1(200β 画出等效微变电路 1)197.0)1(-11-≈-=++==E B be B C B i o u R I r I R I U U A &&&&&ββ 1)1()1(22≈+++==E B be B E B i o u R I r I R I U U A &&&&&ββ 2)Ω==k R r C o 21 Ω== 4.212βbe o r r

如图所示分压式偏置放大电路,已知V U CC 24 =,Ω=k R C 3.3,Ω=k R E 1.5,Ω=k R B 331,Ω=k R B 102,Ω=k R 5.1L ,晶体管的66=β,并设0S ≈R 。1)试求静态值CE B C U I I ,,;2)画出微变等效电路;3)计算晶体管的输入电阻;4)计算电压放大倍数;5)计算放大电路输出端开路时的电压放大倍数,并说明负载电阻对电压放大倍数的影响;6)估算放大电路的输入电阻和输出电阻 解1)直流通路如下 V U R R R V CC B B B B 58.52 12=+= V R I R I U mA I A I mA R U V I I C C E E CC C B E BE B B E 34.6U 66.3,5572.3)1(CE =--===?=-= +=μβ 2)微变等效电路 3)Ω=++=k I r B be 70.626 )1(200β

电工学简明教程第二版答案第二章

电工学简明教程第二版(秦曾煌 主编 ) 习题 A 选择题 2.1.1 (2) 2.2.1 (2) 2.2.2 (1 ) 2.3.1 (1) 2.3.2 (3) 2.4.1 (2) 2.4.2 (3) 2.4.3 (2) 2.4.4 (1) 2.5.1 (2)(4) 2.5.2 (1) 2.7.1 (1) 2.8.1 (3) 2.8.2 (2) 2.8.3 (3) 2.8.4 (3) B 基本题 2.2.3 U=220V,I 1=10A , I 2=5√2A U=220√2sin (wt )V U =220<00V i 1=10√2sin (wt +900)A i 1=10<900A i 2=10sin (wt ?450)A i 1=5√2

i ′=(4?j3)A =5e j (?36.90 ) i ′=5√2sin (wt ?36.90)A 2.4.5 (1)220V 交流电压 { S 打开 I =0A U R =U L =0V U C =220V S 闭合 U R =220V I = 220V 10Ω =22A U L =0V U C =0V } (2)U=220√2sin (314t )v { S 打开 { U R =wLI =10?22=220V U C =1 wc I =220V Z =R +j (wL ?1wc =10+j (10?1314? 1003140)=10 Ω I =U Z =220 10 =22 } S 闭合 {I =U |U |= 22010√2 = 11√2A U R =RI =110√2V U L =wLI =110 √2V U C =0V Z =R +jwL =10+j ?314?1 31.4 =10+j10 Ω } } 2.4.6 √R 2+(wL )2=U I √16002+(314L )2= 380I30?10?3 L=40(H) 2.4.7 { √R 2 +(wL ) 2 =2228.2 => 62+(314L )2=121 2 =>L =15.8(LL ) R =U I = 120 20I =6( Ω) } 2.4.8 I= U √R 2 +(2πfL )2 = 380 √2002 +(314?43.3) =27.7(mA) λ=cos φ1=R Z = 200013742.5 =0.146 2.4.9 W=2πf =314rad /s wL=314*1.65=518.1 I=U |Z |= √(28+20)2 +581.1 =0.367(A) U 灯管=R1?I =103V U 镇=√202+(518.1)2?0.367=190V U 灯管+U 镇=203》220 j2∏fL

电工学简明教程第二版答案(第一章)

