当前位置:文档之家› 大学物理 恒定磁场(DOC)

大学物理 恒定磁场(DOC)

大学物理 恒定磁场(DOC)
大学物理 恒定磁场(DOC)

11-1 恒定电流 电流密度

磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。在11世纪,我国已制造出航海用的指南。

在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而

对磁与电两种现象的研究彼此独立,毫无关联。1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。

奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几

个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。

1820年是人们对电磁现象的研究取得重大成果的一年。人们发现,电荷的

运动是一切磁现象的根源。一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。

11-1 恒定电流 电流密度

如前所述,电荷的运动是一切磁现象的根源。电荷的定向运动形成电流,称

为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。

常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于

单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为

dt

dq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。

实际上还常常遇到电荷在大块导体中流动的情况,由于粗细不均,材料不同

等原因,导体中各点处电流的大小和方向是不同的,形成了一个电流分布。显然,电流强度只能描述导体中通过某一截面的电荷运动的整体特征,而不能描述这种电流分布。

为了描述导体中不同点处的电流分布情况,需要引入一个新的物理量,叫做

电流密度。

11-2 电源 电动势

上一节曾指出,只要在导体两端维持恒定的电势差,导体中就会有恒定的电

流流过。怎样才能维持恒定的电势差呢?

如图所示的导电回路中,开始时极板A 和B 分别带有正负电荷,A 、B 之间有

电势差,在电场力作用下,正电荷通过导线移到负极板B 上,电荷的流动形成电流。但随着A ,B 两板上电荷的中和,两板间电势差越来越小,因而电流也越来越小,直至最后为零。要想维持导线中的电流不变,必须把正电荷从负极板B 沿两板间路线送回到正极板A 上,以维持A ,B 两板间的电势差。显然,这种移动电荷的力不可能是静电力,因为在静电力的作用下,正电荷的运动方向与此相

反,我们把这种统称为非静电力。

能够提供非静电力的装臵称为电源。在电源内部,依靠非静电力克服静电力

对正电荷做功,才能是正电荷从极板B 经电源内部输送到极板A 上去。可见,电源中非静电力的做功过程,就是把其他形式的能量转变为电能的过程。为了定量地描述电源进行能量转化的本领,我们引入电动势的概念。

电动势:单位正电荷绕闭合回路一周时,非静电力所做的功为电源的电动势。

??==l d E q

W k ξ(类似于静电场中场强的概念,我们引入非静电场强Ek ,它等于作用在单位正电荷上的非静电力,即q

F E k k =) 对于干电池等电源来说,非静电力集中在电源的内部,在外电路中没有非静电力存在,上式简化为:???=?=in

k k l d E l d E ξ 该式表示电源电动势的大小等于

把单位正电荷从负极经电源内部移至正极时非静电力所作的功。(对于某些电源,如感应电动势等,非静电力分布在整个电路中,电源并无内外电路之分,此时必须用第一个式子计算电动势。这个我们以后会学到,在这里先提醒一下。)

注意:1、电动势虽不是矢量,但在电路理论中为了便于计算,通常把电源内部电势升高的方向,即从负极经电源内部到正极的方向,规定为电动势的方向。

2、电动势的单位和电势的单位相同。均为伏特(V ),但电动势与电势是两

个不同的物理量。电动势是描述电路中非静电力做功本领的物理量;而电势差则是描述电路中静电力做功的物理量。

11-3 磁场 磁感强度

从静电场的研究中我们已经知道,在静止电荷周围的空间存在着电场,静止

电荷间的相互作用是通过电场来传递的。电流间(包括运动电荷间)的相互作用也是通过场来传递的,这种场称为磁场。

在静电学中,为了考查空间某处是否有电场存在,可以在该处放一静止试验

电荷q 。,若q 。收到力F 的作用,我们就可以说该处存在电场,并以电场强度 F E =来定量地描述该处的电场。以此类似,我们将从磁场对运动电荷上的

力来引出磁感强度B 来定量地描述磁场。但是,磁场作用在运动电荷上的力不仅与电荷的多少有关,而且还与电荷运动速度的大小及方向有关。所以,磁场作用在运动电荷上的力比电场作用在静止电荷上的力邀复杂得多。因此,对B 的定义也要复杂些。下面我们以运动电荷在磁场力的作用下发生偏转这一事实为对象,进行分析研究。

如图所示,磁场方向由左向右,正如下面小磁针所指方向。一个带电量为q

的正电荷以速度v 进入该磁场中,电荷运动方向与磁场方向不同,电荷所受的力也不同。实验发现,当电荷运动方向与磁场方向平行时,电荷受力为零。规定此时正电荷的速度方向为磁感强度B 的方向。电荷运动方向与磁场方向夹角逐渐增大,电荷受力也逐渐增大,当运动方向与磁场方向垂直时,受力最大。同时,实验发现,所受的最大磁场力与电荷所带电量以及运动速度都成正比,但对于磁场

中某一定点来说,比值qv F ⊥ 却必定是一定的。这种比值在磁场中不同位臵处有

不同的量值,它如实地反映了磁场的空间分布。我们把这个比值规定为磁场中某点的磁感强度B 的大小。

qv F B ⊥=

磁感强度的方向:通常用小磁针来确定,一个可以自由转动的小磁针,在磁场中某点静止时,N 极所指的方向就定义为该点磁感强度B 的方向。

单位:特斯拉

11-4 毕奥-萨伐尔定律

这一节我们介绍恒定电流激发磁场的规律。恒定电流的磁场亦称静磁场或稳

恒磁场。实验表明,磁场和电池一样,都遵循叠加原理。

要求出任意电流分布在空间某点产生的磁感强度B ,可以吧载流导体看成由

无限多个连续分布的电流元Idl 组成,其中dl 的方向为电流流动的方向。如图所示,先求出每个电流元在改点产生的磁感强度dB ,再把所有的dB 叠加,就可求得载流导线在改点产生的磁感强度B 。(分析方法同前面处理任意带电体产生电场的方法一样,即取微元。)

