当前位置:文档之家› 竹炭改性涤纶纤维与普通涤纶纤维的性能比较

竹炭改性涤纶纤维与普通涤纶纤维的性能比较

竹炭改性涤纶纤维与普通涤纶纤维的性能比较

改性涤纶的染色

改性涤纶的染色 改性涤纶的品种较多,有化学改性和物理改性两类。物理改性主要是采用等离子体表面改性;化学改性主要以增加涤纶纤维分子结构中的非结晶部分,提高这一部分的分子间活动性能,即在聚酯纤维的大分子链中引入不对称的第三单体或极性基团。因此出现了不同改性纤维,如CDP,ECDP和ADP纤维。 CDP纤维是在涤纶中引入第三单体——磺酸基,通常为间苯二甲酸磺酸钠,包括α-—磺酸基—1,3—苯二甲酸,4—磺酸基—1,3—苯二甲酸和5—磺酸基—1,3—苯二甲酸。目前,CDP纤维多数采用间位第三单体,有时也用对位第三单体或同时加入此两种单体。CDP纤维根据所用改性剂的不同又分为高压型(高温型)即CDP纤维和常压型(低温型、易染型)即ECDP纤维。前者是在涤纶中引入第三单体磺酸基团及酸度较小的磷酸基团化合物,可用阳离子染料染色,但染色必须在110~130℃。后者除采用上述相同的第三单体外,还应加入第四单体如脂肪族二羧酸、二醇等改变纤维的非结晶区和扩大其分子活动性,同时降低玻璃化温度,因此可用阳离子染料在常压沸染下染色。 涤纶改性纤维除上述酸改性外,还有阴离子染料可染型(anionicdyeable polyester)简称ADP纤维,ADP纤维主要是在聚酯大分子链中引入碱性极性基团,疏松纤维内部结构,从而可使酸性染料上染。 分散阳离子染料: 具有阴离子性特性。因此很适合改性涤纶(CDP)纤维及其混纺产品的染色。与阴离子染料相容性好,可一浴法染色。 染料的溶解:用适量的50℃以下水搅拌至完全溶解。 染色:用冰醋酸调节pH=4-4.5,30分钟升温至120℃,保温30分钟。 可染阳离子染料: 部分阳离子染料也适合改性涤纶(CDP)纤维的染色:如:阳离子金黄X-GL、红X-2GL,红X-GRL、翠蓝X-GB、蓝X-BL、黑FDLT等。

表面化学改性

表面化学改性 粉体工业是一个重要的基础原料工业,在一些高分子材料工业及高聚物复合材料领域中,粉体常常用作无机矿物填料,不仅降低了材料的生产成本,而且还能提高复合材料的力学性能以及稳定性,甚至可以赋予材料某些特殊的物理化学性能,如耐腐蚀性、绝缘性和阻燃性等。但由于这些无机矿物材料与有机高聚物基质(如塑料、橡胶、树脂等)的界面性质不同,因此当以无机矿物填料作为填充物时,除了需要相关的粒度和粒度分布要求之外,还必须对其表面进行改性,以改善其表面的物理化学特性,使其趋近基体的表面特性,提高其在基体中的分散性,从而提高材料的力学性能及综合性能。 表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。表面改性的特点是:1)不必整体改善材料,只需进行表面改性或强化,可以节约材料; 2)可以获得特殊的表面层,如果超细晶粒、非晶态、过饱和固溶体,多层结构层等,其性能远非一般整体材料可比; 3)表面层很薄,涂层用料少,为了保证涂层的性能、质量,可以采用贵重稀缺元素而不会显著增加成本; 4)不但可以制造性能优异的零部件产品,而且可以用于修复已经损坏、失效的零件。 表面改性的方法有很多,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。下面本文对表面化学反应法改性做简单介绍,并举例说明几种表面化学改性方法。 所谓无机粉体表面化学改性[1]是指通过无机粉体粒子表面和表面改性剂之间的化学吸附作用或化学反应,改变粒子的表面结构和状态,从而达到表面改性的目的。表面化学改性法是目前最常用的表面改性方法,在无机粉体粒子表面改性技术中占有极其重要的地位。超细无机粉体颗粒比表面积大,表面键态、电子态与粒子内部不同,配位不全等都为用化学方法对无机粉体粒子进行表面改性提供了有利条件。通常,表面改性剂一端为极性基团,能与粉体表面发生化学反应而连接在一起,另一端的非极性基团能与基体形成物理缠绕或是发生化学反应,从而改变无机粉体的分散性,改善制品的性能。表面化学改性方法包括表面沉积

