当前位置:文档之家› 不锈耐热钢螺栓的热处理技巧

不锈耐热钢螺栓的热处理技巧

不锈耐热钢螺栓的热处理技巧
不锈耐热钢螺栓的热处理技巧

不锈耐热钢螺栓的热处理技巧

封头不锈耐热钢按其钢材内部组织特征可分奥氏体型、铁素体型、马氏体型和沉淀硬化型四类。耐热不锈钢不能进行淬火回火,它的强度只能通过冷作硬化及合金元素强化成沉淀硬化等方法获得。不锈钢和耐热钢紧固件的热处理,大都采用企业标准或各单位的专用工艺文件进行加工。

由于对热处理工艺规范、设备、工艺、质量控制及检验的有关方面较严格,为提高不锈钢、耐热钢紧固件的发展和品质提升, 现进行以下分析。

1. 钢材分析

0Cr15Ni25Ti2MoAlVB钢是奥氏体型耐热不锈钢,也可称为高温合金。该钢退火状态下塑性和韧性较好,可以进行冷镦成形,切削加工性能和热处理性能良好,可使用到650-700℃,用于耐热、耐腐蚀的受力的发动机壳体螺栓完全可行,具有高强度、高抗松弛性、低缺口敏感性、一定的持久强度、良好的抗氧化性。

0Cr15Ni25Ti2MoAlVB钢可作为耐热钢使用,也可以当作高温合金使用。在GB/T14992-1994中高温合金牌号为GH2132,相当于美国AISI/ASTM A638标准中为660钢和日本JIS G4315标准中的SUS660钢。

奥氏体型不锈钢0Cr15Ni25Ti2MoAlVB钢可作为耐热钢使用,这是由于奥氏体的再结晶温度高,铁和其它元素的原子在其中的扩散系数小,故其强化稳定性比铁素体高, 压力表缓冲管用于工作温度高于650℃的发动机耐热紧固件多系奥氏体材料,是以奥氏体型不锈钢为基础添加一些热强性的合金元素而成。它们既可作为耐蚀性使用,也可作为耐热钢使用。

0Cr15Ni25Ti2MoAlVB钢含有大量的奥氏体稳定化元素,如铬、镍、钼、钛等合金元素。铬、镍在奥氏体型耐热钢中,能提高其抗氧化性;钼能提高奥氏体型钢的热强性;钛是比铬更易与碳结合形成稳定碳化物的元素,钛含量1.90%可以使大部分的碳存在于钛的碳化物之中,从而改善钢的抗晶间腐蚀能力。合金添加中有Al等元素,这种材料经过高温处理,并进行长时间的时效后,在组织中析出一种弥散的金属化合物,从而使该材料的抗拉强度提高。

工艺设计

发动机排气歧管用六角头螺栓,规格M8*20、M8*45,要求机械性能>7T级,硬度25HRCmin,抗拉强度Rm>780MPa。为此,我们进行了热处理工艺探索。热

处理工艺试验参考国外相关工艺,修正某些参数,获得符合要求的机械性能。同时,根据工厂的生产现状,进行一些必要的摸索, 耐磨管道确定我们的生产方式与可行的热处理工艺。

2.1 生产工艺流程

备料—固溶—冷镦—再结晶退火—去应力回火—切六角头—搓丝—清洗—稳定化处理—时效—着色上蜡。

冷镦用耐热0Cr15Ni25Ti2MoAlVB钢丝牌号化学成分符合GB/T1221或

GB/T14992标准,固溶状态交货,室温硬度≥200HRW。为了达到M8螺栓丝坯尺寸φ7.02-φ7.05必须经过材料高温拉拔,这时材料硬度可达到38HRc以上,不能进行冷镦成型,应进行固溶处理,以达到软化的目的。

固溶

成品丝固溶温度采用990±10℃保温1.5h,然后水冷。固溶处理,就是将刚加热至高温,使碳化物得到充分溶解,然后迅速冷却,得到单一奥氏体组织。经固溶处理后,硬度最低、塑性韧度良好,硬度在17-20HRc,这时加工成型性能最好。

固溶处理采用井式滲碳加热炉RQ3-90-9D设备。通常耐热钢热处理保护气氛主要是氩气,但氩气难以购买。一般可用放热式气氛或氮基气氛,我们采用甲醇20-40d/min和氨气0.15L/h、或氮气0.30L/h保护,滴控式装置控制。(以下再结晶退火830-850℃加热;稳定化处理830-850℃加热,工序操作同)。

该钢材固溶处理加热时多采用预热或分段加热,由于螺栓丝坯直径较小,加上形状简单,可在炉温到达工艺温度≤100℃(约900℃加热)时入炉。

由于井式滲碳加热炉分上、下区控温,当炉内所有热电偶指示温度都达到工艺温度(990℃)时,开始计算保温时间90min。

再结晶退火

0Cr15Ni25Ti2MoAlVB钢制M8*20、M8*45六角头螺栓是采用二模二冲(双击整模)冷镦机生产,冷镦成型后冷作硬化倾向比较大, 可调缩孔必须进行再结

晶退火,温度830-850℃、保温2-3h,使用设备RQ3-90-9D,采用甲醇20-40d/min 和氨气0.15L/h、或氮气0.30L/h保护。在该温度下加热时碳化物沿晶界及滑形线析出,硬度下降。后续再去应力回火700-710℃,保温2-3h,硬度在18-23HRc。虽然比冷镦后硬度只是略有下降,但由于奥氏体晶粒进行再结晶退火后,在冲床切

六角头边时容易断屑,抗变形能力下降,Cr12MoV钢切边模使用寿命可达2万件以上。

最后的热处理工艺

六角头螺栓经搓丝完工,要经过清洗用碱性溶液洗净磷化膜,便于在热处理后着色(近似发黑颜色)。

0Cr15Ni25Ti2MoAlVB钢合金元素铬、镍含量相对较低,故抗氧化的温度仅在800℃以下,但是含弥散强化相形成元素(V、Al、Ti)量相对较高,在固溶体基体上可形成化合物强化相,罩型通气管所以常用热处理形式为固溶处理+时效。通过固溶处理,可以使合金固溶强化;通过时效处理,可以使合金析出细小强化相〔VC、Ni3Al、Ni3Ti,Ni3(Al﹒Ti)〕碳化物,从而提高室温和高温强度。

在固溶处理后螺栓经过前几道工序加工,为了获得一定数量的碳化物使钢强化必须进行调整处理,我们采用830-850℃稳定化处理工艺,在此温度范围

内,Cr23C6碳化物将溶解,保温5h水冷或采用喷水冷却,以快速通过析出碳化物的温度区间,而TiC、VC碳化物仍然稳定,由此提高螺栓的抗晶界腐蚀能力。

不论经过何种调整处理后,螺栓还需进行时效处理,它是使钢强化的途径,由固溶体中析出弥散碳化物质点而使钢硬度提高。时效温度选择690-710℃,保温12-16h空冷。