一、电流元产生磁场的规律

19世纪20年代,毕奥和萨伐尔对电流产生磁场的大量实验结果进行分析后,

得出如下结论:电流元Idl 在真空中某点产生的磁感强度dB 的大小与电流元的大小Idl 成正比,与Idl 和矢径r 间的夹角的正弦成正比,并与距离r 的平方成反比。 (地位等同于静电场中点电荷产生电场的规律) (只是线积分。主要用于连续分布的导线) (用于分离导体产生的磁场) (静电场的叠加原理: 对应有线积分、面积分和体积分)

该规律是由毕奥和萨伐尔的实验为基础,又由拉普拉斯和安培进过科学抽象

得到的,但它不能直接由实验证明。前面静电场部分可以通过实验获得,因为点电荷可以得到,但这里电流元不能截取出来,所以没办法由实验直接证明。但由这个定律出发得到的结果都能很好地和实验相符合,证明该定律的正确性。

二、运动电荷产生的磁场

由于导体中的电流时导体中大量自由电子定向运动形成的,因此,可以认为电流激起的磁场,其实是由运动电荷所激起的。因而运动电荷所激起的磁场的磁感强度可有毕奥-萨伐尔定律求得。

三、毕奥-萨伐尔定律应用举例

304r r l Id B d ?=πμ???==L r r l Id B d B 3

04 πμi B B ∑=r r dq E d E L ??==3

41πε

11-5 磁通量 磁场的高斯定理

一、磁感线

正像电场的分布可借助电场线来描述一样,磁场的分布也利用磁感线来直观

地描述。线上每点的切线方向代表该点的磁感强度B 的方向,垂直通过单位面积的磁感线的条数等于改点B 的大小,从直观上来看,曲线的疏密程度反应了改点B 的大小。

磁场中的磁感线可借助小磁针或铁屑显示出来。如果在垂直于长直载流导线

的玻璃板上撒上一些铁屑,这些铁屑将被磁场磁化,可以当作一些细小的磁针,它们在磁场中会形成如图所示的分布。由载流长直导线的磁感线图形可以看出,磁感线的回转方向和电流之间的关系遵从右手螺旋定则,即用右手握住导线,使大拇指伸直并指向电流方向,这时其他四指弯曲的方向,就是磁感线的回转方向。 磁感线的特征

1、每一条磁感线都是环绕电流的闭合曲线,没有起点,也没有终点。(与电场线不同,静电场中的电场线起始于正电荷,终止于负电荷)。

2、任一两条磁感线在空间不相交。反映了磁场的唯一性。(同电场线相同)。

3、磁感线的环绕方向与电流方向之间可以用右手定则表示。

二、磁通量 磁场的高斯定理

穿过磁场中任一曲面的磁感线的条数,称为穿过该曲面的磁通量。由前面,

穿过垂直曲面的磁通量为⊥=ΦBdS d m

类似于电通量的讨论,穿过任一曲面dS 的磁通量为:

S d B dS B d m ?==Φθcos

其中θ为dS 的法向与B 的夹角。

11-6 安培环路定理

一、定理内容

在静电场的环路定理中我们曾指出:电场线是有头有尾的,电场强度沿任意闭合路径的积分等于零,这是静电场的一个重要特征,反映了静电场是保守力场。那么,磁场中的磁感应强度B沿任意闭合路径的积分等于什么呢?

我们先给出结论:磁场中,磁感强度沿任意闭合曲线的积分,等于穿过以该闭合路径所包围的各电流强度代数和的μ0倍。

二、验证

我们先以无限长载流直导线为例,如图所示,在无限长直线电流的磁场中取一个与电流垂直的平面,在该平面上任取一包围电流的闭合曲线L,设L的绕行方向为逆时针方向,即L绕行方向与电流方向构成右手螺旋,在L上任一点P 处取线元dl(注意:这里的dl和毕奥-萨伐尔定律中的dl的区别,毕-萨定律中的dl指的是在载流导线上选的dl,这里的dl是选的闭合曲线上的线元)。

以上我们仅对载流长直导线进行了讨论,而且把闭合回路限制在与导线垂直的平面内。实际上,安培环路定理对任意稳恒磁场中的任意闭合环路都是普遍成立的,它是稳恒磁场的基本定理之一。磁场的高斯定理和环路定理是描述稳恒磁场整体特性的两个基本的场方程。

三、注意点

1、静电场是保守力场,电场线不闭合,起于正,至于负。磁场是非保守场,所

以不能引入磁势能的概念,磁感线是无头无尾的闭合曲线,是一种涡旋场,无源场。

2、正确理解安培环路定理

3、符号规则:当回路L绕行方向与电流流向满足右手螺旋关系时,电流取正,

反之取负。

4、适用范围:稳恒电流(即一定会形成闭合回路,交流电可以不形成闭合回路,

有些地方没有电流)。

四、安培环路定理的应用

当电流分布具有特殊对称性时,可利用安培环路定理计算磁感应强度

11-7 带电粒子在磁场中的运动

前面我们介绍了电流能产生磁场以及他们之间的相互关系,那么,反过来,

磁场对电流是否有作用呢?电流是运动电荷的定向运动,那么,基本的就是磁场对运动电荷是否有作用力?这就是我们今天要学习的磁场对带电粒子的作用力——洛伦兹力。

1、磁场对运动电荷的作用力-洛伦兹力

注意点: (1)洛伦兹力的大小θsin qvB F L =

(2)洛伦兹力的方向:右手螺旋法则 (3)洛伦兹力不做功 2、带电粒子在磁场中的运动及其应用 (1)均匀磁场 =B 恒量

B v q F L ?= m B v q a ?=∴

即粒子的运动轨迹依赖于粒子的初速度方向

a 、B v //时 0,0==L F a

此时粒子作匀速直线运动,可用于判断磁场的方向。

b 、 v ⊥B

B qv F L =,F 大小不变方向垂直于 v 与B

所构

成的平面,所以,带电粒子进入磁场后将以速率 v 作匀速圆周运动,根据牛顿第二定律,有

回旋半径:带电粒子作匀速圆周运动的轨道半径由上式得 上式表明,半径R 与电荷速度 v 的值成正比,与磁感应强度B 的值成反比。

回旋周期:粒子运行一周所需要的时间

回旋频率:单位时间内粒子所运行的圈数

B

v q F L ?= v B

R m B q 2

00v v =qB

m R 0v =qB m R T π2π20==v m qB T f π21==

由上式可以看出,回旋周期T 与回旋频率f 与粒子的速率无关,与粒子质量有关,但回旋半径R 与速率有关,速率越大的粒子,其回旋半径也越大。

特点及其应用:

①m R ∝可用于制作质谱仪

质谱仪是用物理方法分析同位素的仪器,是由英国实验化学家和物理学家阿斯顿在1919年创制的,当年用它发现了氯和汞的同位素,此后几年内又发现了许多种同位素,特别是一些非放射性的同位素。为此,阿斯顿与1922年获诺贝尔化学奖。

对质谱仪进行详细分析。

②T 与 v 和B 无关,即等周期性,可据此设计回旋加速器

在研究原子核的结构时,需要有几百万、几千万甚至几千亿电子伏能量的带电粒子来轰击它们,使它们产生核反应。要使带电粒子获得这样高的能量,一种可能的途径是在电场和磁场的共同作用下,使粒子经过多次加速来达到目的。第一台回旋加速器是美国物理学家劳伦斯于1932年研制成功的,可将质子和氘核加速到1MeV 的能量。为此,1939年劳伦斯获诺贝尔物理学奖。

详细分析回旋加速器

c 、 v 与B 成一定角度时

带电粒子将同时参与平行于磁场方向的匀速直线运动和垂直于磁场方向的匀速圆周运动,两个运动的合成将使粒子沿螺旋线向前运动。

υ ⊥

粒子回转一周所前进的距离——螺距

利用上述结果可实现磁聚焦。

(2)非均匀磁场

能源是人民生活和经济发展的主要基础,大家知道目前人们开发的一种主要能源就是核能。核电站的燃料主要是铀资源,但它也不是理想的长期能源,迟早也要面临铀矿枯竭的危机。最理想的,既洁净又取之不竭的核能当然是聚变能的利用。氘(D )-氚(T )聚变反应一次反应可放出17.6MeV 的能量。而它所以那个的燃料氘和氚,氘可从海水中提取,氚天然不存在,但可以通过反应得到,所以可以说是取之不尽的。但是,要使它们发生聚变反应理论估计需要T=108K 这样的高温,在这样的高温下,原子都已完全电离,形成了物质第四态—等离子体。要使高温等离子体维持一定时间,这是非常困难的事,这要求人们能找到一个“容器”,既能耐高温又不能导热,否则温度立即下降,聚变反应将停止。

从目前研究来看,可控热聚变的最有希望的途径是利用磁约束,即利用磁场将高温高密等离子体约束在一定的容积内。

3、霍尔效应

自行学习

qB m qB m R θυυsin 0==⊥轨道半径qB m R T πυπ22==⊥回转周期qB m T T h θυπθυυcos 2cos 00//=?==

11-8 载流导线在磁场中所受的力

1、安培力、安培定律

既然磁场对运动电荷有力的作用,那当然对载流导线也有作用力。

(中学:αsin IBL F =,1、磁场均匀 2、导线是直线)

1820年,安培首先通过实验发现并总结出如下结论:在磁场中任一点处,电流元Idl 所受的磁力可用下式表示:

B l Id F d ?=

其中B 是场点处的磁感应强度,通常将上式称为安培定律,dF 称为安培力。

对于某段载流导线L ,它所受到的安培力等于组成它的个电流元所受安培力的叠加,即

???==B l Id F d F (中学的方向判断:左手定则)

2、安培力与洛伦兹力的关系

B l Id F d ?= nqvS I = B v dNq B l nqvSd F d ?=?=∴——dN 个带电粒子以V 运动时所受的作用力

所以,一个带电粒子在磁场B 中受到的力为:B v q dN

F d F ?== 所以安培力是大量带电粒子定向运动所受洛伦兹力的集体宏观表现。

3、应用举例

5、磁场对载流线圈作用的力矩

在磁电式电流计和直流电动机内,一般都有放在磁场中的线圈,当线圈中有 电流通过时,它们将在磁场的作用下发生转动,下面我们用安培定律来研究磁场对载流线圈的作用。

图示是一个刚性平面载流矩形线圈,可绕垂直于磁场的轴自由转动,

综上所述,任意形状的载流平面线圈,作为整体在均匀磁场中所受合力为零,因而不会发生平动,仅在磁力矩的作用下发生转动,而且磁力矩总是力图使线圈磁矩转到和外磁场方向一致的方向上来。如果载流线圈处在非均匀磁场中,则线圈除受到磁力矩作用外,还将受到合力作用,线圈将在转动的同时,向磁场较强处平移。

载流线圈在均匀磁场中受到磁力矩作用而转动,这正是电动机和动圈式电磁仪表的工作原理。

铁磁质:

铁磁质的单个原子或分子的磁矩和顺磁质并无特殊差异,如铁原子与铬原子的结构大致相同,但铁是典型的铁磁质,而铬是普通的顺磁质,可见铁磁质的强磁性并非来源于单个原子或分子的磁性,那么铁磁质的磁性起源于什么呢?