第一章习题答案 A 选择题 1.4.1(A ) 1.4.2(C ) 1.4.3(C ) 1.4.4(B ) 1.5.1(B ) 1.5.2(B ) 1.6.1(B ) 1.6.2(B ) 1.8.1(B ) 1.9.1(B ) 1.9.2(B )1.9.3 (B ) 1.11.1(A) 1.1 2.1(B) 1.12.3 (B) 1.12.4 (B) 1.12.5 (B) B 基本题 1.4.5 (1)略 (2)元件1和2为电源 ,元件3,4和5为负载 (3)(-560-540+600+320+180)*w=0 平衡 1.4.6 380/(2110/8+R)=8/110,所以R ≈3.7K Ω,W R =(8/110)2×3.7K ≈20W 1.4.7 电阻R=U/I=6/50*310-=120Ω,应选者(a )图. 1.4.8 解:220/(R1+315)=0.35A ,得R1≈314Ω. 220/(R2+315)=0.7A , 得R2≈0Ω. 1.4.9(1)并联R2前,I1=E/( 0R +2R e +1R )=220/(0.2+0.2+10)≈21.2A. 并联R2后,I2=E/( 0R +2R e +1R ∥2R )≈50A. (2)并联R2前,U2=R1*I1=212V,U1=(2R e +1R )*I1=216V. 并联R2后,U2=(1R ∥2R )*I1=200V,U1=2R e +1R ∥2R =210V. (3)并联R2前,P=212*21.2=4.5KW. 并联R2后,P=200*50=10KW. 1.5.3 I3=I1+I2=0.31uA ,I4=I5-I3=9.61-0.31=9.3uA ,I6=I2+I4=9.6uA. 1.6.3 因为电桥平衡,所以不管S 断开还是闭合 ab R =5R ∥(1R +3R )∥(2R +4R )=200Ω. 1.6.4 解: a U =1U =16V,b U =<[(45+5) ≈5.5]+45>×16/<[(45+5) ∥5.5] ∥5.5+45>≈1.6. c U =(45+5)∥5.5×b U /总R ≈b U /10=0.16V ,同理d R ≈c U /10=0.016V.

最新电工学第四版习题答案

6章 暂态电路习题 6.1.2 电路如图6.02所示。求在开关S 闭合瞬间(t=0+)各元件中的电流及其两端电压;当电路到达稳态时又各等于多少?设在t=0-时,电路中的储能元件均为储能。 解:t=0+时:此时等效电路如图解6.10所示。 ()()()()()()()()()()()()()()V 200 0000A 1000A 18 210 000000 0012121121212121R 2R R L L R C C 21R R c c L L ==?=======+=+= =====++++++++++++++u R i u u u i i i R R U i i u u i i 当电路达到稳定(t=∞):此时等效电路如图解6.11所示。 ()()()()()()()()A 18 210 21L R L R L L C C 22112121=+=+= ∞=∞=∞=∞=∞=∞=∞=∞R R U i i i i u u i i 注意 ()()的方向相反的方向和+∞022R R i i ()()()()8V 2R C R C 2221=?∞=∞=∞=∞R i u u u 注意 ()()()2V 0122R R R =∞∞+u u u 方向相反。与 6.2.7电路如图6.10所示,换路钱已处于稳态,试求换路后(t ≥0)的u C 。 解: 换路前(t=0-)时 ()V 101020101033=???=--C u 图6.10 习题6.2.7的图 F 图解6.11

换路后 ()()V 1000C ==-+C u u 到达稳定(t =∞)时 ()V 510102020 101010 10133 C -=-??++?=∞-u 时间常数 ()s 1.010101020 101020101063=???++?+=-τ 于是 ()()()[]()[]V 155******** .0C C C C t t t e e e u u u u -- -++-=--+-=∞-+∞=τ 6.5.2电路如图6.16所示,在换路前已处于稳态。当将开关从1的位置合到2的位置后,试求i L 和i ,并作出它们的变化曲线。 解:当开关S 处于1位置时的稳态值为 ()A 2.10A 2.11 22 A 8.1121213 L L -=-=+=-=+?+ -= -i i i i 所以 开关S 合到2时,()()()+-+-==02A .100L L L i i i ,将当作恒流源代替电感L ,并与2Ω电阻组成电流源,再将其变成-2.4V ,2Ω的电压源,其参考方向为下“+”上“-”。由此可求得i (0+)为 ()()()()()()()()[][]()()()[][] 所示。 的变化曲线如图解和结果到达稳态时 当时间常数17.6A 4.22.12.12.12.10A 6.18.18.12.08.10A 2.18.13 2 1228.11 21213 18.13 213 12121V 2.0214.230L 8.18 .1L L L L 8.18 .1L i i e e e i i i i e e e i i i i i i s i t s L i t t t t t t ---+-- -++-=--+=∞-+∞=-=-+=∞-+∞==?=∞?+=∞=+?+ +=∞∞==+ =+?+==+-+= τ τ τ 图解 6.17