0Cr15Ni25Ti2MoAlVB钢固溶并时效处理后的显微组织为奥氏体+弥散化合物,化合物量约为2.5%。

上述工艺试验的结果表明时效处理的温度和保温时间对最终力学性能的影响甚小,时效处理温度确定为700℃*12h。0Cr15Ni25Ti2MoAlVB钢在热处理过程中, 篮式过滤器对温度的要求相对敏感,特别是固溶处理温度控制在±5℃,尽量偏下范围。原材料拉拔后,晶粒粗大对成品螺栓外径略有影响,在最后时效后,会造成外径尺寸偏小。因此,原材料晶粒度不得粗于4级。

钢的热处理工艺

钢的热处理 第一章钢的热处理 热处理工艺包括:将钢材或钢制件加热到预定温度,在此温度下保温一定时间。然后一定的冷却速度冷却下来,达到热处理所预定的对钢材及钢制件的组织与性能的要求。 1□□钢的加热 1.1□制定钢的加热制度 加热温度、加热速度、保温时间。 1.1.1加热温度的选择 加热温度取决于热处理的目的。热处理分为:淬火、退火、正火、和回火等。 淬火的目的是为了得到细小的马氏体组织,使钢具有高的硬度; 退火及正火的目的是获得均匀的珠光体组织,因此其加热温度不同。在具体制定加热温度时应按以下原则:热处理工艺种类及目的要求;被加热钢材及钢制件的化学成分和原始状态;钢材及钢制件的尺寸和形状以及加热条件来制定。对于碳钢及低合金钢的加热温度:亚共析钢淬火温度:A C3以上30~50℃; 过共析钢淬火温度:A C3以上30~50℃; 亚共析钢完全退火:A C3以上20~30℃; 过共析钢不完全退火:A C3以上20~30℃; 正火A C3或A CM以上30~50℃; 1.1.2加热速度的选择 必须根据钢的化学成分及导热性能;钢的原始状态及应力状态;钢的尺寸及形状来确定加热速度。如钢的原始状态存在着铸造应力或轧煅热变形残余应力时,在加热是应特别注意。对这类钢要特别控制低温阶段的加热速度。钢的变形与热裂倾向是以钢的化学成分及原始状态不同而不同,主要有以下几点: a) 低碳钢比高碳钢热烈倾向小; b) 碳钢比合金钢变形开裂倾向小; c) 钢坯和成品件比钢锭变形和开裂倾向小; d) 小截面比大截面的钢变形和开裂倾向小。 1.1.3钢在加热时的缺陷 a) 过热:过热就是由于加热温度过高,加热时间过长使奥氏体晶粒过分长大。粗大的奥氏体晶粒在冷却时产生粗大的组织,并往往出现魏氏组织,结果是钢的冲击韧性、塑性明显下降。已过火的钢可以在次正火或退火加以纠正。 b) 强烈过热:加热温度过高或加热保温时间过长,使氧或硫沿晶界渗入钢中或者钢中的

热处理工艺制度对T10钢组织与性能的影响2

J I A N G S U U N I V E R S I T Y 金属材料综合实验 题目:热处理工艺制度对T10钢组织与性能的影响 学院名称:材料科学与工程学院 专业班级:金属1202 姓名:马英 学号:3120702041 小组成员:任宁庆、韦明敢、李鑫宇 指导老师:邵红红、王兰、吴晶老师 2016年1月

热处理工艺制度对T10钢组织与性能的影响 一、实验内容 1、T10钢概述 目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。 2、T10钢化学成分 碳 C :0.95~1.04(Tχ,χ:碳的千分数)硅 Si:≤0.35 锰 Mn:≤0.40 硫 S :≤0.020 磷 P :≤0.030 铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时) 镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时) 铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时) 注:允许残余含量Cr+Ni+Cu≤0.40(制造铅浴淬火钢丝时) 3、T10钢适用范围 这种钢应用较广,适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,如车刀、刨刀、钻头、丝锥、扩孔刀具、螺丝板牙、铣刀手锯锯条、还可以制作冷镦模、冲模、拉丝模、铝合金用冷挤压凹模、纸品下料模、塑料成型模具、小尺寸冷切边模及冲孔模,低精度而形状简单的量具(如卡板等),也可用作不受较大冲击的耐磨零件等。

汽车发动机连杆螺栓热处理工艺设计

金属材料热处理原理与工艺课程设计40Mn发动机连杆螺栓热处理工艺设计 专业班级:材料132601班 设计人:焦攀龙 设计题目:发动机连杆螺栓选材与加工工艺设计 指导教师:职称 专业: 班级: 完成时间:

摘要 综述了发动机连杆螺栓的工作环境,使用性能,失效形式,连杆螺栓材料的选择,热处理工艺等。主要就连杆螺栓的热处理工艺做了详细的分析,通过大量的实验得出了连杆螺栓材料热处理后的金相组织图等资料。分别对球化退火、淬火、回火过程中组织、硬度的的变化做了分析。并就实验中出现的问题作了分析,以供参考。 关键词:连杆螺栓热处理;等温退火;淬火;回火;问题分析

目录 摘要............................................................................................................................................. I 前言. (1) 1 连杆螺栓的使用性能 (1) 2 材料选择及技术要求 (1) 2.1.螺栓的热处理工艺规范 (2) 2.2材料的选择 (2) 3 热处理工艺及目的 (3) 3.1退火 (3) 3.2正火 (3) 3.3淬火 (4) 3.4回火 (4) 4 设计说明 (4) 4.1失效形式 (4) 4.2工作要求 (4) 4.3结构钢40M N的化学成分 (5) 4.3.1 主要特性 (5) 4.3.2 材料分析 (5) 4.3.3 力学性能要求 (6) 4.3.4 基于材料的零件设计 (6) 4.5热处理工艺说明 (7) 5 设计方案 (8) 5.1正火 (8) 5.2调质处理 (8) 5.3回火的制定 (9) 6 螺栓的热处理质量检测 (9) 6.1硬度计 (9) 6.2外观检测与金相组织检验 (9) 7 螺栓热处理回火缺陷的原因及解决方案 (10) 参考文献 (11)