近代量子理论和实验研究表明,铁磁质的磁性来源于电子的自旋磁矩,相邻原子间电子存在着很强的“交互作用”,使电子自旋磁矩都自发地取相同方向,在铁磁质内形成一个小的“自发饱和磁化区”,其体积约为10-12m3,含有1012-1015个原子,这种自发磁化区叫做磁畴。同一磁畴内的分子磁矩取向一致,在未被磁化的铁磁质中,各个磁畴的磁矩方向杂乱排列,宏观上对外不显磁性,加上外磁场后,磁矩方向与外磁场方向相近的磁畴体积增大,其他磁矩方向的磁畴体积变小,同时磁畴整体转向——其磁矩方向转向外磁场方向,宏观上就显示出很强的磁性。当所有磁畴的磁矩方向都和磁场方向相同时,磁化达到饱和,这就是饱和磁感应强度形成的原因。

由于铁磁质存在杂质和内应力,因此磁畴在磁化和退磁过程中体积变化和转向时,表现出磁滞现象,又由于相邻磁畴之间存在摩擦力,故撤掉磁化场后,磁畴不能完全恢复磁化前的状态,这就呈现剩磁。升高温度,分子热运动家具,磁畴内部分子磁矩的规则排列受到一定程度的破坏。当温度高于某一值时,磁畴完全瓦解,铁磁性消失而转变成普通顺磁质,这个温度叫做居里点。

铁磁材料在工程技术上的应用极为广泛,从铁磁质的性能和使用方面来看,按矫顽力的大小可将铁磁质分为软磁材料、硬磁材料和矩磁材料。

矫顽力小的铁磁体(Hc<100A、m2)叫做软磁体,这种材料的磁致回线狭长,软磁体容易磁化,也容易退磁,适合在交变电路中使用。如各种电感元件、变压器、整流器、继电器等,一旦切断电流后,剩磁很小。矫顽力较大的铁磁体,叫做硬磁铁,这种材料的磁致回线宽大,在磁化后能保留很强的剩磁,且不易退磁,故适合于制成永久磁体。

还有一类铁磁质叫做矩磁材料,其特点是剩磁很大,接近于饱和磁感应强度,而矫顽力很小,其磁致回线接近于矩形。当它被外磁场磁化后,总是处于Br和-Br两种不同的剩磁状态。通常计算机中采用二进制,只有“0”和“1”两个数码。因此,可用矩磁材料的两种剩磁状态代表这两个数码,起到“记忆”和“存储”的作用。

大学物理第六章-恒定磁场习题解劝答

第6章 恒定磁场 1. 空间某点的磁感应强度B 的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C ) (A )小磁针北(N )极在该点的指向; (B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向; (D )载流线圈稳定平衡时,磁矩在该点的指向。 2. 下列关于磁感应线的描述,哪个是正确的? ( D ) (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。 3. 磁场的高斯定理 0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化? ( D ) (A ) 增大,B 也增大; (B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。 5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C ) (A )0; (B )R I 2/0 ; (C )R I 2/20 ; (D )R I /0 。 6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A ) A 、等于零 B 、不一定等于零 C 、为μ0I D 、为 i n i q 1 1 7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B ) A 、 B /2 B 、2B C 、B D 、–B 8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。若匀强磁场磁感应强度大小为B ,导线质量为m , I

精选-07《大学物理学》恒定磁场练习题

《大学物理学》恒定磁场部分自主学习材料 要掌握的典型习题: 1. 载流直导线的磁场:已知:真空中I 、1α、2α、x 。 建立坐标系Oxy ,任取电流元I dl v ,这里,dl dy = P 点磁感应强度大小:02 sin 4Idy dB r μα π= ; 方向:垂直纸面向里?。 统一积分变量:cot()cot y x x παα=-=-; 有:2 csc dy x d αα=;sin()r x πα=-。 则: 2022sin sin 4sin x d B I x μαααπα =?21 0sin 4I d x ααμααπ=?012(cos cos )4I x μααπ-=。 ①无限长载流直导线:παα==210,,02I B x μπ=;(也可用安培环路定理直接求出) ②半无限长载流直导线:παπα==212,,04I B x μπ=。 2.圆型电流轴线上的磁场:已知:R 、I ,求轴线上P 点的磁感应强度。 建立坐标系Oxy :任取电流元Idl v ,P 点磁感应强度大小: 2 04r Idl dB πμ= ;方向如图。 分析对称性、写出分量式: 0B dB ⊥⊥==?r r ;??==20 sin 4r Idl dB B x x α πμ。 统一积分变量:r R =αsin ∴??==20sin 4r Idl dB B x x απμ?=dl r IR 304πμR r IR ππμ2430?=232220)(2x R IR +=μ。 结论:大小为2 022322032()24I R r IR B R x μμππ??= =+;方向满足右手螺旋法则。 ①当x R >>时,2 20033224IR I R B x x μμππ= =??; ②当0x =时,(即电流环环心处的磁感应强度):00224I I B R R μμππ= = ?; ③对于载流圆弧,若圆心角为θ,则圆弧圆心处的磁感应强度为:04I R B μθπ=。 B v ? R I dl B v

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答 一、填空题(每空1分) 1、电流密度矢量的定义式为:dI j n dS ⊥ =v v ,单位是:安培每平方米(A/m 2) 。 2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d S v 的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。 3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2 02 01 00444R I R I R I B πμμμ- + = 。 4、一磁场的磁感强度为k c j b i a B ? ???++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大 小为πR 2c Wb 。 5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于: 对环路a :d B l ??v v ?=____μ0I __; 对环路b :d B l ??v v ?=___0____; 对环路c :d B l ??v v ? =__2μ0I __。 6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。 二、单项选择题(每小题2分) ( B )1、均匀磁场的磁感强度B v 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 A. 2?r 2B B.??r 2B C. 0 D. 无法确定的量 ( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 A. B. C. D. ( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 A. 方向垂直环形分路所在平面且指向纸内 B. 方向垂直环形分路所在平面且指向纸外