(完整版)第二章电路分析方法

第二章电路的分析方法 电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。为此,要根据电路的构特点去寻找分析和计算的简便方法。 2.1 支路电流法 支路电流法是分析复杂电路的的基本方法。它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。下面通过具体实例说明支路电流法的求解规律。 例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。【解】该电路有3 条支路(b=3),2个结 点(n=2),3 个回路(L=3 )。先假定各支路电流的参 考方向和回路的绕行方向如图所示。因为有3 条支路则 有3 个未知电流,需列出3 个独立方程,才能解得3 个未知量。根据KCL 分别对点A、B 列出的方程实际上是 相同的,即结点A、B 中只有一个结点电流方程是独立 的,因此对具有两个结点的电路,只能列出一个独立的 KCL 方程。 再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。根据以上分析,可列出3 个独立方程如下: 结点A I1 I2 I 0 回路ⅠI1R1 I2R2 U S1 U S2 回路ⅡI2 R2 IR U S2 I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流 通过以上实例可以总出支路电流法的解题步骤是: 1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。 2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。为了计算方便,通常选网孔作为回路。

电工学简明教程全部答案

第一章习题答案 A 选择题 (A ) (C ) (C ) (B ) (B ) (B ) (B ) (B ) (B ) (B ) (B ) (B ) (B) (B) (B) B 基本题 (1)略 (2)元件1和2为电源 ,元件3,4和5为负载 (3)(-560-540+600+320+180)*w=0 平衡 380/(2110/8+R)=8/110,所以R ≈Ω,W R =(8/110)2×≈20W 电阻R=U/I=6/50*310-=120Ω,应选者(a )图. 解:220/(R1+315)=,得R1≈314Ω. ~ 220/(R2+315)=, 得R2≈0Ω. 并联R2前,I1=E/( 0R +2R e +1R )=220/(++10)≈. 并联R2后,I2=E/( 0R +2R e +1R ∥2R )≈50A. (2)并联R2前,U2=R1*I1=212V,U1=(2R e +1R )*I1=216V. 并联R2后,U2=(1R ∥2R )*I1=200V,U1=2R e +1R ∥2R =210V. (3)并联R2前,P=212*=. 并联R2后,P=200*50=10KW. I3=I1+I2=uA ,I4=I5-I3=,I6=I2+I4=uA. 因为电桥平衡,所以不管S 断开还是闭合 ab R =5R ∥(1R +3R )∥(2R +4R )=200Ω. 解: a U =1U =16V,b U =<[(45+5) ≈]+45>×16/<[(45+5) ∥] ∥+45>≈. c U = (45+5)∥×b U /总R ≈b U /10=,同理d R ≈c U /10=. ~ 解:当滑动端位于上端时,2U =(R1+RP )1U /(R1+RP+R2)≈. 当滑动端位于下端时,2U =R2*1U /(R1+RP+R2)≈. 所以输出范围为

电工学简明教程(第二版)第二章课后答案

2.4.5 有一由RLC 元件串联的交流电路,已知Ω=10R ,H L 4.311= ,F C μ3140 106 =。在电容元件的两端并联一短路开关S 。1)当电源电压为220V 的直流电压时,试分别计算在短路开关闭合和断开两种情况下电路中的电流I 及各元件上的电压R U ,L U ,C U ;2)当电源电压为正弦电压t u 314sin 2220=时,试分别计算在上述两种情况下电流及各电压的有效值 解:1)电源电压为直流时 短路开关闭合时,电容被短路,0=C U , 由于输入为直流,感抗0==L X L ω,0=L U V U R 220=,22A == R U I R 短路开关断开时,电容接入电路,∞=C X ,电路断开0A =I ,0==L R U U , 220V =C U , 2)电源电压为正弦电压t u 314sin 2220=,可知314=ω 开关闭合时,电容被短路,0=C U 感抗Ω== 10L X L ω,A 2112 2 =+= L X R U I V I U L L 2110X == V I U R R 2110X == 开关断开时,电容接入电路容抗Ω== 101 C X C ω,感抗Ω==10L X L ω 22A ) (2 2 =-+= C L X X R U I V I U L L 220X == V I U R R 2110X == V I U C C 2110X == 本题要点:电阻电容电感性质,电容隔直通交,电感阻交通直;相量计算