高强度螺栓的知识总结

高强度螺栓的知识 高强度螺栓在生产上全称叫高强度螺栓连接副,一般不简称为高强螺栓。 根据安装特点分为:大六角头螺栓和扭剪型螺栓。其中扭剪型只在10.9级中使用。 根据高强度螺栓的性能等级分为:8.8级和10.9级。其中8.8级仅有大六角型高强度螺栓,在标示方法上,小数点前数字表示热处理后的抗拉强度;小数点后的数字表示屈强比即屈服强度实测值与极限抗拉强度实测值之比。8.8级的意思就是螺栓杆的抗拉强度不小于800M Pa,屈强比为0.8;10.9级的意思就是螺栓杆的抗拉强度不小于1000MPa,屈强比为0.9。 结构设计中高强度螺栓直径一般有M16/M20/M22/M24/M27/M30,不过M22/M27为第二选择系列,正常情况下选用M16/M20 /M24/M30为主。 高强度螺栓在抗剪设计上根据设计要求分为:高强度度螺栓承压型和高强度螺栓摩擦型。摩擦型的承载能力取决于传力摩擦面的抗滑移系数和摩擦面数量,喷砂(丸)后生赤锈的摩擦系数最高,但从实际操作来看受施工水平影响很大,很多监理单位都提出能否降低标准来确保工程质量。承压型的承载能力取决于螺栓抗剪能力和栓杆承压能力能力的最小值。在只有一个连接面的情况下,M16摩擦型抗剪承载力为21.6~45.0kN,而M16承压型抗剪承载力为39.2~48.6 kN,性能要优于摩擦型。在安装上,承压型工艺要简单一些,连接面仅需清除油污及浮锈。 沿轴杆方向抗拉承载力,在钢结构规范中写的很有意思,摩擦型设计值等于0.8倍预拉力,承压型设计值等于螺杆有效面积乘以材料抗拉强度设计值,看起来似乎有很大区别,实际上两个值基本一致,我一直不太明白规范为什么要这么写,采用的都是同一种材料为何要用两种表达方式计算同一个数值? 在同时承受剪力和杆轴方向拉力时,摩擦型要求是螺栓承受的剪力与受剪承载力之比加上螺杆承受轴力与受拉承载力应力比之和小于1.0,承压型要求是螺栓承受的剪力与受剪承载力之比的平方加上螺杆承受轴力于受拉承载力应力比的平方之和小于1.0,也就是说在同种荷载组合情况下,相同直径的承压型高强度螺栓在设计上的安全储备要高于摩擦型高强度螺栓的。 考虑到在强震反复作用下,连接摩擦面可能会失效,这时候的抗剪承载力还是要取决于螺栓抗剪能力和板件承压能力,因此抗震规范规定了高强度螺栓极限受剪的承载力计算公式。尽管承压型在设计数值上占有优势,但由于其属于剪压破坏型式,螺栓孔为类似普通螺栓的孔隙型螺栓孔,在承受荷载作用时的变形远大于摩擦型,所以高强度螺栓承压型主要用于非抗震构件连接、非承受动荷载构件连接、非反复作用构件连接。 这两种型式的正常使用极限状态也是有区别的: 摩擦型连接是指在荷载基本组合作用下连接摩擦面发生相对滑移; 承压型连接是指在荷载标准组合作用下连接件之间发生相对滑移; 焊缝与螺栓知识 焊缝等级 1. 焊缝等级是施工验收等级,有三级。三级最低,只要求外观检查和尺寸检查。二级要求部分作超声波探伤检查。一级最高,要求全部做探伤检查。 2. 对焊缝等级来说,原则是受拉等级高于受压,受动力的高于受静力的。 3. 对接焊缝一般需要做无损探伤(或部分需要)。故一般对接焊缝的焊接等级为二级或一级,不小于二级。

紧固件热处理大全

热处理是为了提高螺栓的综合力学性能,以满足产品规定的抗拉强度和屈强比。含碳量越高,钢的强度越高,塑性越低。锰能减少硫对钢的有害性。 紧固件热处理与网带炉操作 紧固件在机械构件中起到联接、定位以及密封等作用,其中高强度螺栓用量最大,材料的选用是保证质量的基础。热处理技术对高强度螺栓,尤其是它的内在质量至关重要。 高强度螺栓共有四个性能等级,即8.8、9.8、10.9和12.9级,而日本汽车企业标准则有(7T、8T、9T、10T、11T)等级别,这些级别则要进行热处理。热处理是为了提高螺栓的综合力学性能,以满足产品规定的抗拉强度和屈强比。 紧固件热处理与网带炉操作 1、高强度螺栓用钢高强度螺栓用钢材化学成分要求如下:碳是影响钢材塑性变形的最主要元素。含碳量越高,钢的强度越高,塑性越低。 含碳量越高,淬火加热温度越低,淬硬性提高,开裂和变形的倾向增

大。锰能减少硫对钢的有害性。 作为钢中常存元素,锰的提高可使钢的抗拉强度和屈服强度提高,淬透性增加。合金钢中CrMo和CrMoV两类钢更能满足在复杂条件下使用的高强度紧固件。 35CrMo、40Cr、42CrMo钢是在优质碳素结构钢中加入少量(不超过5%)合金元素而制成。钢的淬火性能基本上是由含碳量决定的,合金元素的强化作用可增加钢的淬透性,故这些钢适用于≥10T、10.9、11T级高强度紧固件。 2、热处理工艺制定原则高强度螺栓调质要获得良好综合机械性能的回火索氏体、回火托氏体组织,其前提是整体淬火时要保证心部得到马氏体组织。这与淬透性有着密切的关系。 淬透性是指钢经奥氏体化以后接受淬火的能力(或淬火时淬硬层深入钢件内部的能力)。同一牌号不同炼钢炉次的试样,其化学成分是允许在一定范围内波动的,尤其是SWRCH 35K钢会因为各钢厂在冶炼技术,标准及效益有所区别而不同。 因此,在热处理时要有所区别。对于高强度螺栓整个截面均匀承受载荷,至少应要求心部有90%以上马氏体,但对心部淬硬的螺栓来说,