大连理工大学大学物理作业10(稳恒磁场四)与答案详解

作业 10 稳恒磁场四 1. 载流长直螺线管内充满相对磁导率为 r 的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度 H 的关系是 [ ] 。 A. B 0 H B. B r H C. B 0H D. B 0 H 答案:【 D 】 解:对于非铁磁质,电磁感应强度与磁场强度成正比关系 B r H 抗磁质: r 1,所以, B H 2. 在稳恒磁场中,关于磁场强度 H 的下列几种说法中正确的是 [] 。 A. H 仅与传导电流有关。 B. 若闭合曲线内没有包围传导电流,则曲线上各点的 H 必为零。 C.若闭合曲线上各点 H 均为零,则该曲线所包围传导电流的代数和为零。 D.以闭合曲线 L 为边界的任意曲面的 H 通量相等。 答案:【 C 】 解:安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分只与传导电流 L 有关,并不是说:磁场强度 H 本身只与传导电流有关。 A 错。 闭合曲线内没有包围传导电流,只能得到:磁场强度 H 的闭合回路的线积分为零。并 不能说:磁场强度 H 本身在曲线上各点必为零。 B 错。 高斯定理 B dS 0 ,是说:穿过闭合曲面,场感应强度 B 的通量为零,或者说, . S 以闭合曲线 L 为边界的任意曲面的 B 通量相等。对于磁场强度 H ,没有这样的高斯定理。 不能说,穿过闭合曲面,场感应强度 H 的通量为零。 D 错。 安培环路定理 H dl I 0 ,是说:磁场强度 H 的闭合回路的线积分等于闭合回路 L 包围的电流的代数和。 C 正确。 抗磁质和铁磁质的 B H 曲线,则 Oa 表示 3. 图 11-1 种三条曲线分别为顺磁质、 ; Ob 表示 ; Oc 表示 。 答案:铁磁质;顺磁质; 抗磁质。 4. 某铁磁质的磁滞回线如图 11-2 所示,则 图中 Ob (或 Ob ' )表示 ; Oc (或 Oc ' )表示 。 答案:剩磁;矫顽力。

大学物理习题稳恒磁场

稳恒磁场 一、选择题 1. 一圆电流在其环绕的平面内各点的磁感应强度 B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。 2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中 321O ,O ,O 处的磁感应强度为 B B B 123,,,则 【 】 (A) B B B 123==; (B) 0B 0B B 321≠== ; (C) 0B ,0B ,0B 321=≠= ; (D) 0B ,0B ,0B 321≠≠= 3. 所讨论的空间处在稳恒磁场中,对于安培环路定律的理解,正确的是 【 】 (A) 若?=?L 0l d B ,则必定L 上 B 处处为零 (B) 若?=?L 0l d B , 则必定L 不包围电流 (C) 若?=?L 0l d B , 则L 所包围电流的代数和为零 (D) 回路L 上各点的 B 仅与所包围的电流有关。 4. 在匀强磁场中,有两个平面线圈,其面积21A 2A =, 通有电流21I 2I =, 它们所受 的最大磁力矩之比M M 12/等于 【 】 (A) 1 (B) 2 (C) 4 (D) 1/4 5. 由N 匝细导线绕成的平面正三角形线圈,边长为a , 通有电流I , 置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为: 【 】 (2) 选择题

(A) 2/IB Na 32, (B) 4/IB Na 32, (C) 60sin IB Na 32, (D) 0 6. 一带电粒子以速度 v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半 径变为2R ,磁场B 应变为: 【 】 B 2 2) D (B 2 1 ) C (B 2)B (B 2) A ( 7. 图中所示是从云室中拍摄的正电子和负电子的轨迹照片,均匀磁场垂直纸面向里,由两 条轨 迹 可 以 判 断 【 】 (A) a 是正电子,动能大; (B) a 是正电子, 动能小; (C) a 是负电子,动能大; (D) a 是负电子,动能小。 8. 从电子枪同时射出两电子,初速分别为v 和2v ,方向如图所示, 经均匀磁场偏转后, 先回到出发点的是: 【 】 (A) 同时到达 (B) 初速为v 的电子 (C) 初速为2v 的电子 9. 有一电荷q 在均匀磁场中运动,下列哪种说法是正确的? (A )只要速度大小相同,所受的洛仑兹力就相同; (B )如果电荷q 改变为q -,速度v 反向,则受力的大小方向均不变; (C )已知v 、B 、F 中任意两个量的方向,就能判断第三个量的方向; (D )质量为m 的运动电荷,受到洛仑兹力作用后,其动能和动量均不变。 10. 设如图所示的两导线中的电流1I 、2I 均为5A ,根据安培环路定律判断下列表达式中错 误的是( ) (A )?=?a A l d H 5 ; (B )?=?c l d H 0 ; a b c ?? (7)选择题(8) 选择题

大学物理电磁场练习题含答案

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案 1-5 CADBC 6-8 CBC 三、稳恒磁场习题 1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二 者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ ]

4. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布, 则空间各处的B 的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ] 5. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导 线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0. (D) B ≠ 0,因为虽然021 ≠+B B ,但B 3 ≠ 0. [ ]

大学物理课后习题答案 稳恒磁场

第十一章 稳恒磁场 1、[E]依据()θπμθR I B 40= 和载流导线在沿线上任一点的0=B 得出答案。 2、[E]依据r I B πμ40= 和磁感强度的方向和电流的方向满足右手法则,得出答案。 3、[C]依据()210cos cos 4θθπμ-= R I B 和载流导线在沿线上任一点的0=B , 有:()[]445180cos 45cos 2 401?--= l I B π μ; π μμπl I I l 002222 22= ??,02=B 4、[D]依据()R I R I R I B 444000μππμθπμθ=?== 5、[C] r I B πμ40= 、 2 a r = 、 4 000108.0245sin 122-?==??= a I a I B πμπμ T 6、[D]依据()210 0cos cos 4θθπμ-= r I B ,应用21I I I +=,分别求出各段直导线电流的磁感强度,可知03=B 、方向相反,∴0≠B 7、[D]注意分流,和对L 回路是I 的正负分析得结论。 8、[B]洛伦兹力的方向向上,故从y 轴上方射出,qB m v R = ,轨迹的中心在qB m v y =处故 I I