2.4.10 无源二端网络输入端的电压和电流为V t u )20314(sin 2220 +=, A t i )33-314(sin 24.4 =,试求此二端网络由两个元件串联的等效电路和元件的 参数值,并求二端网络的功率因数以及输入的有功功率和无功功率 解:由电压和电流相位关系可知,电压超前电流,为感性电路 Ω=== 504 .4220I U Z 电压和电流相位差 53)(-33-20==? 6.053cos = Ω===3053cos 50cos ?Z R Ω===4053sin 50sin ?Z X L 有功功率W UI P 8.5806.0*4.4*220cos ===? 无功功率ar 4 .7748.0*4.4*220sin V UI Q ===? 本 题 要 点 : i u C L C L I U Z R X X X X j R Z ???∠∠=∠=-∠-+=+=arctan )(R )X -(X 22C L 阻抗三角形,电压三角形,功率三角形

电工学第六版课后答案

第一章习题 1-1 指出图1-1所示电路中A 、B 、C 三点的电位。 图1-1 题 1-1 的电路 解:图(a )中,电流 mA I 512 26 .=+= , 各点电位 V C = 0 V B = 2×1.5 = 3V V A = (2+2)×1.5 = 6V 图(b )中,电流mA I 12 46 =+=, 各点电位 V B = 0 V A = 4×1 = 4V V C =- 2×1 = -2V 图(c )中,因S 断开,电流I = 0, 各点电位 V A = 6V V B = 6V V C = 0 图(d )中,电流mA I 24 212 =+=, 各点电位 V A = 2×(4+2) =12V V B = 2×2 = 4V V C = 0 图(e )的电路按一般电路画法如图, 电流mA I 12 46 6=++=, 各点电位 V A = E 1 = 6V V B = (-1×4)+6 = 2V V C = -6V 1-2 图1-2所示电路元件P 产生功率为10W ,则电流I 应为多少? 解: 由图1-2可知电压U 和电流I 参考方向不一致,P = -10W =UI 因为U =10V, 所以电流I =-1A 图 1-2 题 1-2 的电路 1-3 额定值为1W 、10Ω的电阻器,使用时通过电流的限额是多少?

解: 根据功率P = I 2 R A R P I 316010 1.=== 1-4 在图1-3所示三个电路中,已知电珠EL 的额定值都是6V 、50mA ,试问哪个电 珠能正常发光? 图 1-3 题 1-4 的电路 解: 图(a )电路,恒压源输出的12V 电压加在电珠EL 两端,其值超过电珠额定值,不能正常发光。 图(b )电路电珠的电阻Ω=Ω==12012050 6 K R .,其值与120Ω电阻相同,因此 电珠EL 的电压为6V ,可以正常工作。 图(c )电路,电珠与120Ω电阻并联后,电阻为60Ω,再与120Ω电阻串联,电 珠两端的电压为V 41260 12060 =+?小于额定值,电珠不能正常发光。 1-5 图1-4所示电路中,已知电压U 1 = U 2 = U 4 = 5V ,求U 3和U CA 。 解:根据基尔霍夫电压定律,对回路ABCDA 可写出方程 U 1+U 2-U 3+U 4 =0 U 3= U 1+U 2+U 4 = 5+5+5=15V 对回路ACDA 可写出方程 U CA +U 3-U 4=0 U CA =U 4-U 3=5-15=-10V 1-6 欲使图1-5所示电路中的电流I=0,U S 应为 多少? 解:因为电流I=0, 所以I 1=I 2= A 205154 .=) +( U S =5×0.2=1V 图1-5 题1-6的电路 1-7 在图1-6所示三个电路中,R 1 = 5Ω,R 2 = 15Ω,U S = 100V ,I 1 = 5A ,I 2 = 2A 。 若R 2电阻两端电压U =30V ,求电阻R 3 。 解:A R U I 215 30 25=== A I I I 725514=+=+=

