当前位置:文档之家› 保险精算课件例题

保险精算课件例题

保险精算课件例题

9404.59

1000048881.3410000399.431910000258.8841)(10000100008790.04

96178

15

.956501000054.5110000005154.0)1ln(005091.0)1(%65:60%5.25:60%65:201%5.25201

%

5.25:20%

5.25205

20551

%5.25201

%

5.25:201%

5.25:201

%

5.25:20

1%

5.25:201%

5.25:20====+=∴==?==?=+===A A A A A A v p v A A A i i A i

A A )()()(再求已知::

:δ

某人以1万元本金进行5年投资,前2年的利率为5%,后3年的利率为6%,分别以单利和复利计算5年后的累计积累值。

某人存5000元进入银行,若银行分别以2%的单利计息、复利计息、单贴

现计息、复贴现计息,问此人第5年末分别能得到多少积累值?

1确定500元以季度转换8%年利率投资5年的积累值。

2如以6%年名义贴现率,按半年为期预付及转换,到第6年末支付1000元,求其现时值。

3确定季度转换的名义利率使其相当于月度转换6%名义贴现率。

(1)某人现在投资4000元,3年后积累到5700元,问季度计息的名义利

率等于多少?

(2)某人现在投资3000元,2年后再投资6000元,这两笔钱在4年末积累到15000元,问实质利率=

假定 分别为12%、6%、2%

计算在这三种不同的利率场合复利计息,本金翻倍分别需要几年?

计算1

30:10

1 (2)()t A Var z () 30:101 (2)()t A Var z ()

055.0092.021.1ln 21.1701 092.070

11.1 )()(2092.01

.1ln 1.1701 7011.1)(1001

)()()()1(2

0102

100221

10:30110:3020

10100100301

10:30=-=-=-=====-=

+'-

=----???t t t t t t T dt A A z Var dt dt t f v A x

x S t x S t f )( 1130:101101030:10103011

30:10

30:1030:10

2

1

20

30:10

210301

1

30:1031230:10

0.092()0.05560

(1) 1.10.33

70

0.422

(2)()0.0185

()()()0.0431t t t t t A Var z A v p A A A

Var z v p A Var z Var z Var z A A -===?=?=?=+=??=?-=???

??=+-?=由例3.1已知:

二、设(x)投保终身寿险,保险金额为1元 保险金在死亡即刻赔付

签单时,(x)的剩余寿命的密度函数为

利息力为常数δ

计算

0.9

0.91(2)()

(3)Pr()0.9.x

t A Var z z ξξ≤=()的

6060

022

6022

0120602

(1)()1160602()() 1

()

6011()12060t

x T t

t x x t x A e f t dt e e dt Var z A A e dt A e e ωδδ

δδδδδδδ---=-==

=-=---=

-???()

三、假设(x )投保延期10年的终身寿险保额1元。

保险金在死亡即刻赔付。 已知

0.040.06(),0x S x e x δ-==≥,

求:

t 10

(1) (2)Var(z )x A

0.040.060.040.110

10

0.1610

2

0.120.041022

()(1)()0.04()

0.040.040.147

0.04(2)0.040.050470.16()()0.0288t

T t t t x m

t t t x m t x x m m S x t f t e S x A e e dt e dt e A e e dt Var z A A -∞

∞----∞∞--'

+=-

=======?=-=???

4.某男性被保人在35岁时购买一个5年期的两全保险,保额1万元。在死亡年末给付。如果根据附录中的中国人寿保险业经验生命表,按预定利率6%,计算其趸缴纯保费。

()

()

()7479417

.010000100007479417

.006.106.1|5:3535

40

540

3535135

5535354

01

1

|

1

:35|

5:|5:3515135?==+=

+=+=

+=-=++-+=+-=+∑∑∑A l l l d p v q p v

p v

q v

A A A k k k k k k

k x

n

n

x n k k k

五、(x )岁的人投保5年期的两全保险,保险金额为

1万元,保险金死亡即刻给付,按附录示例生命表计算(1)20岁的人按实质利率为2.5%计算的趸缴纯保费。(2)60岁的人按实质利率为2.5%计算的趸缴纯保费(3)20岁的人按实质利率为6%计算的趸缴纯保费。(4)60岁的人按实质利率为6%计算的趸缴纯保费。