射出点:qB m v R y 22= = 9、[B] 作出具体分析图是解决该题的关键。从图上看出: D R =αsin qB D qB m v R = = p eBD p qBD = =αsin p eBD sin arg =α 10、[D] 载流线圈在磁场中向磁通量增加的方向移动。当线圈在该状态时,磁通量已达最大,不可能通过转动来增加磁通量,因此不发生转动,而线圈靠近导线AB 磁通量增大。 应用安培力来进行分析:向左的磁力比向右的磁力大,因此想左靠近。 11、[B] 载流线圈在磁场中向磁通量增加的方向转动或移动,该题中移动不能增加磁通量,则发生转动,从上向下看线圈作顺时针方向转动,结果线圈相当一个条形磁铁,右侧呈现S 级,因此靠近磁铁。 12、[D] B P M m ?=,αsin B P M m =, m P 和B 平行, ∴ 0=α,0sin =α,0=M 13、[C] 应用r I B πμ20= 的公式分别计算出电流系统在各导线上代表点处的B ,然后用安培力的公式:B l I F ?=d d 计算出1F ,2F 用r 表示导线间的距离。 r I r I r I B πμπμπμ4743220001=+= r I r I r I B πμπμπμ0002232=+-=

《大学物理AⅠ》恒定磁场知识题,答案解析及解法

《大学物理A Ⅰ》恒定磁场习题、答案及解法 一.选择题。 1.边长为a 的一个导体边框上通有电流I ,则此边框中心的磁感应强度【C 】 (A )正比于2a ; (B )与a 成正比; (C )与a 成反比 ; (D )与2I 有关。 参考答案:()210cos cos 4ββπμ-= a I B a I a I B πμπππμ002243cos 4cos 2 44= ??? ??-?= 2.一弯成直角的载流导线在同一平面内,形状如图1所示,O 到两边无限长导线的距离均为a ,则O 点磁感线强度的大小【B 】 (A) 0 (B)a I π2u )221(0+ (C )a I u π20 (D )a I u o π42 参考答案:()210cos cos 4ββπμ-= a I B ??? ? ??+=??? ??-+??? ??-=+=2212cos 4cos 443cos 0cos 400021a I a I a I B B B πμπππμππμ 3.在磁感应强度为B 的均匀磁场中,沿半径为R 的圆周做一如图2所示的任意曲面S ,则通过曲面S 的磁通量为(已知圆面的法线n 与B 成α角)【D 】 (A )B 2 r π (B )θπcos r 2B I

(C )θπsin r -2B (D )θπcos r 2 B - 参考答案:?-=?=ΦS M B r S d B απcos 2 4.两根长直导线通有电流I ,如图3所示,有3个回路,则【D 】 (A )I B 0a l d μ-=?? (B) I B 0b 2l d μ=?? (C) 0l d =?? c B (D) I B C 02l d μ=?? 参考答案: ?∑==?L n i i I l d B 1 0μ 5.在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的条数不同,但电流的代数和相同,则由安培环路定理可知【B 】 (A)B 沿闭合回路的线积分相同,回路上各点的磁场分布相同 (B)B 沿闭合回路的线积分相同,回路上各点的磁场分布不同 (C)B 沿闭合回路的线积分相同,回路上各点的磁场分布相同 (D)B 沿闭合回路的线积分不同,回路上各点的磁场分布不同 参考答案: 6.恒定磁场中有一载流圆线圈,若线圈的半径增大一倍,且其中电流减小为原来的一半,磁场强度变为原来的2倍,则该线圈所受的最大磁力矩与原来线圈的最大磁力矩之比为【 C 】 (A)1:1 (B)2:1 (C)4:1 (D)8:1 参考答案: S I m = B m M ?= ()()1 4 2420000000000 max max =??? ??==B S I B S I B S I ISB M M

大学物理(第四版)课后习题及答案-磁场

习 题 题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向 相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。 题10.2:已知地球北极地磁场磁感强度B 的大小为6.0105 T 。如设想此地磁场是由地球赤道 上一圆电流所激发的(如图所示),此电流有多大?流向如何? 题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少? 题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈 覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。 题10.5:实验中常用所谓的亥姆霍兹线圈在局 部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22 x B )

题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。 题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。 题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR3。画出B-r图线。 题10.10:如图所示。N匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I后,环内外磁场的分布。 题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。 题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半

大学物理磁场作业解答

11-1 求图中各种情况下O 点处的磁感应强度B 。 解:图a 的电流可以看成是由1、2两个电流合成的。故合场强为 直线电流,和矩形电流产生的磁感应强度的矢量和。 直线电流1在O 点产生的磁感应强度 ) 2/(20a I πμ,方向垂直纸 面向外。 矩形电流2由两条长度为a 、两条长度为b 的直线电流组成在O 点产生的磁感应强度为: )]2/sin()2/[sin() 2/(42 )]2/sin()2/[sin() 2/(42 00ααπμ??πμ--+--b I a I 2 2 02 2 00022)2/sin(2)2/sin(2b a a b I b a b a I b I a I ++ +=+= πμπμαπμ?πμ )(2220b a a b b a I ++= πμ方向垂直纸面向内。 O 点的磁感应强度为:220022002)(2b a ab I a I b a a b b a I a I B +-=++-= πμπμπμπμ 这里利用了载流直导线外的磁感应强度公式: ]sin )[sin 4120ββπμ-= r I B 电流b 由两条直线电流,和一个圆弧组成: )0sin 90(sin 42 360 135 200-?+= R I R I B πμμ R I R I R I 00035.02163μπμμ=+= 电流c 中两条直线电流的延长线都过圆心,由毕-萨定律知道在圆心处产生的磁感应强度为0,圆弧产生的磁感应强度为 R l R I R l R I B πμπμ2222220110-= 由于两端的电压相同有2211I S l I S l V ρρ ==带入上式得到B=0 11-2.如图所示,一扇形薄片,半径为R ,张角为θ,其上均匀分布正电荷,电荷密度为σ,