第2章 电路的分析方法

第2章 电路的分析方法 电路分析是指在已知电路结构和元件参数的条件下,讨论激励和响应之间的关系。电路分析虽然可以用欧姆定律和基尔霍夫定律,但由于电路形式各异,在某些电路应用时有些美中不足。本章主要介绍线性电路中的一些重要定理,如叠加定理、戴维南定理以及诺顿定理等。 2.1 叠加原理 叠加原理是线性电路的一个重要定理,它反映了线性电路的一个基本性质:叠加性。应用叠加原理可以使某些电路的分析计算大为简化。 所谓叠加原理就是当线性电路中有几个电源共同作用时,各某支路的电流或电压等于电路中各电源单独作用时,在该支路产生的电流或电压的代数和。叠加原理也称独立作用原理。 所谓单独作用,是指除该电源外其它各电源都不作用于电路(除源)。对不作用于电路的电源的处理办法是:恒压源予以短路,恒流源予以开路。对实际电源的内阻应保留。 叠加(求代数和)时以原电路的电流(或电压)的参考方向为准,若各个独立电源分别单独作用时的电流(或电压)的参考方向与原电路的电流(或电压)的参考方向一致则取正号,相反则取负号。 例2-1-1 图2-1(a )所示电路中,已知R 1 = 100Ω,R 2 = 100Ω,U S = 20V , I S = 1A 。试用叠加原理求支路电流I 1和I 2。 解:根据原电路画出各个独立电源单独作用的电路,并标出各电路中各支路电 U I 2 U I 2 ′ R I 2 ″ (a )原电路 (b )U S 单独作用电路 (c )I S 单独作用电路 图2-1 例2-1-1插图

按各电源单独作用时的电路图分别求出每条支路的电流值。 由图(b )恒压源U S 单独作用时 121220 0.1A 100100 S U I I R R ''== ==++ 由图(c )恒流源V S 单独作用时 12 0.5A I I ''''== 根据电路中电流的参考方向,一致取正,相反取负的原则,求出各独立电源在支路中单作用时电流(或电压)的代数和。 111220.10.50.4A 0.10.50.6A 2I I I I I I '''=-=-=-'''=+=+= I 1为负说明其实际方向与正方向相反。 叠加原理是分析线性电路的基础,应用叠加原理应注意只适用于线性电路中电流和电压的计算,不能用来计算功率,因为电功率与电流和电压是平方关系而非线性关系。 2.2 等效电源定理 等效电源定理包括戴维南定理和诺顿定理,它是分析计算复杂线性电路的一种有力工具。当只需计算复杂电路中某一支路的电流时,应用等效电源定理来求解最为简便。等效电源定理的应用涉及到二端网络概念。所谓二端网络是指任何具有一对端钮的电路,二端网络又称一端口网络。若网络内含有电源,称为有源二端网络,用N A 表示;若网络内不含有电源,称为无源二端网络,用N P 表示。 图2-2 (a )电路的虚线部分就是一个有源二端网络。按照“等效”的含义,可以推想到,完全有可能找到这样一个等效电源,用它来代替原来的有源二端网络后,并不改变其端口电压U 以及流出(或流入)引出端钮的电流。 L (a ) 图2-2 有源二端网络

电工学简明教程第二版答案

电工学简明教程第二版(秦曾煌主编)习题 A选择题 2.1.1(2) 2.2.1(2) 2.2.2 (1) 2.3.1(1) 2.3.2(3) 2.4.1(2) 2.4.2(3) 2.4.3(2) 2.4.4(1) 2.5.1(2)(4) 2.5.2(1) 2.7.1(1) 2.8.1(3) 2.8.2(2) 2.8.3(3) 2.8.4(3) B基本题 2.2.3 U=220V,, U=220V =V 2.2.4V 2.4.5 (1)220V交流电压 j2∏ fL 第2.2.2题

(2)U=220v 2.4.6= = L=40(H) 2.4.7 2.4.8 I===27.7(mA) λ= 2.4.9 W= wL=314*1.65=518.1 I===0.367(A) Z= w λ= P= Q= w

*=0.588(v) 2.5.3 (a) (b) (C) (d) (e) 2.5.4 (1) (2) 为电阻时, (3)为电容时, 2.5.5令, I2= =11< A I=I1+I2=11 P=UIcos 2.5.6 i1=22 i2= A2表的读数 I2=159uA A1表的读 数 I1=11 U比I超前所以R=10(L=31.8mH I=I1+I2=11 A读数为11 2.5.7 (a) Zab= (b) Zab= 2.5.8 (a) I==1+j1 (b) I= 2.5.9(A)Us=(-j5)*I=5-j*5 (b) Us=5*Is+(3+4j)*I=130+j*75 解:==0.707< U=(2+j2)*I+Uc=j2+1

令Ubc=10<则== UR=RI=5j=5

电工学简明教程第二版答案(第十一章)