六、某30岁的被保人购买一个30年两全保险:第一个10年保额为25 000元,第二个10年保额为50 000元,第三个10年保额及生存给付额均为100 000元,被保人死后立即给付。根据附录中的中国人寿保险业经验生命表混合表和预定利率6%,分别在年龄间均匀分布假设下和死亡都发生在年中的假设下计算其趸缴纯保险。

()()()()

()()86.1783111.1564775.2184100000

10050?251000

17

.1783211.1564702.212206

.1ln 06

.013.1776911.1564702.2122100000

10050251000

30

60

30

60505040403030

60

30605050404030=+=+-+-+-=+=+=+-+-+-D D D M M M M M M D D D M M M M M M 纯保费为

死亡发生在年中,趸缴费为

死亡年末给付趸缴纯保年龄间均匀分布假设,

七、计算25岁的男性购买1万元给付40年定期生存险的趸缴纯保费。已知假定i =6%,假定i =2.5%

48.293378765825.0025.11000010000)1(78.76578765825.006.110000

10000)1(402540402540=??==??=--E E

八、对于现年25岁的女性,根据附录表在i =7%计算

60岁时候10000元生存给付的精算现值 现在10000元到60岁时候的精算积累值

98

.116141905045984526

07.1100001

10000

)2(02

.861984526905045

07.11000010000)1(3525

3535

2535=?==?=-E E

九、一个60岁的被保人购买一个年末付终身年金,年给付额为5000元。

根据附录表中的男女混合生命表和6%的预定利率求该年金的精算现值

10. 某人在2006年1月1日买了一份10年定期寿险,死亡即刻给付10000

元,保费为前5年每年年初交费500元。假定此人在2008年6月30日死亡,求保险公司的损失在签单日的现值(i =0.025)

()

|:|:1000,750.0,500.0,025.0n x n x x n A P A E i 求匀分布,死亡在每一年内服从均已知===

()()

x x A P a i 4,68.1,05.0求,年内死亡服从均匀分布被保险人在每一个分数已知==

13. (x )以年缴均衡保费购买了一张保险金额为5万元的半连续型终身寿险保单,按下表所列各项费用,根据精算等价原理计算年缴毛保费。

()1 , 0100100

0.1

x

S x x i =-≤≤=1

, 060(t)60

0 , T t f ?<≤?

=???

其它23

(5)10000(125%36%)

12800

(5)10000(15%(16%)13130

A A =?+?+?==?+?+=单利复利

)5531%215000

)5(%2)4(5556

%2515000

)5(%2)3(5520%)21(5000)5(%2)2(5500%)251(5000)5(%2)1(5

5=-==?-==+==?+=)

(复贴现计息单贴现计息

复利计息

单利计息

A A A A 420

(4)0.0815001742.97

44n

i P ????

+

=+=??????

?

?%

0605.611206.014121413

)

4(12

)12(4)4(=??

????????-??????-=??

??

???-=?????

?+--i

d i %

124%

35700)

14000)4(4

3===?=+?j i j j ()

204.2 %4.206

1)1()

(61)1(15000)1(6000)1(30002224舍去(由舍去负根-==?+-=+±-=+?=+++i i

i i i i (12)122%ln 2

(10.17%)234.7

12ln1.0017

n i n =+=?=

=时,

保险精算

1. 设生存函数为()1100 x s x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10 ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。 2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。 (2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么? (1)法一:4 1 135 36373839234535:5 3511000()1.06 1.06 1.06 1.06 1.06 k k x x k k d d d d d A v p q l ++=== ++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算: 法二:1 3540 35:5 35 10001000M M A D -= 查换算表1 354035:5 3513590.2212857.61 100010001000 5.747127469.03 M M A D --===g

(2) 1 353535:1351 363636:1361373737:1371383838:1 38143.58 100010001000 1000 1.126127469.03144.47 100010001000 1000 1.203120110.22 145.94 100010001000 1000 1.29113167.06100010001000100C p A D C p A D C p A D C p A D ===============g g g 1 393939:1393536373839148.050 1.389 106615.43 150.55 100010001000 1000 1.499100432.54 1000() 6.457 C p A D p p p p p =====++++=g g (3) 1112131413523533543535:535:136:137:138:139:1 1 3536373839 35:5 A A vp A v p A v p A v p A A p p p p p =++++∴<++++g g g 3. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算: (1) 1:20 x A 。 (2) 1:10x A 。改为求1:20 x A 4. 试证在UDD 假设条件下: (1) 1 1::x n x n i δ = A A 。 (2) 11:::x x n n x n i δ=+āA A 。 5. (x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元, ()0.5,0,0.1771x q i Var z === ,试求1x q +。 6. 已知,767677770.8,400,360,0.03,D D i ====求A A 。