川师大学物理第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 … 解:(1)如图11-2所示,中心O 点到每一边的距离 为1 3OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- ^ 00(cos30cos150)4π/34πI I h h μ??=-= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的 大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 3BC B B === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ?= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= 】 I B 2 图11–2 图11–1 … B (a ) A E (b )

大学物理第六章 恒定磁场习题解劝答

第6章 恒定磁场 1. 空间某点的磁感应强度B 的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C ) (A )小磁针北(N )极在该点的指向; (B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向; (D )载流线圈稳定平衡时,磁矩在该点的指向。 2. 下列关于磁感应线的描述,哪个是正确的? ( D ) (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。 3. 磁场的高斯定理 ??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D ) (A )Φ增大,B 也增大; (B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。 5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C ) (A )0; (B )R I 2/0μ; (C )R I 2/20μ; (D )R I /0μ。 6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A ) A 、等于零 B 、不一定等于零 C 、为μ0I D 、为 i n i q 1 1 =∑ε 7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B ) A 、 B /2 B 、2B C 、B D 、–B 8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。若匀强磁场磁感应强度大小为B ,导线质量为m , I

大学物理稳恒磁场解读

大学物理稳恒磁场解读 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场 磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B的定义:

(1)规定小磁针在磁场中N极的指向为该点磁感强度B的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B垂直的方向运动时,其所受最大磁力F max与电荷电量q和运动速度大小v的乘积的比值,规定为磁场中某点磁感强度的大小。即: 磁感强度B是描写磁场性质的基本物理量。若空间各点B的大小和方向均相等,则该磁场为均匀磁场;若空间各点B的大小和方向均不随时间改变,称该磁场为稳恒磁场。 磁感强度B的单位:特斯拉(T)。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: 电流在空间的磁场可看成是组成电流的所有电流元在空间产生 元磁感强度的矢量和。 式中μ0:真空磁导率,μ0=4π×10-7 NA 2 dB的大小:

d B的方向:d B总是垂直于Id l与r组成的平面,并服从右手定则。 一段有限长电流的磁场: 二、应用 1。一段载流直导线的磁场 说明: (1)导线“无限长”:

大学物理稳恒磁场

大学物理稳恒磁场 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十一章稳恒磁场 磁场由运动电荷产生。 磁场与电场性质有对称性,学习中应注意对比。 §11-1 基本磁现象 磁性,磁力,磁现象; 磁极,磁极指向性,N极,S极,同极相斥,异极相吸。 磁极不可分与磁单极。 一、电流的磁效应 1819年,丹麦科学家奥斯特发现电流的磁效应; 1820年,法国科学家安培发现磁场对电流的作用。 二、物质磁性的电本质 磁性来自于运动电荷,磁场是电流的场。 注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。 §11-2 磁场磁感强度 一、磁场

磁力通过磁场传递,磁场是又一个以场的形式存在的物质。 二、磁感强度 磁感强度B 的定义: (1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。若正电荷沿此方向运动,其所受磁力为零。 (2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。即: qv F B max 磁感强度B 是描写磁场性质的基本物理量。若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场.... 。 磁感强度B 的单位:特斯拉(T )。 §11-3 毕奥-萨伐尔定律 一、毕-萨定律 电流元: l Id 电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。

3 04r r l Id B d ?=πμ 式中μ0:真空磁导率, μ0=4π×10-7 NA 2 dB 的大小: 2 0sin 4r Idl dB θ πμ= d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则。 一段有限长电流的磁场: ???= =l l r r l Id B d B 30 4πμ 二、应用 1。一段载流直导线的磁场 )cos (cos 4210 0θθπμ-= r I B 说明: (1)导线“无限长”: 002r I B πμ=

第七章 稳恒磁场习题及答案大学物理

7章练习题 1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线 方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2 B cos α. 2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构 成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电 流在框中心O 点产生的磁感强度分别用 1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但 0321=++B B B . (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0. (D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . 3、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电 流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲 线表示B -x 的关系? [ ] B x O R (D) B x O R (C) B x O R (E)

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题

7-1 如图AB 、CD 为长直导线,BC 是一段圆心为O 、半径为R 的圆弧形导线,若导线通有电流I ,求O 点的磁感应强度。 解: AB 段产生:0B 1= BC 段产生:R 12I B 02μ= ,方向垂直向里 CD 段产生:)2 3 1(R 2I )60sin 90(sin 2 R 4I B 00003-= -= πμπμ方向垂直向里 )6 231(R 2I B B B B 03210π πμ+-= ++=,垂直纸面向内 7-2 两条无限长直载流导线垂直且不相交,它们相距最近处为cm 0.2d =,电流分别为 A 0.4I 1=和A 0.6I 2=, P 点到两导线距离都是d ,求P 处的磁感应强度大小。

解: 电流I 1在P 点产生 T 100.4d 2I B 51 01-?== πμ 方向垂直向里 电流I 2在P 点产生 T 100.6d 2I B 52 02-?== πμ 方向在纸面里垂直指向电流I 1 P 点 T 102.7B B B 52 221-?=+= 5.1B B tg 1 2 == θ,91560'=θ 7-3 一宽度为b 的半无限长金属板置于真空中,均匀通有电流0I 。P 点为薄板边线延长线上的一点,与薄板边缘的距离为d 。如图所示。试求P 点的磁感应强度B 。 解 建立坐标轴OX ,如图所示,P 点为X 轴上的一点。整个金属板可视为由无限多条无