高强度螺栓加工工艺

高强度螺栓加工工艺 螺栓类零件是一种重要标准件,用做连接紧固件,在各领域的应用相当广泛,根据其机械和物理性能的不同,分成10种类别,其中机械性能等级大于等于8.8级的螺栓,我们通常称其为高强度螺栓。 一、高强度螺栓主要结构及作用 高强度螺栓种类较多,形状也不尽相同,外部尺寸更是千变万化,但整体上其主要结构和整体外部形状具有一定的相似性。根据这些相似性,我们将其分成三个主要部分:头部、杆部和螺纹部分。如下简图所示: 下面我们简要介绍一下各部分的作用极其重点要素: 1. 头部头部主要作用是在螺母与螺栓配合时施加一个反向力矩,保证螺母有足够拧紧力矩。形式种类较多,主要有方头、半圆头、六角头等形式。另外,一些非标准件高强度螺栓头部形式由设计者根据装配需要特别设计。 2. 杆部杆部主要起导向作用,特别是导径螺栓,装配后承受一定的径向剪切力,要求与孔小间隙配合,对杆部外圆精度和粗糙度要求严格。一些装配后只承受轴向拉伸力的螺栓对杆部要求不是很严格,外圆尺寸公差较大。对高强度螺栓来说,杆部与头部接触部位要求一定圆角,避免承受较大拉力时该部位断裂,同时避免热处理冷却时产生裂纹,是加工重点注意要素。 3. 螺纹部分螺纹部分是螺栓最主要部分,主要起连接紧固作用。可以分成有效螺纹部分,收尾部分(退刀部分)和螺纹末端三部分;螺纹三个主要要素:螺距、牙形半角和螺距,直接影响螺纹配合精度,也是加工重点注意要素。 二、高强度螺栓工艺分析 高强度螺栓机械加工一般不需要精度极高的专用机床,在普通设备上即可完成加工。根据其三个主要部分,我们将其加工工艺分成三部分:头部的加工、杆部加工和螺纹加工。每一部分的加工工艺又因其尺寸形状及技术要求的不同分成若干种类,采用不同的加工方法;虽然我们将其分成了三部分,但三部分的加工是相辅相成的,相互关联的,可能共存于同一工序,也可能共存于同一工步。 1. 头部的加工 ⑴毛坯 毛坯形式:螺栓头部形状直接决定产品毛坯形式。一般来说,方头螺栓毛坯可选用冷拉方钢,六角头螺栓毛坯可选用冷拉六角钢,半圆头螺栓毛坯应选用锻件毛坯;头

10.1 钢的热处理工艺

教学课题钢的热处理工艺 教学课时 2 教学目的了解热处理在机械工业中的重要作用掌握钢的普通热处理工艺方法、种类教学难点钢的普通热处理工艺方法、种类 教学重点钢的普通热处理工艺方法、种类 教学方法讲解法、讨论 教具准备教材教学过程

通过进行热处理来完成。 授课内容 热处理加工的特点与其它工种加工的特点最大的区别是:工件的几何尺寸不发生 变化,而内部组织和机械性能发生改变。 1)退火 目的:细化晶粒、降低硬度,提高塑性、消除内应力,改善材料切削加工性能, 并为以后淬火作好组织准备。 适用工件范围: 一般为铸件、锻件、焊接件等毛坯。 具体工艺有:完全退火、等温退火、球化退火、去应力退火。 退火工艺操作:为使工件退火后能获得一个平衡的组织,对温度下降速度有严格 要求,必须缓慢降温。用45号钢制作的工件进行退火工艺作一介绍:首先选用加热 设备,制订退火工艺,把工件装炉升温,适当保温后降温。工件在炉内的降温要求非 常慢,随着炉子的温度下降而降温,如将工件降到室温,需要几天或十几天的时间。 2)正火: 目的:细化晶粒、降低硬度、提高塑性、消除内应力、改善切削加工性能,并为 图4 正火工艺 适用工件范围:一般为铸件、锻件及粗车得到的工件。 正火工艺操作:亚共析钢加热温度为Ac3以上30~50℃,过共析钢加温度在Accm 以上30~50℃。工件经过充分的保温使其获得单一的奥氏体组织后,把工件从高温炉 内取出,放在车间静止的空气当中冷却。这种冷却方法叫空冷。以同学们制作的锤子 为例。把它放在炉内,将炉温升到850℃进行充分保温后,马上将工件从炉内取出, 拿到车间内的空气中冷却,它的冷却速度要比退火的冷却速度快得多,所以获得的组 织比较细密,硬度有所提高,切削加工性能也能得到提高。

螺栓的热处理方法

螺栓的热处理方法 【慧聪表面处理网】 螺栓加工工艺为:热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理- 检验 一,钢材设计: 在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。在长期生产实践和用户使用调研的基础上,结合 GB/T6478-2001《冷镦和冷挤压用钢技术条件》 GB/T699-1999《优质碳素结构钢》及日本 JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。 二,球化(软化)退火: 沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。当钢材的化学成分一定时,金相组织就是决定塑性优劣的关键性因素,通常认为粗大片状珠光体不利于冷镦成形,而细小的球状珠光体可显著地提高钢材塑性变形的能力。对高强度紧固件用量较多的中碳钢和中碳合金钢,在冷镦前进行球化(软化)退火,以便获得均匀细致的球化珠光体,以更好地满足实际生产需要。对中碳钢盘条软化退火而言,其加热温度多选择在该钢材临界点上下保温,加热温度一般不能太高,否则会产生三次渗碳体沿晶界析出,造成冷镦开裂,而对于中碳合金钢的盘条采用等温球化退火,在AC1+(20-30%)加热后,炉冷到略低于Ar1,温度约700摄氏度等温一段时间,然后炉冷至500摄氏度左右出炉空冷。钢材的金相组织由粗变细,由片状变球状,冷镦开裂率将大大减少。35\45\ML35\SWRCH35K钢软化退火温度一般区域为715-735摄氏度。 三,剥壳除鳞: 冷镦钢盘条去除氧化铁板工序为剥亮,除鳞,有机械除鳞和化学酸洗两种方法。用机械除鳞取代盘条的化学酸洗工序,既提高了生产率,又减少了环境污染。此除鳞过程包括弯曲法(普遍使用带三角形凹槽的圆轮反覆弯曲盘条),喷九法等,除鳞效果较好,但不能使残余铁鳞去净(氧化铁皮清除率为97%),尤其是氧化铁皮粘附性很强时,因此,机械除鳞受铁皮厚度,结构和应力状态的影响,使用于低强度紧固件(小于等于6.8级)用的碳钢盘条。高强度紧固件(大于等于8.8级)用盘条在机械除鳞后,为除净所有的氧化铁皮,再经化学酸洗工序即复合除鳞。对低碳钢盘条而言,机械除鳞残留的铁皮容易造成粒拔模不均匀磨损。当粒拔模孔由于盘条钢丝摩擦外温时粘附上铁皮,使盘条钢丝表面产生纵向粒痕,盘条钢丝冷镦凸缘螺栓或圆柱头螺钉时,头部出现微裂纹的原因,95%以上是钢丝表面在拉拔过程中产生的划痕所引起。因此,机械除鳞法不宜用来高速拉拔。