完整word版,保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -=; ()11n n n v a a i d -=+=&&; () ()11 1n n n n i s a i i +-=+= ; ?? ? ?? -=11511000x l x ; 1a i ∞=; 1a d ∞ =&&; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= &&; ()()()1n n n n s n Is Ia i i -=+=&&; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211 Ia i i ∞ =+。

第二章 生命表 22x x x m q m = +; 1x x x l l d +=-; x x x d q l =; ()11 2 x x x L l l += +; 1 x x x t t T L ?--+== ∑ ; x x x T e l = 。 第三章 生存年金 生存年金的概念及其种类。 生存年金现值计算公式

各种年金之间的关系式: x a =:x n a +|n x a | n x a =n x E x n a + x a &&=1+x a :x n a &&=1+:1x n a - | n x a &&=1|n x a - |n m x a &&=1|n m x a - :x n s =:x n a 1 n x E :x n s &&=:x n a &&1n x E ()m x a &&=()m x a + 1 m ()m x a =():m x n a +()|m n x a () | m n x a =n x E ()m x n a + 转换函数的定义

寿险精算习题及答案

习题 第一章人寿保险 一、n 年定期寿险 【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。 I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。 解:I 表4–1 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1 1000 103.1- 970.87 2 2 2000 203.1- 1885.19 3 3 3000 303.1- 2745.43 4 4 4000 403.1- 3553.9 5 5 5 5000 503.1- 4313.04 合计 --- 15000 --- 13468.48 根据上表可知100张保单未来赔付支出现值为: 48.13468)03.1503.1403.1303.1203.11(100054321=?+?+?+?+??-----(元) 则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。 解:II 表4–2 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1000*40q =1.650 1650 103.1- 1601.94 2 1000*40|1q =1.809 1809 203.1- 1705.16 3 1000*40|2q =1.986 1986 303.1- 1817.47 4 1000*40 | 3q =2.181 2181 403.1- 1937.79

保险精算试题

共 4 页 第 1 页 保险精算复习自测题(90分钟) 选择题(20分) 1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为( )。 A... .. 2020400100()a I a + B.2020400100()a I a + C... .. 2020500100()a I a + D.2020500100()a I a + 2. UDD 假设 若q 50=0.004,在UDD 假设下0.5p 50等于( )。 3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为( )。 A.() ..:10000m x n m a B.() :10000m x n ma C.() ..:10000m x n nm a D.() :10000m x n nm a 4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下: k 1k b + b1 1 b2 若 z 是死亡给付现值的随机变量则()E Z 等于( )。

共 4 页 第 2 页 填空题(20分) 1.按缴费方式和保险金的给付方式,把寿险分为 、 、 。 2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。 3. = ,35:]1000n n V 。 4.日本采用的计算最低现金价值的方法是 。 5.专业英语:Nominal interest 中文意思是 。 6.生存年金精算现值的计算方法 和 。 7.假设i=5%,现向银行存入1万元,在以后的每年末可取出 元。 8.假设40l =A ,50l =B ,则1040q = 。 9.责任准备金的两种计算方法为 、 。 1 20:] 1000t t V