限长的载流导线所组成,其中取任意一条载流线,其宽度为dx ,其上载有电流dx b I dl 0 = , 它在P 点产生的场强为 ()x d b b dx I r dI dB P -+= =πμπμ44000 的方向垂直纸面向里。由于每一条无限长直载流线在P 点激发的磁感强度dB 具有相同的方向,所以整个载流金属板在P 点产生的磁感应强度为各载流线在该点产生dB 的代数和,即 ?? -+==b P P x d b dx b I dB B 0 04πμ b x d b b I 0 001 ln 4-+= πμ b d d b I πμ4ln 0 0+= P B 方向垂直于纸面向里。 7-4 两个半径为R 的线圈共轴放置,相距为l ,通有相等的同向电流I ,如图所示,求在离它们中心O 点为x 远处的P 点的磁感强度。 分析 两圆电流在P 点产生的磁场方向相同,利用已经导出的圆电流在轴线上的磁感强度表示式叠加后可得其解.所得结果为x 的函数,可以证明在0=x 处的一阶为零,当R l =时二阶导数也为零,即表明当R l =时在O 点附近的小区域内为均匀磁场.亥姆霍兹线圈在科研和生产实际中应用比较广泛. 解

大学物理 恒定电流稳恒磁场知识点总结

大学物理 恒定电流稳恒磁场知识点总结 1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度 dQ I dt = , dI j e dS = , S I j d S =?? 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dq j dS dt =-?? , ( j t ρ??=- ? ); 恒定电流条件: 0j d S =?? , ( 0j ?= ) 3. 欧姆定律及其微分形式: U I R =, j E σ=, , 焦耳定律及其微分形式: 2Q A I R t == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功 A K dl q ε+ - ==? , K dl ε= ? 5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin F B q v θ = , 式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =?决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量: s B dS φ=?? (可形象地看成是穿过曲面磁感应线的条数)

6.毕奥一萨伐尔定律: 034I d l r dB r μπ?= 034L Idl r B r μπ?=? 7.磁场的高斯定理和安培环路定理 磁场的高斯定理: 0S B d S =?? 、 ( 0B ?= ) (表明磁场是 无源场) 安培环路定理: 0i L i B dl I μ=∑? 、 L S B dl j dS =? ?? 、(0B j μ??=) (安培环路定理表明磁场是有旋场) 8.安培定律: dF Idl B =? 、L F Idl B =?? 磁场对载流线圈的作用: M m B =? (m 是载流线圈的磁矩 m I S =) 9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力 f q v B =? 带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动, 运动半径为mv R qB ⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π== 霍尔效应 : 12H IB V V K h -= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq = 10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理 m M τ ∑= ? 、 L L M d l I =∑? ,内 、 n i M e =?, 0 B H M μ=- 、 m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i L i H d l I =∑? 、 L S H dl j dS =? ??

大学物理 恒定磁场(DOC)

11-1 恒定电流 电流密度 磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。在11世纪,我国已制造出航海用的指南。 在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而 对磁与电两种现象的研究彼此独立,毫无关联。1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。 奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几 个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。 1820年是人们对电磁现象的研究取得重大成果的一年。人们发现,电荷的 运动是一切磁现象的根源。一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。 11-1 恒定电流 电流密度 如前所述,电荷的运动是一切磁现象的根源。电荷的定向运动形成电流,称 为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。 常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于 单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为 dt dq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。 实际上还常常遇到电荷在大块导体中流动的情况,由于粗细不均,材料不同 等原因,导体中各点处电流的大小和方向是不同的,形成了一个电流分布。显然,电流强度只能描述导体中通过某一截面的电荷运动的整体特征,而不能描述这种电流分布。 为了描述导体中不同点处的电流分布情况,需要引入一个新的物理量,叫做 电流密度。 11-2 电源 电动势 上一节曾指出,只要在导体两端维持恒定的电势差,导体中就会有恒定的电 流流过。怎样才能维持恒定的电势差呢? 如图所示的导电回路中,开始时极板A 和B 分别带有正负电荷,A 、B 之间有 电势差,在电场力作用下,正电荷通过导线移到负极板B 上,电荷的流动形成电流。但随着A ,B 两板上电荷的中和,两板间电势差越来越小,因而电流也越来越小,直至最后为零。要想维持导线中的电流不变,必须把正电荷从负极板B 沿两板间路线送回到正极板A 上,以维持A ,B 两板间的电势差。显然,这种移动电荷的力不可能是静电力,因为在静电力的作用下,正电荷的运动方向与此相

大学物理磁场部分习题

磁学部分 一、选择题 1.磁场的高斯定理??=?0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 3.下列说法正确的是 ( A ) (A )电荷在空间各点要激发电场,电流元l Id 在空间各点也要激发磁场 (B) 静止电荷在磁场中不受磁场力,运动电荷在磁场中必受磁场力 (C) 所有电场都是保守力场,所有磁场都是涡旋场 (D) 在稳恒磁场中,若闭合曲线不围绕有任何电流,则该闭合曲线上各点的磁感应强度必为零 4.洛仑兹力可以 ( B ) (A )改变带电粒子的速率; (B )改变带电粒子的动量; (C )对带电粒子作功; (D )增加带电粒子的动能。 5. 取一闭合积分回路L ,使三根载流导线穿过它所围成的面。现改变三根导线之间的相互间隔,但不越出积分回路,则[ B ] (A )回路L 内的ΣI 不变,L 上各点的B 不变。 (B )回路L 内的ΣI 不变,L 上各点的B 改变。 (C )回路L 内的ΣI 改变,L 上各点的B 不变。 (D )回路L 内的ΣI 改变,L 上各点的B 改变。 8.将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则( D ) (A )铜环中有感应电动势,木环中无感应电动势 (B) 铜环中感应电动势大,木环中感应电动势小 (C) 铜环中感应电动势小,木环中感应电动势大 (D) 两环中感应电动势相等 15. 如图,流出纸面的电流2I ,流进纸面的电流为I ,则下 述各式中哪一个是正确的(D) (A)I l d L 21=?? (B) I l d L =?? 2 (C)I l d H L -=?? 3 (D) I l d H L -=?? 4

相关主题
文本预览
相关文档 最新文档