浅谈高强度螺栓加工工艺

浅谈高强度螺栓加工工艺 刘伟底盘零件厂 摘要 本文所阐述高强度螺栓加工用设备均为普通机床,加工工艺主要指传统典型加工工艺。文章中着重介绍高强度螺栓机械加工工艺,对高强度螺栓的热处理工艺和表面处理工艺只做简要描述。又介绍了在高强度螺栓加工过程中未来的发展方向。 关键词:高强度螺栓、机械加工工艺、未来工艺过程 Abstract The processing equipments of High-intensity Bolts in this article are general machine tools, technology mainly referring to typical traditional technology. Article highlights High-intensity Bolts machining, heat treatment technology and the surface treatment High-intensity Bolts crafts itself a brief description. Key words: High-intensity Bolts、machining、technology processes in the future

浅谈高强度螺栓加工工艺 螺栓类零件是一种重要标准件,用做连接紧固件,在各领域的应用相当广泛,根据其机械和物理性能的不同,分成10种类别,其中机械性能等级大于等于8.8级的螺栓,我们通常称其为高强度螺栓。 一、高强度螺栓主要结构及作用 高强度螺栓种类较多,形状也不尽相同,外部尺寸更是千变万化,但整体上其主要结构和整体外部形状具有一定的相似性。根据这些相似性,我们将其分成三个主要部分:头部、杆部和螺纹部分。如下简图所示: 下面我们简要介绍一下各部分的作用极其重点要素: 1. 头部头部主要作用是在螺母与螺栓配合时施加一个反向力矩,保证螺母有足够拧紧力矩。形式种类较多,主要有方头、半圆头、六角头等形式。另外,一些非标准件高强度螺栓头部形式由设计者根据装配需要特别设计。 2. 杆部杆部主要起导向作用,特别是导径螺栓,装配后承受一定的径向剪切力,要求与孔小间隙配合,对杆部外圆精度和粗糙度要求严格。一些装配后只承受轴向拉伸力的螺栓对杆部要求不是很严格,外圆尺寸公差较大。对高强度螺栓来说,杆部与头部接触部位要求一定圆角,避免承受较大拉力时该部位断裂,同时避免热处理冷却时产生裂纹,是加工重点注意要素。 3. 螺纹部分螺纹部分是螺栓最主要部分,主要起连接紧固作用。可以分成有效螺纹部分,收尾部分(退刀部分)和螺纹末端三部分;螺纹三个主要要素:螺距、牙形半角和螺距,直接影响螺纹配合精度,也是加工重点注意要素。 二、高强度螺栓工艺分析 高强度螺栓机械加工一般不需要精度极高的专用机床,在普通设备上即可完成加工。根据其三个主要部分,我们将其加工工艺分成三部分:头部的加工、杆部加工和螺纹加工。每一部分的加工工艺又因其尺寸形状及技术要求的不同分成若干种类,采用不同的加工方法;虽然我们将其分成了三部分,但三部分的加工是相辅相成的,相互关联的,可能共存于同一工序,也可能共存于同一工步。 1. 头部的加工 ⑴毛坯 毛坯形式:螺栓头部形状直接决定产品毛坯形式。一般来说,方头螺栓毛坯可选用冷拉方钢,六角头螺栓毛坯可选用冷拉六角钢,半圆头螺栓毛坯应选用锻件毛坯;头

微观热处理T10钢

微观组织控制课程实验 学院:机械与汽车工程学院 班级:材控 学号: :

一.实验目的: 本次研究的主要容是退火态T10钢的热处王里工艺及其组织性能的研究。通过观察经过不同预先热处理的退火态T10钢试样的显微组织,以及测量其洛氏硬度、冲击韧性等,分析了不同预先热处理的T10钢试样的组织性能和力学性能。结果表明,正火+等温球化退火为退火态T10 钢的最佳预先热处理工艺; 不同预先热处理所得到的组织效果会遗传到最终的组织中; 预先热处理为正火+普通球化退火和等温球化退火的退火态T10钢试样,经过水淬和低温回火后,发生了脆性转变。 T10钢的热处理工艺及组织性能,通过对经过不同预备热处理的T10钢的微观组织分析及力学性能分析,探寻在热处理过程中,不同预先热处理对钢的组织及性能的影响规律,在此研究基础上,对现在实际生产中的一般热处理工艺进行优化,以达到最好的效果。 二:实验方法 T10钢的概述:目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。 T10钢的成分: ,X:碳的千分数) 碳 C :0.95~1.04(T X 硅 Si:≤0.35 锰 Mn:≤0.40 硫 S :≤0.020 磷 P :≤0.030 铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时) 镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时) 铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时) 热处理通常分为3步进行:加热、保温和冷却。钢的热处理过程是把钢加热到临界温度以上,进行转变,转变完成后通过水冷、空冷或者油冷的方式冷却,来获得自己所需要的显微组织和力学性能。加热时形成的奥氏体的化学成分、均匀化程度、品粒大小以及加热后未溶入奥氏体中碳化物等过剩相的数量和分布状况,直接影响钢在冷却后的组织性能。 以下是铁碳合金相图。

高强度螺栓基本知识

高强度螺栓的知识 高强度螺栓在生产上全称叫高强度螺栓连接副,一般不简称为高强螺栓。 根据安装特点分为:大六角头螺栓和扭剪型螺栓。其中扭剪型只在10.9级中使用。 根据高强度螺栓的性能等级分为:8.8级和10.9级。其中8.8级仅有大六角型高强度螺栓,在标示方法上,小数点前数字表示热处理后的抗拉强度;小数点后的数字表示屈强比即屈服强度实测值与极限抗拉强度实测值之比。8.8级的意思就是螺栓杆的抗拉强度不小于800MPa,屈强比为0.8;10.9级的意思就是螺栓杆的抗拉强度不小于1000MPa,屈强比为0.9。 结构设计中高强度螺栓直径一般有M16/M20/M22/M24/M27/M30,不过M22/M27为第二选择系列,正常情况下选用M16/M20 /M24/M30 为主。 高强度螺栓在抗剪设计上根据设计要求分为:高强度螺栓承压型和高强度螺栓摩擦型。摩擦型的承载能力取决于传力摩擦面的抗滑移系数和摩擦面数量,喷砂(丸)后生赤锈的摩擦系数最高,但从实际操作来看受施工水平影响很大,很多监理单位都提出能否降低标准来确保工程质量。承压型的承载能力取决于螺栓抗剪能力和栓杆承压能力的最小值。在只有一个连接面的情况下,M16摩擦型抗剪承载力为21.6~45.0kN,而M16承压型抗剪承载力为 39.2~48.6 kN,性能要优于摩擦型。在安装上,承压型工艺要简单一些,连接面仅需清除油污及浮锈。沿轴杆方向抗拉承载力,在钢结构规范中写的很有意思,摩擦型设计值等于0.8倍预拉力,承压型设计值等于螺杆有效面积乘