精算学大学排名及专业介绍

精算学大学排名及专业介绍 一精算业 精算是依据经济学的基本原理,利用现代数学方法,对各种经济活动未来的财务风险进行分析、估价和管理的一门综合性的应用科学。精算方法和精算技术是现代保险、金融、投资科学管理的有效工具。其一直是被广泛应用于保险及其它金融行业、寿险业务、年金市场、财务运营、资金运作和预测未来等多个领域甚至退休保障等社会福利中。从社会保障标准的计算、财政收支计划的测算以及投资活动的分析,到人寿保险业中对于人生老病死等随机事件的把握,都离不开精算师周密、科学的分析和运算。 二精算师 精算师(Actuary,拉丁语意思"经营")是一种处理金融风险的商业性职业,是运用精算方法和技术解决经济问题的专业人士,是评估经济活动未来财务风险的专家。精算师更被国际社会形象地比喻为协调和平衡社会经济运作的"第一小提琴手"。 精算师采用数学、经济、财政和统计工具,在商业保险业,投资和经济预测领域从事产品开发、责任准备金核算、利源分析及动态偿付能力测试等重要工作,确保保险监管机关的监管决策、保险公司的经营决策建立在科学基础之上和为保险公司作风险评估及制定投资方针,并定期作出检讨及跟进。 精算师也会在咨询公司(主要的客户是规模较细的保险公司及银行)、养老金投资公司、医疗保险公司及投资公司工作。 三成为精算师的条件 要想成为精算师,首先必需掌握一些基础课程,如微积分、线性代数、概率论与数理统计、保险学和风险管理等。不仅如此,由于精算师所从事的是经济领域的职业,因而他们还必需有较高的经济学修养,掌握会计、金融、经济学和计算机等科学。这样,精算师才能对经济环境的变化有较强的反应能力。此外,精算师的职业还要求掌握语言表达、商业写作、哲学等科学知识取得精算师资格必需通过一些科目的严格考试,并获得精算组织的认可。例如,在美国和加拿大,作为一名合格的精算师,必需取得美国灾害保险精算学会 (Casuality Actuarial Society)或北美精算学会(Society of Actuaries) 的正式会员资格。北美精算学会是在人寿保险、健康保险和年金保险领域从事研究、考试和接受会员的国际组织,它负责从吸收非正式会员到正式会员的一系列考试。 四精算师的职业优势 1. 有较高的社会地位. 精算师是一份有着重要作用的职业,有时甚至是公司发展的关键所在.有着较高的社会地位.有人说,按英国标准来讲,中国只有两个精算师,而按美国精算师学会的名单,中国尚不存在一个合格的精算师。 2. 职业空缺

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

2020考研热门专业解析:保险精算

保险精算 精算是一门运用概率数学理论、多种金融工具以及数理统计的方法对未来行业、企业的经济活动进行分析预测的学问。在西方发达国家,精算在保险、投资、金融监管、社会保障以及其他与风险管理相关领域发挥着重要作用。精算师是同“未来不确定性”打交道的,宗旨是为金融决策提供依据。 一、专业深度解析

(一)研究方向 保险精算学通过对经济活动进行分析预测、控制甚至化解各经济部门所面临的诸多风险来解决保险产品的成本核算和保险公司的金融管理,包括公司资产的投资管理,投资收益的敏感性分析和投资组合分析,资产和负债等实际问题。它的研究临领域较为广泛可延伸至统计学、投资学、财务学和会计学、金融、保险学等相关领域。(二)课程设置 各个学校所开具体课程部一样总的来说主要有以下几系列: 1、专业基础课系列:如利息理论,应用统计,运筹学、,多元

统计分析,人寿保险,统计概率,风险理论等 2、专业方向课系列:如应用随机过程、精算数学、保险市场、证券投资分析、时间序列分析等 3、实践性教学环节:调查实习,保险咨询,科研训练或毕业论文等实践性教学环节。 (三)推荐院校 目前招收保险精算研究生的学校主要有中央财经大学、南开大学、复旦大学、中国人民大学、上海财经大学、西南财经、暨南大学等学校。 二、素质要求 精算师是保险业的精英,是集数学家、统计学家、经济学家和投资学家于一身的保险业高级人才。他不仅要具备保险业的专门知识,而且还要具有预测未来发展方向的能力。 三、就业前景 (一)就业领域 社会保险、投资、人口分析、经济预测等领域。

(二)转型机会 凭借精算师的知识和专业素养,未来的领域不仅仅局限在保险行业,投资、金融监管、社会保障、人口分析、经济预测、福利彩票等领域,都有精算师的用武之地。 从发达国家精算发展的实际情况来看,精算已不再局限于商业保险和社会保险领域,在金融投资、咨询等众多与风险管理相关的领域都有广泛的应用。 (三)职位分布 在我国精算师大部分在中国境内的保险公司(中资、外资、中外

最新保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

保险精算案例分析

1319010104吉可夫 案例分析 通过第四章课后习题第7,9题分析定期寿险和终身寿险的基本运算: 7.现年30岁的人,付趸缴纯保费5 000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。 解:因为案例中给的是付趸缴纯保费,所以用公式求出保险金额与自然保费(根据每一保险年度,每一被保险人当年年龄的预定死亡率就算出来的)这个公式跟年金公式想象,可以把自然保费联想成年金,个人感觉自然保费的付费方式跟年金一样。 1 130:20 30:20 50005000RA R A =?= 其中 19 1111303030303030:200 030303030313249 2320303050 30 1 11111 ()1.06(1.06)(1.06)(1.06) k k k k k k k k k k k k l d A v p q v v d l l l d d d d l M M D ∞ ∞ +++++++===+====++++-= ∑∑∑ 其中各项就像年金的v 一样,累计相加,求各期期末应交的保险金为1的寿险。也可化简为M (30到50岁之间的死亡率)和D (30岁以