第11章习题答案 A选择题11.2.1 (3)11.2.2 (2)11.2.3 (3)

11.3.11 解: U+=R3/(R2+R3)U i2 U-=U+=R3/(R2+R3)U i2 由“虚断”可知 (U i1—U-)/R1=(U-—U o)/R i 因此: U o=(1+R f/R1)U_—R f/R1*U i1 =(1+R f/R1)*R3/(R2+R3)U i2—R f/R1*U i1 =(1+20/4)*20/(4+20)*1—20/4*1.5 =—2.5 V 11.3.12 解: 由“虚断”和“虚短”可知 i1=i f, U+=U-=0 所以 i1=U i/R1i F=—dU o/dt U i=—R1*C f*dU o/dt 则 U o=—1/(R1*C f)∫U i dt+U i(0) 初始情况下:U o(0)=0 U i= -1V 于是 U o=-U i/(R1*C f)*t 得t=-(U o*R1*C f)/U i=0.1 S 若要使积分时间t’=10t=1S,则C f*R1=-U i/U o*t’=0.1s 即有 R1=100k,C f=1uF 或者R1=10k ,C f=10uF 11.3.13 解:由“虚断”可知 U-=U+=R3/(R2+R3)U i2 由“虚短”可知 (U i1—U-)/R1=(U—U o1)/R f 所以 U o1=-R f/R1*U i1+R3/(R2+R3)*(1+R f/R1)U i2 =-20/10x1.1+20/(10+20)x(1+20/10)x1 =-0.2 V 第二级是积分电路 U o= - 1/(R4*C f)∫U o1dt=-U o1/(R4*C f)*t 于是

电工学简明教程第二版标准答案

电工学简明教程第二版标准答案 (B)1、 11、1(A) 1、 12、1(B)1、 12、3 (B) 1、 12、4 (B) 1、 12、5 (B) B 基本题1、4、5 (1)略(2)元件1和2为电源,元件3,4和5为负载(3)(-560-540+600+320+180)*w=0 平衡1、4、6380/(/8+R)=8/110,所以R≈3、7K,W=(8/110)3、 7K≈20W1、4、7 电阻R=U/I=6/50*=120,应选者(a)图、1、4、8 解:220/(R1+315)=0、35A,得R1≈3 14、220/(R2+315)=0、7A,得R2≈0、1、4、9(1)并联R2前,I1=E/( +2R+)=220/(0、2+0、2+10)≈ 21、2 A、并联R2后,I2=E/( +2R+∥)≈50 A、(2)并联R2前,U2=R1*I1=212V,U1=(2R+)*I1=216V、并联R2后,U2=(∥)*I1=200V,U1=2R+∥=210V、(3)并联R2前,P=212*

21、2=4、5KW、并联R2后,P=200*50=10KW、1、5、3 I3=I1+I2=0、31uA,I4=I5-I3=9、61-0、31=9、3uA, I6=I2+I4=9、6u A、1、6、3 因为电桥平衡,所以不管S断开还是闭合=∥(+)∥(+)=200、1、6、4 解: ==16V,=<[(45+5) ≈5、5]+45>16/<[(45+5) ∥5、5] ∥5、5+45>≈1、6、 =(45+5)∥5、5/≈/10=0、16V,同理≈/10=0、016V、1、6、5 解:当滑动端位于上端时,=(R1+RP)/(R1+RP+R2)≈8、41V、当滑动端位于下端时,=R2*/(R1+RP+R2)≈5、64V、所以输出范围为5、64-8、 14、1、6、 61、7、1 解:等效电路支路电流方程:IL=I1+I2 E2- RO2*I2+RO1*I1-E1=0 RL*IL+RO2*I2-E2=0带入数据得 I1=I2=20A,IL=40A1、8、2解:先利用叠加定理计算R1上的电流分成两个分电路① U1单独作用:解② IS单独作用:分流所 以,1、9、4解:根据KCL得则1A电流源吸收的功率:2A电流源吸收的功率:R1电阻吸收功率:R2电阻吸收功率:1、9、5解:将电流源转换成电压源,如下图则 ,A1、9、6解:将两个电压源转换成电流源再合并为一个1、9、7解:设E单独作用uab’ = E/4 =1/412 =3V则两个电流源作用时uab’’ = uab3=7V1、