以材料抗拉强度设计值,看起来似乎有很大区别,实际上两个值基本一致,我一直不太明白规范为什么要这么写,采用的都是同一种材料为何要用两种表达方式计算同一个数值? 在同时承受剪力和杆轴方向拉力时,摩擦型要求是螺栓承受的剪力与受剪承载力之比加上螺杆承受轴力与受拉承载力应力比之和小于1.0,承压型要求是螺栓承受的剪力与受剪承载力之比的平方加上螺杆承受轴力与受拉承载力比的平方之和小于1.0,也就是说在同种荷载组合情况下,相同直径的承压型高强度螺栓在设计上的安全储备要高于摩擦型高强度螺栓的。 考虑到在强震反复作用下,连接摩擦面可能会失效,这时候的抗剪承载力还是要取决于螺栓抗剪能力和板件承压能力,因此抗震规范规定了高强度螺栓极限受剪的承载力计算公式。 尽管承压型在设计数值上占有优势,但由于其属于剪压破坏型式,螺栓孔为类似普通螺栓的孔隙型螺栓孔,在承受荷载作用时的变形远大于摩擦型,所以高强度螺栓承压型主要用于非抗震构件连接、非承受动荷载构件连接、非反复作用构件连接。 这两种型式的正常使用极限状态也是有区别的: 摩擦型连接是指在荷载基本组合作用下连接摩擦面发生相对滑移;承压型连接是指在荷载标准组合作用下连接件之间发生相对滑移;焊缝与螺栓知识 焊缝等级 1. 焊缝等级是施工验收等级,有三级。三级最低,只要求外观检查和尺寸检查。二级要求部分作超声波探伤检查。一级最高,要求全部做探伤检查。 2. 对焊缝等级来说,原则是受拉等级高于受压,受动力的高于受静

螺丝热处理方法

螺丝热处理方法 一、热处理方式:根据对象及目的不同可选用不同热处理方式。 调质钢:淬火后高温回火(500-650℃) 弹簧钢:淬火后中温回火(420-520℃) 渗碳钢:渗碳后淬火再低温回火(150-250℃) 低碳和中碳(合金)钢淬成马氏体后,随回火温度的升高,其一般规律是强度下降,而塑性、韧性上升。但由于低、中碳钢中含碳量不同,回火温度对其影响程度不同。所以为了获得良好的综合机械性能,可分别采取以下途径: (1)、选取低碳(合金)钢,淬火后进行低温250℃以下回火,以获得低碳马氏体。为了提高这类钢的表面耐磨性,只有提高各面层的含碳量,即进行表面渗碳,一般称为渗碳结构钢。 (2)、采取含碳较高的中碳钢,淬火后进行高温(500-650℃)回火(即所谓调质处理),使其能在高塑性情况下,保持足够的强度,一般称这类钢为调质钢。如果希望获得高强度,而宁肯降低塑性及韧性,对含碳量较低的含金调质可采取低温回火,则得到所谓“超高强度钢”。 (3)、含碳量介于中碳和高碳之间的钢种(如60,70钢)以及一些高碳钢(如8 0,90钢),如果用于制造弹簧,为了保证高的弹性极限、屈服极限和疲劳极限,则采用淬火后中温回火。 二、作业流程: (一)、调质钢: 1、预热处理:正火->退火(珠光体型钢)->高温回火(马氏体型钢) (1)、正火目的是细化晶粒,减少组织中的带状程度,并调整好硬度,便于机械加工,正火后,钢材具有等轴状细晶粒。 2、淬火:将钢体加热到850℃左右进行淬火,淬火介质可根据钢件尺寸大小和该钢的淬透性加以选择,一般可选择水或油甚至空气淬火。处于淬火状态的钢,塑性低,内应力大。 3、回火: (1)、为使钢材具有高塑性、韧性和适当的强度,钢材在400-500℃左右进行高温回火,对回火脆性敏感性较大的钢,回火后必须迅速冷却,抑制回火脆性的发生。 (2)、若要求零件具有特别高的强度,则在200℃左右回火,得到中碳回火马氏体组织。 (二)、弹簧钢: 1、淬火:于830-870℃进行油淬火。 2、回火:于420-520℃左右进行回火,获得回火屈氏体组织。 (三)、渗碳钢:

号钢热处理工艺

号钢热处理工艺 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

1 45号钢要求硬度HRC40-50,是不是要淬火+低温回火 换算成布氏硬度大约是380~470HB,根据一般热处理规范,热处理制度与硬度关系大致如下: 淬火温度:840℃水淬 回火温度:150℃回火,硬度约为57HRC;200℃回火,硬度约为55HRC;250℃回火,硬度约为53HRC;300℃回火,硬度约为48HRC;350℃回火,硬度约为45HRC;400℃回火,硬度约为43HRC;500 ℃回火,硬度约为33HRC;600℃回火,硬度约为20HRC 一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度 2 1.临界温度指钢材的奥氏体转变温度。不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。 2. 常用碳钢的临界点 钢号临界点 (℃) 20钢 735-855 (℃) 45钢 724-780 (℃) T8钢 730 -770(℃) T12钢 730-820 (℃) 3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900℃,45号钢正火温度850℃左右。 4 20CrMnTi Ac1 Ac3 Ar1 Ar3 740 825 680 730 5

Cr12MoV热处理知识 Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。 其热处理制度为:钢棒与锻件960℃空冷 + 700~720℃回火,空冷。 最终热处理工艺: 1、淬火: 第一次预热:300~500℃, 第二次预热840~860℃; 淬火温度:1020~1050℃; 冷却介质:油,介质温度:20~60℃, 冷却至油温;随后,空冷,HRC=60~63。 2、回火: 经过以下淬火工艺,可以达到降低硬度的作用,具体回火工艺如下: 加热温度400~425℃,得到HRC=57~59。 说明:在480--520度之间回火正好是这种钢材的脆性回火区,在这个区间回火容易使模具出现崩刃。最为理想的回火区间在380--400℃,这个区间回火,韧性最好,并且有良好的耐磨性。如果淬火后,采用深冷处理(理想的温度是零下120)与中温回火相结合,会得到良好使用效果和高寿命。Cr12MoV的回火脆性温度范围在325~375℃。 CR12MoV380-400回火后硬度在56-58HRC做冷冲模冲韧性好的材料具有不易开裂的优点,特别是在原材料质量不是很好的情况下,用此方法经济实惠。 Cr12MoV 分级淬火工艺:

高强度螺栓的扭矩系数

查标准,我国的高强度螺栓的扭矩系数是一个从0.11~0.15的范围,标准同时规定,扭矩系数的标准差不得大于0.01。 查国外资料,发现扭矩系数与我国的规定很不一样,通常比我们大,这是为何?想来应该是与表面处理有关,如果我们的标准限制了新技术或者先进技术的应用吗? 提问者:老陈发布时间:2007-4-28 20:10:00 以下是回复内容: 第1页,共1页 扭矩系数与螺纹精度、表面粗糙度、尺寸精度、表面处理等方面都有关系,但是表面处理是影响扭矩系数的比较大的因素之一。国家标准大六角头螺栓、螺母连接副的表面处理主要是磷化。由于磷化的配方不同,扭矩系数也不同。扭矩系数的大小范围是考核内容,但是扭矩系数的标准差是关键。不能说国外的扭矩系数与我国规定的不同,就限制了新技术或者先进技术的应用。 答复者:张德利 发布时间:2007-4-29 21:56:00 本答案得分:5 扭矩系数0.11~0.15,标准偏差小于0.01,仅仅是钢结构连接副的要求,并不是其他的高强度有要求。注意'连接副"这一条件。它是指一个螺栓,螺母,两个垫圈配套使用,并且表面处理也有严格控制。一般的连接均没有垫圈,如果你用钢结构螺栓和螺母,用一般的垫圈或不用垫圈做扭矩系数试验,肯定不能达到0.11~0.15和0.01的要求。 扭矩系数主要与表面处理和被紧固件的表面状态有关。 答复者:吴明然 发布时间:2007-5-11 21:50:00 本答案得分:3 磷化有什么重大意义吗,能得到相对稳定的扭矩系数吗——要满足“螺栓副”这个条件不难,但要施工中完全满足保管条件等,困难就大些? 而且,扭矩系数0.11~0.15,这个范围太大,最好定在0.13~0.14之间,这样就可以大致定出螺栓的扭矩值来。

螺栓的成型工艺

螺栓的成型工艺 螺丝生产工艺(一)--退火 一、目的:把线材加热到适当的温度,保持一定时间,再慢慢冷却,以调整结晶组织,降低硬度,改良线材常温加工性。 二、作业流程: (一)、入料:将需要处理的产品吊放炉内,注意炉盖应盖紧。一般一炉可同时处理7卷(约1.2吨/卷)。 (二)、升温:将炉内温度缓慢(约3-4小时)升至规定温度。 (三)、保温:材质1018、1022线材在680℃-715℃下保持4-6h,材质为10B21,1039,CH38F 线材在740℃-760℃下保持5.5-7.5 h。 (四)、降温:将炉内温度缓慢(约3-4小时)降至550℃以下,然后随炉冷却至常温。 三、品质控制: 1、硬度:材质为1018、1022线材退火后硬度为HV120-170,材质为中碳线材退火后硬度为HV120-180。 2、外观:表面不得有氧化膜及脱碳现象。 螺丝生产工艺(二)--酸洗 一、目的:除去线材表面的氧化膜,并且在金属表面形成一层磷酸盐薄膜,以减少线材抽线以及冷墩或成形等加工过程中,对工模具的擦伤。 二、作业流程: (一)、酸洗:将整个盘元分别浸入常温、浓度为20-25%的三个盐酸槽数分钟,其目的是除去线材表面的氧化膜。 (二)、清水:清除线材表面的盐酸腐蚀产物。 (三)、草酸:增加金属的活性,以使下一工序生成的皮膜更为致密。 (四)、皮膜处理:将盘元浸入磷酸盐,钢铁表面与化成处理液接触,钢铁溶解生成不溶性的化合物(如Zn2Fe(Po4)2·4H2o),附着在钢铁表面形成皮膜。 (五)、清水:清除皮膜表面残余物。 (六)、润滑剂:由于磷酸盐皮膜的摩擦系数并不是很低,不能赋予加工时充分的润滑性,但与金属皂(如钠皂)反应形成坚硬的金属皂层,可以增加其润滑性能。 螺丝生产工艺(三)--抽线 一、目的:将盘元冷拉至所需线径。实用上针对部分产品又可分粗抽(剥壳)和精抽两个阶段。 二、作业流程 盘元经酸洗之后,通过抽线机冷拉至所需线径。适用于大螺丝、螺帽、牙条所用线材。 螺丝生产工艺(四)--成型 一、目的:将线材经冷间锻造(或热间锻造),以达到半成品之形状及长度(或厚度)。 二、作业流程: 1、六角螺栓(四模四冲或三模三冲) (1)、切断:通过可动的剪刀单向移动,将卡于剪模内的线材切成所需胚料。 (2)、一冲:后冲模顶住胚料冲模挤压胚料,初步成型,之后后冲模将胚料推出。 (3)、二冲:胚料进入第二打模,二冲模挤压,胚料呈扁圆状,之后后冲模将胚料推出。 (4)、三冲:胚料进入第三打模,通过六角三冲模仁剪切,胚料六角头初步形成,之后,后冲模将胚料推入第三打模,切料自六角头切断,六角头形成。 2、六角螺栓(三模三冲) 3、螺丝(一般头型一模二冲)

高强度螺栓与普通螺栓的区别

高强度螺栓与普通螺栓的区别 一、高强螺栓与普通螺栓区别 1、高强度螺栓就是可承受的载荷比同规格的普通螺栓要大。 2、普通螺栓的材料是Q235(即A3)制造的。高强度螺栓的材料35#钢或其它优质材料,制成后进行热处理,提高了强度。两者的区别是材料强度的不同。 3、从原材料看: 高强度螺栓采用高强度材料制造。高强螺栓的螺杆、螺帽和垫圈都由高强钢材制作,常用45号钢、40硼钢、20锰钛硼钢。普通螺栓常用Q235钢制造。 4、从强度等级上看: 高强螺栓,使用日益广泛。常用8.8s和10.9s两个强度等级,其中10.9级居多。普通螺栓强度等级要低,一般为4.4级、4.8级、5.6级和8.8级。 5、从受力特点来看: 高强度螺栓施加预拉力和靠摩擦力传递外力。普通螺栓连接靠栓杆抗剪和孔壁承压来传递剪力,拧紧螺帽时产生预拉力很小,其影响可以忽略不计,而高强螺栓除了其材料强度很高之外,还给螺栓施加很大预拉力,使连接构件间产生挤压力,从而使垂直于螺杆方向有很大摩擦力,而且预拉力、抗滑移系数和钢材种类都直接影响高强螺栓的承载力。