后的生存人数与i=0.06的年利率相乘) 查(2000-2003)男性或者女性非养老金业务生命表中数据 3030313249,,,l d d d d 带入计算即可,或者i=0.06以及(2000-2003)男 性或者女性非养老金业务生命表换算表305030,,M M D 带入计算即可。 例查(2000-2003)男性非养老金业务生命表中数据。 12320 30:20 11111 (8679179773144)9846351.06(1.06)(1.06)(1.06) 0.017785596 281126.3727 A R =++++== 9.现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15 000元;10年后死亡,给付金额为20 000元。试求趸缴纯保费。 趸交纯保费为1 110|35 35:10 1500020000A A + 其中 99 11 11 353535353535:10 00 035353535363744 231035354535111111 ()1.06(1.06)(1.06)(1.06)13590.2212077.31 0.01187127469.03k k k k k k k k k k k k l d A v p q v v d l l l d d d d l M M D ∞+++++++===+====++++--===∑∑∑ 为35岁购买在10年内死亡应交的自然保费110|3535:101500020000A A +为10年后死亡应交的自然保费。 991111 353535353535:10000 35353535363744 231035354535111111 ()1.06(1.06)(1.06)(1.06) 13590.2212077.31 0.01187 127469.03 k k k k k k k k k k k k l d A v p q v v d l l l d d d d l M M D ∞ +++++++===+====++++--===∑∑∑

人民大学保险精算学》

第一章:利息理论基础 第一节:利息的度量 一、利息的定义 利息产生在资金的所有者和使用者不统一的场合,它的实质是资金的使用者付给资金所有者的租金,用以补偿所有者在资金租借期内不能支配该笔资金而蒙受的损失。 二、利息的度量 利息可以按照不同的标准来度量,主要的度量方式有 1、按照计息时刻划分: 期末计息:利率 期初计息:贴现率 2、按照积累方式划分:

(1)线性积累: 单利计息 单贴现计息 (2)指数积累: 复利计息 复贴现计息 (3)单复利/贴现计息之间的相关关系 ? 单利的实质利率逐期递减,复利的实质利率保持恒定。 单贴现的实质利率逐期递增,复贴现的实质利率保持恒定。 时,相同单复利场合,复利计息比单利计息产生更大的积累值。所以长期业务一般复利计息。 时,相同单复利场合,单利计息比复利计息产生更大的积累值。所以短期业务一般单利计息。3、按照利息转换频率划分: (1)一年转换一次:实质利率(实质贴现率)

(2)一年转换次:名义利率(名义贴现率) (3)连续计息(一年转换无穷次):利息效力 特别,恒定利息效力场合有 三、变利息 1、什么是变利息 2、常见的变利息情况 (1)连续变化场合 (2)离散变化场合

第二节:利息问题求解原则 一、利息问题求解四要素 1、原始投资本金 2、投资时期的长度 3、利率及计息方式 4、本金在投资期末的积累值 二、利息问题求解的原则 1、本质 任何一个有关利息问题的求解本质都是对四要素知三求一的问题。 2、工具 现金流图:一维坐标图,记录资金按时间顺序投入或抽出的示意图。 3、方法 建立现金流分析方程(求值方程) 4、原则 在任意时间参照点,求值方程等号两边现时值相等。 第三节:年金 一、年金的定义与分类 1、年金的定义:按一定的时间间隔支付的一系列付款称为年金。原始含义是限于一年支付一次的付款,现已推广到任意间隔长度的系列付款。 2、年金的分类: (1)基本年金 约束条件:等时间间隔付款