电路分析第2章 作业参考答案

第2章电路的一般分析方法 P2-4 用网孔分析法求图P2-4所示电路中的电流 i 图P 2-4解:设网孔电流和电流源电压如图所示: 方程如下: 网孔方程: 12 4 4 )1 5( 6 4 4 1 2 3 1 2 1 3 2 1 - = + - - = + + - - = - - + + u i i u i i i i i ) ( 补充方程:A i i3 2 3 = - 联立以上4个方程可解得: A i33 .1 1 - =,A i07 .3 2 - =,A i07 .0 3 - =,V u07 . 17 =,A i i i74 .1 1 2 - = - = P2-6 求图P2-6所示电路的网孔电流。 x 0.5U 图P 2-6 解:方程如下: 网孔方程: 60 120 )4 2 6( 6 120 5.0 6 6 8 2 1 2 1 - = + + + - - = - + i i U i i x ) ( 补充方程: 2 4i U x ? = 联立以上3个方程可解得: A i8- 1 =,A i1 2 =,V U x 4 = P2-9 应用网孔分析法计算图P2-9所示电路中的0i。 图P 2-9 解:设网孔电流和电流源电压如图所示: 方程如下: 则网孔方程: u i i u i i i i i = + + - - = + - = - + + 3 1 2 1 3 2 1 8 2 2 60 10 10 2- 10 10 4 2 ) ( ) ( 补充方程: 1 2 3 3 i i i i i = = - 联立以上5个方程可解得:

A i 3.711=,A i 4.412=,A i 3.663=, V u 88.62=,A i i 3.7110== P2-16 利用节点电压法计算图P 2-16所示电路中电流0i 。 图P 2-16 解: 1)设节点如图所示: 节点方程: 032132113)21 101(21101021 )812141(4160 i u u u u u u u =++--=-+++- = 补充方程:4 2 10u u i -= 联立以上4个方程可解得: V u 601=,V u 8.0532=,V u 8.8623=, A i 3.710=P2-18用节点电压法求图P 2-18所示电路中的 1U 。 U 3 图P 2-18 解:设参考节点和独立节点如图,同时设受 控电压源流过的电流如图所示: 节点方程: I U U U U U U =++-==--++312321)3 1 31(3160 03 1 21)2413121( 补充方程: 3 61311 23U U i i U U -= =- 联立以上5个方程可解得: V U 481=,V U 602=,V U 363=, A I 8=,A i 41-=P2-20 用节点分析计算图P2-20所示电路的 I 。

电工学简明教程第二版答案

第一章习题答案 A 选择题 1.4.1(A ) 1.4.2(C ) 1.4.3(C ) 1.4.4(B ) 1.5.1(B ) 1.5.2(B ) 1.6.1(B ) 1.6.2(B ) 1.8.1(B ) 1.9.1(B ) 1.9.2(B )1.9.3 (B ) 1.11.1(A) 1.1 2.1(B) 1.12.3 (B) 1.12.4 (B) 1.12.5 (B) B 基本题 1.4.5 (1)略 (2)元件1和2为电源 ,元件3,4和5为负载 (3)(-560-540+600+320+180)*w=0 平衡 1.4.6 380/(2110/8+R)=8/110,所以R ≈3.7K Ω,W R =(8/110)2×3.7K ≈20W 1.4.7 电阻R=U/I=6/50*310-=120Ω,应选者(a )图. 1.4.8 解:220/(R1+315)=0.35A ,得R1≈314Ω. 220/(R2+315)=0.7A , 得R2≈0Ω. 1.4.9(1)并联R2前,I1=E/( 0R +2R e +1R )=220/(0.2+0.2+10)≈21.2A. 并联R2后,I2=E/( 0R +2R e +1R ∥2R )≈50A. (2)并联R2前,U2=R1*I1=212V,U1=(2R e +1R )*I1=216V. 并联R2后,U2=(1R ∥2R )*I1=200V,U1=2R e +1R ∥2R =210V. (3)并联R2前,P=212*21.2=4.5KW. 并联R2后,P=200*50=10KW. 1.5.3 I3=I1+I2=0.31uA ,I4=I5-I3=9.61-0.31=9.3uA ,I6=I2+I4=9.6uA. 1.6.3 因为电桥平衡,所以不管S 断开还是闭合 ab R =5R ∥(1R +3R )∥(2R +4R )=200Ω. 1.6.4 解: a U =1U =16V,b U =<[(45+5) ≈5.5]+45>×16/<[(45+5) ∥5.5] ∥5.5+45>≈1.6. c U =(45+5)∥5.5×b U /总R ≈b U /10=0.16V ,同理d R ≈ c U /10=0.016V. 1.6.5 解:当滑动端位于上端时,2U =(R1+RP )1U /(R1+RP+R2)≈8.41V. 当滑动端位于下端时,2U =R2*1U /(R1+RP+R2)≈5.64V. 所以输出范围为5.64-8.14. 1.6.6