根据受力特点分承压型和摩擦型.两者计算方法不同。高强螺栓最小规格M12,常用M16~M30,超大规格的螺栓性能不稳定,设计中应慎重使用。 6、高强度螺栓摩擦型和承压型连接的区别: 高强螺栓连接是通过螺栓杆内很大的拧紧预拉力把连接板的板件夹紧,足以产生很大的摩擦力,从而提高连接的整体性和刚度,当受剪力时,按照设计和受力要求的不同,可分为高强螺栓摩擦型连接和高强螺栓承压型连接两种,两者的本质区别是极限状态不同,虽然是同一种螺栓,但是在计算方法、要求、适用范围等方面都有很大的不同。在抗剪设计时,高强螺栓摩擦型连接是以外剪力达到板件接触面间由螺栓拧紧力所提供的可能最大摩擦力作为极限状态,也即是保证连接在整个使用期间内外剪力不超过最大摩擦力。板件不会发生相对滑移变形(螺杆和孔壁之间始终保持原有的空隙量),被连接板件按弹性整体受力。在抗剪设计时,高强螺栓承压型连接中允许外剪力超过最大摩擦力,这时被连接板件之间发生相对滑移变形,直到螺栓杆与孔壁接触,此后连接就靠螺栓杆身剪切和孔壁承压以及板件接触面间的摩擦力共同传力,最后以杆身剪切或孔壁承压破坏作为连接受剪的极限状态。总之,摩擦型高强螺栓和承压型高强螺栓实际上是同一种螺栓,只不过是设计是否考虑滑移。摩擦型高强螺栓绝对不能滑动,螺栓不承受剪力,一旦滑移,设计就认为达到破坏状态,在技术上比较成熟;承压型高强螺栓可以滑动,螺栓也承受剪力,最终破坏相当于普通螺栓破坏(螺栓剪坏或钢板压坏)。

中碳钢_螺栓的热处理方法

中碳钢_螺栓的热处理方法 螺栓加工工艺为:热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热措置惩罚-检验一,钢材设计在紧固件制造中,不错选用紧固件材料是重要一环,因为紧固件的机能以及其材料有着密切的关系。如材料选择不妥或不不错,可能造成机能达不到要求,使用寿命缩短,甚至发买卖外或加工坚苦,制造成本高档,因此紧固件材料的选用是很是重要的环节。冷镦钢是接纳冷镦成型工艺出产的互换性较高的紧固件用钢。由于它是常温下哄骗金属范性加工成型,每1个零件的变型量很大,承受的变型速率也高,因此,对冷镦钢原料的机能要求十分严酷。在长期出产实践以及用户使用调研的基础上,联合GB/T6478-2001《冷镦以及冷挤压用钢技术条件》GB/T699-1999《优质碳素***钢》及方针JISG3507-1991《冷镦钢用优质碳素钢盘条》的独特之处,以8.8级,9.8级螺栓螺丝的材料要求为例,各种化学元素的确定。C含量过高,冷成形机能将降低;过低则无法餍足零件机械机能的要求,因此定为0.25%-0.55%。Mn 能提高钢的渗透性,但新增过多则会强化基体社团而影响冷成形机能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。Si能强化铁素体,促使冷成形机能降低,材料延长率下降定为Si小于等于0.30%。S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,侵害钢材的机械机能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。B.含硼量最大值均为0.005%,因为硼元素虽则具有显着提高钢材渗透性等作用,但同时会导致钢材脆性增长。含硼量过高,对螺栓,螺丝以及螺柱这类需要良好综合机械机能的工件是十分倒霉的。 二,球化(软化)退火沉头螺丝,内六角圆柱头螺栓接纳冷镦工艺出产时,钢材的原始社团会直接影响着冷镦加工时的成形能力。冷镦历程中局部区域的范性变型可达60%-80%,为此要求钢材必须具有良好的范性。当钢材的化学身分一定时,金相社团就是决议范性优劣的关键性因素,凡是认为粗大片状珠光体倒霉于冷镦成形,而细小的球状珠光体可显着地提高钢材范性变型的能力。对高强度紧固件用量较多的中碳钢以及中碳合金钢,在冷镦前进行球化(软化)退火,以便获得均匀过细的球化珠光体,以更好地餍足实际出产需要。对中碳钢盘条软化退火而言,其加热温度多选择在该钢材临界点上下保暖,加热温度一般不克不及过高,不然会产生三次渗碳体沿晶界析出,造成冷镦开裂,而对中碳合金钢的盘条接纳等温球化退火,在AC1+(20-30%)加热后,炉冷到略低于Ar1,温度约700摄氏度等温一段时间,然后炉冷至500摄氏度左右出炉空冷。钢材的金相社团由粗变细,由片状变球状,冷镦开裂率将大大减少。35\45\ML35\SWRCH35K 钢软化退火温度一般区域为715-735摄氏度。 三,剥壳除鳞冷镦钢盘条去除氧化铁板工序为剥亮,除鳞,有机械除鳞以及化学酸洗两种要领。用机械除鳞代替盘条的化学酸洗工序,既提高了出产率,又减少了环境污染。此除鳞历程包孕弯曲法(普遍使用带三角学形凹槽的圆轮反覆弯曲盘条),喷九法等,除鳞效果较好,但不克不及使残余铁鳞去净(氧化铁皮断根率为97%),尤其是氧化铁皮粘附性很强时,因此,机械除鳞受铁皮厚度,***以及应力状况的影响,使用于低强度紧固件(小于等于6.8级)用的碳钢盘条。高强度紧固件(大于等于8.8级)用盘条在机械除鳞后,为除净所有的氧化铁皮,再经化学酸洗工序即复合除鳞。对低碳钢盘条而言,机械除鳞遗留的铁皮容易造成粒拔模不均匀磨耗。当粒拔模孔由于盘条钢丝磨擦外温时粘附上铁皮,使盘条钢丝表面产生纵向粒痕,盘条钢丝冷镦凸缘螺栓或圆柱头螺丝时,头部呈现微裂纹的缘故原由,95%以上是钢丝表面在拉拔历程中产生的划痕所引起。因此,机械除鳞法不宜用来高速拉拔。 四,拉拔拉拔工序有两个目的,一是改制原材料的尺寸;二是路程经过过程变型强化作用使紧固件获得基本的机械机能,对中碳钢,中碳合金钢还有1个目的,便是使盘条控冷后得到的片状渗碳体在拉拔历程中尽可能的Crack,为随即的球化(软化)退火得到粒状渗碳体做好准备,然而,有些厂家为降低成本,任意减少拉拔道次,过大的减面率增长了盘条钢丝的加工硬化倾向,直接影响了盘条钢丝的冷镦机能。如果各道次的减面率分配分歧适,也会使盘条钢丝在拉拔历程中产生扭转裂纹,这种沿钢丝纵向漫衍,周期一

相关主题
文本预览
相关文档 最新文档