保险精算例题

保险精算例题

第二章 【例2.1】某人1997年1月1日借款1000元,假设借款年利率为5%,试分别以单利和复利计算: (1)如果1999年1月1日还款,需要的还款总额为多少? (2)如果1997年5月20日还款,需要的还款总额为多少? (3)借款多长时间后需要还款1200元。 解:(1)1997年1月1日到1999年1月1日为2年。 在单利下,还款总额为: A(2)=A(0)(1+2i)=1000×(1+2×5%)=1100(元) 在复利下,还款总额为: A(2)=A(0)(1+i)2=1000×(1+5%)2=1102.5(元) (2)从1997年1月1日到1997年5月20日为140天,计息天数为139天。 在单利下,还款总额为: 1000×(1+ 139 365×5%)=1019.04(元) 在复利下,还款总额为: 1000×139365 % (1+5)=1018.75(元)(4)设借款t年后需要还款1200元。 在单利下,有 1200=1000×(1+0.05t) 可得:

t=4(年) 在复利下,有 1200=1000×(1+0.05)t 可得: t≈3.74(年) 【例2.2】以1000元本金进行5年投资,前2年的利率为5%,后3年的利率为6%,以单利和复利分别计算5年后的累积资金。 解:在单利下,有 A(5)=1000×(1+2×5%+3×6%)=12800(元) 在复利下,有 A(5)+1000×(1+5%)2 ×(1+6%)3=13130.95(元) 【例2.3】计算1998年1月1日1000元在复利贴现率为5%下1995年1月1日的现值及年利率。 解:(1)1995年1月1日的现值为: 1000×(1-0.05)3=857.38(元) (2)年利率为: i=d 1-d =0.050.95 =0.053 【例2.4】1998年8月1日某投资资金的价值为14000元,计算: (1) 在年利息率为6%时,以复利计算,这笔资金在1996年8月1 日的现值。 (2) 在利率贴现率为6%时,这笔资金在1996年8月1日的现值。 解:(1)以知利率时,用折现系数计算现值,14000元2年前的现值

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算练习题

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。(2)在年利率8%的复利下,求1994年5月1日的存款额。解:(1)5000×(1+4×10%)=7000(元) 4.33=7556.8(元) 5000×(1+10%)(2) 2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。 55=12385(元)×(1+11%解:5000(1+8%)) 3.李美1994年1月1日在银行帐户上有10000元存款。(1)求在复利11%下1990年1月1日的现值。(2)在11%的折现率下计算1990年1月1日的现值。 -4=5934.51(元)1+11%)(1)10000×(解:4=6274.22(元)) 2)10000×(1-11%( 4.假设1000元在半年后成为1200元,求 (2)(3)id。⑴ i, ⑶,⑵(2)i(2)1000?(1?)?12004.??i0;所以解:⑴ 2(2)i2)1?i?(1?44?0.i⑵;所以2(n)(m)di?1?mn(1?)?1?i?(1?d)?(1?) ⑶;mn(3)d3?1(1?)?(1?i))(3?0.34335d;所以,3 (n)(n)???id?id?。时,证明:5.当1?n(n)dd?证明:①,为因 (n)(n)(n)(n)dddd012n323))(C)C1CC(1d(1????????????? d1?? nnnn nnnn(n)

)(n dd?所以得到,;(n)??d②?????????423423 ?)??1C?1??C?()?C?()??(e m?)(n)e(1?d?m m; ??i③ nnn mmmmm?)n(??)](1?d?m[1?所以,m(n) (n)i)(n i n[1?]?1?i??)1?iln(1?)?ln(n?即,,n n? ????? (n)i?n?(e?1)n所以,? 434232?1??)C?e?1?C?()??()?C?(n? nnn mmmmm ?(n)??])?1?n[(i1?n(n)?ii④ (n)(n)(n)iii)(n i)n22(n01[1?]?C?1?C??C?()???1?i n[1?]?1?i nnn,nnn n )(n ii?所以, 6.证明下列等式成立,并进行直观解释:m aav?a? ⑴;nnm?m m v?1n?nmm v1?vv?n?m v1?a?mm?va?v a? i m ii n,,解: i n?m n?mmm v?1?v?v m a?ava?? i mnnm?所以, m sva?a?nm?nm⑵;m v1?n?m v?1nmm?v?v?a a?m??vs i m i n?m,解:, i n nmm?m vv??1?v m a??a?vs i mnm?n所以, m as?s?(1?i)nmm?n⑶;