02电工学(电工技术)第二版魏佩瑜第二章电路的分析方法标准答案

第二章 电路的分析方法 P39 习题二 2-1 题2-1图 题2-1等效图 解: 334424144I R R I R I R R I ?=?+??? ? ??+? ① 33341445I R E I I R R I R ?-=?? ? ???++ ② 344443363I I I I =+??? ??+,344215I I = 34815I I = ①

33444621I I I I -=?? ? ??++,345623I I -= 3410123I I -=,34506015I I -=,A 29 30 ,302933= =I I 代入 ①A 29 16, 29 3081544= ?=?I I 另外,戴维南等效图 A 29549 296I 5== 回归原图 3355I R I R E ?=?-,所以 A 29 3042954 163=? -=I 2-2答 由并联输出功率400w 所以每个R 获得功率R U P 2 ,W 1004400== )(484,2201002 Ω==R R 改串联后:W 254 22220P P 222=?===总消耗输出R U 2-3

题2-3等效图 Ω=++?=++?= 313212123121112111R R R R R R ,Ω=++?=++?=13213 223121123122R R R R R R Ω=++?=++?= 2 1 3213123121123133R R R R R R )(913910312 953125225 231ab Ω=+=+=+ ? + =R 2-4 题2-4 △-Y 变换(一)图 1Ω a 2 b c

电工学简明教程(第二版)第十章课后答案

10.2.10 判断图中各个电路能不能放大交流信号 解:a )PNP 型,有偏置电阻,电容极性正确,电压极性正确,可以放大 B )NPN 型,电压极性正确,电容极性正确,但无集电极电阻,无法将集电极的电流变化转化为电压变化,无法实现电压放大 C )能,但无发射极电阻,无法稳定静态工作点 D )输入信号被短路,集电结正偏,无法实现放大 10.2.12 如图,V U CC 12=,Ω=k R C 2,Ω=k R E 2, Ω=k R B 300,晶体管的50=β。电路有两个输出端。试求1)电压放大倍数i o u U U A 11=和i o u U U A 11= 2)输出电阻1o r 和2o r

解:先求静态值 mA I A R R U I U I R I R U I R I R V U E B E CC B BE B E B B BE E E B B CC 53.130)1()1(12=?=++≈? +++=++==μββ Ω=++=k I r B be 07.126) 1(200β 画出等效微变电路 1)197.0)1(-11-≈-=++==E B be B C B i o u R I r I R I U U A ββ 1)1()1(22≈+++==E B be B E B i o u R I r I R I U U A ββ 2)Ω== k R r C o 21 Ω==4.212β be o r r

10.3.4 如图所示分压式偏置放大电路,已知V U CC 24=,Ω=k R C 3.3,Ω=k R E 1.5,Ω=k R B 331,Ω=k R B 102,Ω=k R 5.1L ,晶体管的66=β,并设0S ≈R 。1)试求静态值CE B C U I I ,,;2)画出微变等效电路;3)计算晶体管的输入电阻;4)计算电压放大倍数;5)计算放大电路输出端开路时的电压放大倍数,并说明负载电阻对电压放大倍数的影响;6)估算放大电路的输入电阻和输出电阻 解1)直流通路如下 V U R R R V CC B B B B 58.52 12=+= V R I R I U mA I A I mA R U V I I C C E E CC C B E BE B B E 34.6U 66.3,5572.3)1(CE =--===?=-= +=μβ 2)微变等效电路 3)Ω=++=k I r B be 70.626 )1(200β

第二章 电路的分析方法(答案)汇总

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和节点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)节点电压法:在电路中任选一个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。以节点电压作为未知量,列写节点电压的方程,求解节点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

相关主题
文本预览
相关文档 最新文档