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

寿险精算 学习心得

学习心得 保险精算是以数理统计方法为基础理论,综合运用数学、金融学、经济学及保险理论的交又性、应用性学科。概括而言,它是运用数理模型对未来不确定的事件产生的影响做出评估。由微观经济学的理论可知,大部分的人是风险厌恶的个体,愿意为规避风险付出一定量的风险贴水或者保证金,这正是保险业存在的前提和理论基础。虽然单个风险无规律可言,但是把大量的风险聚集起来,就呈现出了明显的规律性。可以说保险业是建立在对大量风险的统计规律的认识上的,而精算就是要对这些规律进行研究的学科。随着保险业成为独立的金融分支出现,精算学科产生发展已有三百余年的历史。 寿险精算学是以人的寿命为风险标的,主要研究寿命风险评估和厘定的一门专业课程。寿险精算是精算学的核心内容,揭示了对未来的不确定的财务事件提供数量化意见的精算方法。它以概率统计为基础的生命模型研究人的死亡和疾病的不确定性,以复利函数研究资产的时间价值对未来事件进行量化,并将生命模型和复利函数结合,形成了一整套全面量化未来不确定的财务事件的方法。它不仅在保险、金融等领域发挥着巨大的作用,对于可以通过类似方法描述不确定性和时间价值函数的事务,也是一个重要的工具,如可以参考死亡保险的量化模型分析大型设备寿命等。 本书主要包括三部分,利息理论、生命的不确定性以及风险理论。 在资金的使用过程中,资金的周转会带来资金价值的增值,一般来说,资金周转的时间越长,其价值的增值也就越大。等额的货币在不同时间点上,由于受到通货膨胀的影响,其实际价值也不相同。利息理论是进行精算科学研究的基础.利息是货币的时间价值,是资金的拥有人将资金的使用权转让给借款人所获得的租金。在各项金融活动中,资金的提供者的最终目的是获得尽可能多的收益,资金的使用者希望以最低的成本获得资金的使用权,只有二者达成统一,资金才能顺利地融通。所以,对资金的使用成本,.即利息,进行精确的计量,具有十分重要的意义。 利息是指借用某种资本的代价或借出某种资本的报酬,可用利息率或者贴现率来度量。计息期与基本的时间单位一致与否,导致了有效利率与名义利率的不

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型 一、人寿保险简介 保险精算学主要分为两大类:一个是所谓的人寿保险(寿险精算),另一个是非人寿保险。前者主要以人的寿命、身体或健康为“保险标的”的保险。 非人身保险主要包括:汽车保险、屋主保险、运输保险、责任保险、信用保险、保证保险等。而这次我们主要讨论人寿保险。 狭义的人寿保险是以被保险人在保障期是否死亡作为保险标的的一种保险。 广义的人寿保险是以被保险人的寿命作为保险标的的一种保险。它包括以保障期内被保险人死亡为标的的狭义寿险,也包括以保障期内被保险人生存为标底的生存保险和两全保险。 人寿保险的分类 根据不同的标准,人寿保险有不同的分类: (1)以被保险人的受益金额是否恒定进行划分,可分为:定额受益保险,变额受益保险。 (2)以保障期是否有限进行划分,可分为:定期寿险和终身寿险。 (3)以保单签约日和保障期是否同时进行划分分为:非延期保险和延期保险。(4)以保障标的进行划分,可分为:人寿保险(狭义)、生存保险和两全保险。人寿保险的特点 1:保障的长期性 这使得从投保到赔付期间的投资收益(利息)成为不容忽视的因素。 2:保险赔付金额和赔付时间的不确定性 人寿保险的赔付金额和赔付时间依赖于被保险人的生命状况。被保险人的死亡时间是一个随机变量。这就意味着保险公司的赔付额也是一个随机变量,它依赖于被保险人剩余寿命分布。 3:被保障人群的大多数性 保险公司可以依靠概率统计的原理计算出平均赔付并可预测将来的风险。 人寿保险趸缴纯保费厘定的原理 1、假定 传统的人寿保险产品的趸缴纯保费是在如下假定下厘定的:假定一:同性别、同年龄、同时参保的被保险人的剩余寿命独立同分布。假定二:被保险人的剩

保险精算练习题

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以 4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为,Λ+?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得到, )(n d d <; ② δ<) (n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 Λ 所以, δ δ =- -<)]1(1[) (m m d n ③) (n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 Λ

δ δ =-+>]1)1[() (n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+Λ 所以, i i n <) ( 6.证明下列等式成立,并进行直观解释: ⑴n m m n m a v a a +=+; 解:i v a n m n m ++-= 1, i v a m m -= 1,i v v i v v a v n m m n m n m +-=-=1 所以,n m n m m m n m m a i v v v a v a ++=-+-=+1 ⑵n m m n m s v a a -=-; 解: i v a n m n m ---= 1,i v a m m -= 1,i v v s v n m m n m --= - 所以,n m n m m m n m m a i v v v s v a --=-+-=-1 ⑶ n m m n m a i s s )1(++=+; 解: i i s m m 1)1(-+=,i i i i i i s i m n m n m n m )1()1(1)1() 1()1(+-+=-++=++ 所以,n m m n m m n m m s i i i i a i s ++=+-++-+=++)1()1(1)1()1( ⑷ n m m n m a i s s )1(+-=-。

保险精算

保险精算(寿险)模拟教学系统 第一章前言 一、系统概述 本技术白皮书主要阐述保险精算系统的项目背景和使用现状以及建设目标、总体解决方案,从多个 角度描述本系统的优势和特点,并结合产品特点提出适合贵校的系统总体框架。 本设计方案是公司组织多名在保险行业有多年从业经验的精算师开发而成,是目前国内专业精算软件 中唯一针对高校保险专业而开发的教学系统。 本系统可以为金融实验室构建一个精算实训平台,是保险精算信息化处理、操作和管理平台,充分利 用科技手段实现精算理论教学和精算实际应用相结合的目标。 二、发展趋势 9 0 年代以来,保险精算在中国保险业得到了很大的发展,这种发展不仅表现在保险精算算法上,还 表现在保险教育上,目前国内综合性高校相继开办保险精算专业或保险精算课程,教授保险精算理论知识, 部份高校还开设培养保险精算专业研究生,而且更主要的发展体现在保险精算从理念接受、学习借鉴和探 索阶段,开始向着保险业乃至相关行业的实际操作和应用阶段迈进,即精算理论与技术在中国保险实务中 得到了不同程度的应用。 三、开发背景 随着保险精算信息处理技术的发展,为了适应新形势的要求,各高校基于保险专业教学的需要,开始 希望有一套保险精算软件系统来构建一个模拟保险精算实验室,模拟整个精算过程、结果,让学生有一个 完善、实用、真实的实践环境,去检验所学到的保精算理论知识。正是基于这种市场需求,公司I T 技术 专家、美国/ 香港/ 大陆注册精算师及知名财经高校保险精算教授等核心开发力量共同合作,历经一年时 间开发了本系统,以满足高校保险精算教学需求。 通过对本系统的实训操作,可以促使学生关注最新的信息技术,训练学生的实际操作能力,为金融专 业及其它相关专业的学生走向社会提供一个理论结合实际的实习环境。 本系统是金融保险人才培养和科学研究的重要工具。为了培养面向2 1 世纪的新型实用人才,本系统 提供的真实的操作环境,使学生在掌握理论知识的同时熟悉实际操作过程,改变其知识结构,培养保险行 业真正需要的实用性人才,增强学生的社会就业竞争力。 第二章解决方案 一、概述

保险精算学公式

保险精算学公式

《精算技术》公式 第一章 利息理论 1n n v a i -= ; ()11n n n v a a i d -=+= ; () ()11 1n n n n i s a i i +-=+= ; ? ? ? ?? -=11511000x l x ; 1a i ∞= ; 1a d ∞= ; 1n n v a δ -= ; ()11 n n i s δ +-= ; ()n n n a nv Ia i -= ; ()()()1n n n n s n Is Ia i i -=+= ; ()n n n a Da i -=; ()()1n n n n i s Ds i +-= ; ()211Ia i i ∞ =+。

终身年 金一年给 付一次 期末付x a1x x N D + 期首付x a x x N D n年定期一年给 付一次 期末付:x n a11 x x n x N N D +++ - 期首付:x n a x x n x N N D + - n年延期一年给 付一次 期末付|n x a1x n x N D ++ 期首付|n x a x n x N D + n年延 期的m年定 期一年给 付一次 期末付|n m x a11 x n x n m x N N D +++++ - 期首付|n m x a x n x n m x N N D +++ - 终身年 金一年给 付m次 期末付()m x a x a+1 2 m m - 期首付()m x a x a-1 2 m m - n年延期一年给 付m次 期末付()|m n x a |n x a+12m m-n x E 期首付()|m n x a |n x a-12m m-n x E n年定期一年给 付m次 期末付():m x n a:x n a+12m m-(1-n x E ) 期首付():m x n a:x n a-1 2 m m -(1- n x E) 终身年 金连续年 金 ——x a x x N D

相关主题
文本预览
相关文档 最新文档