硅橡胶表面改性对Ag涂层结合力及抗菌性的影响

目录 摘要 ........................................................................................................................................... I ABSTRACT ............................................................................................................................. I II 第一章绪论 (1) 1.1引言 (1) 1.2抗菌 (1) 1.3抗菌材料的发展现状 (1) 1.3.1 抗菌纤维 (2) 1.3.2 抗菌陶瓷 (2) 1.3.3 抗菌金属 (2) 1.3.4 抗菌塑料 (2) 1.3.5 抗菌医用高分子材料 (3) 1.4抗菌剂的种类及其抗菌机理 (3) 1.4.1 天然有机抗菌剂 (4) 1.4.3 合成有机抗菌剂 (4) 1.4.4 无机抗菌剂 (5) 1.5缓释型无机抗菌材料 (7) 1.5.1 缓释型载体材料 (7) 1.5.2 抗菌剂载体的发展 (9) 1.6无电镀制备金属基抗菌涂层 (9) 1.6.1 无电镀的定义 (10) 1.6.2 无电镀镀银的种类 (10) 1.6.3 无电镀的特点 (10) 1.6.4 提高涂层与基体间结合力的方法 (11) 1.7抗菌材料的缓释性能 (12) 1.7.1 共混法制备抗菌材料的缓释性能 (12) 1.7.2 化学接枝法制备抗菌材料的缓释性能 (13) VII

阳离子可染改性涤纶纤维

阳离子可染改性涤纶纤 维 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

阳离子可染改性涤纶纤维 阳离子可染改性涤纶纤维阳离子可染改性涤纶是在涤纶大分子上引入对阳离子染料具有亲和力的磺酸基或磷酸基团,分高压型(CDP)和常压型(ECDP)两种。 CDP纤维所加入抑第三单体为间苯二甲酸磺酸钠,其染色温度为120℃左右;ECDP纤维除第三单体外,还加入第四单体,常见的有脂肪或芳香二羧酸及其衍生物、脂肪或芳香二元醇及其衍生物以及羧酸类化合物等,其染色温度为100℃;ECDP纤维还分醚型和酯型两种,酯型的耐热性比醚型的好。 阳离子可染改性涤纶纤维的主要特点是可用阳离子染料常压沸染,这既克服了常规涤纶必须用高温高压或载体染色的不足,又可使毛/涤、涤/腈等混纺织物一浴法染色较为容易,而且染色的色泽比较鲜艳。阳离子可染改性涤纶可用于生产各类仿毛产品,短纤或长丝广泛用于生产多类混纺的精、粗纺呢绒,毛线、毛毯以及仿毛花呢等织物。 阳离子可染改性涤纶的缺点是强力较低,耐酸碱性较差,尤其对强碱很敏感,在强碱作用下水解速度比常规涤纶高 2~3倍。但可利用这一特性对其进行碱减量处理,提高纤维的柔软性和吸湿性,进而提高其穿着舒适性。 另外,阳离子可染改性涤纶纤维的耐热性也较差,故在织物的定形后处理中,温度要适当降低,一般CDP为170℃,ECDP为160℃较好。 实务: 目前坊间染染改性涤纶纤维很多,主要以保特瓶回收后加工处理,为环保尽力; Recycle标志。 现场染色加工与传统腈纶差异不大,差在批次的稳定度,纱的饱和值及起始上色温度、最大上色的温度点。 因此现场染色时每批纱务必要先做纱的饱和值(对比性)及起始上色温度、最大上色的温度点(Step-dyeing)控管,决定缓染剂使用量及持温控管点,否则问题层出不穷。

涤纶短纤维几大分类及其主要特点

涤纶短纤维几大分类及其主要特点 聚酯切片 学名: 聚对苯二甲酸乙二醇酯,英文简称: PET 由精对苯二甲酸(PTA)和乙二醇(EG)聚合而成 聚酯切片的分类: 1、按组成和结构可分为: 共混、共聚、结晶、液晶、环形聚酯切片等; 2、按性能可分为: 着色、阻燃、抗静电、吸湿、抗起球、抗菌、增白、低熔点、增粘(高粘)聚酯切片等; 2、按用途可分为: 纤维级聚酯切片、瓶级聚酯切片、膜级聚酯切片(主要是工艺指标不同)。纤维级聚酯切片按其中消光剂tio2的含量不同又可以分为: 超有光(大有光)、有光、半消光、(全)消光聚酯切片。另外还有阳离子聚酯切片。 目前,主要用于瓶级聚酯(广泛用于各种饮料尤其是碳酸饮料的包装)、聚酯薄膜(主要用于包装材料、胶片和磁带等)以及化纤用涤纶. 一般来讲现在市场上的涤纶短纤维分3类: 大化纤、中化纤、小化纤。 大化纤:

用PET切片纺或者熔体直纺的短纤维。色泽好,批号大,强力稳定,疵点少,可纺性好 中化纤: 用等外PET切片或者加上PET回料纺。价格质量介于大化和小化之间(主要一些纺厂用于和大化混纺提升竞争力) 小化纤: 用PET回料纺。价格和质量参次不齐,适合出口到一些质量要求不是太高的市场和领域(如填充料等) 一般来说,用切片纺的短纤维它基本没有什么疵点,纤维粗细均匀,表面光滑,手感比较柔滑(不过短纤维看什么地方使用,粗代的有加硅和不加硅的区别)用手拉扯的话,切片纺的一般强力比较好,批号大,没有色差,物理指标均匀。 一般小化纤生产的,或者说是用再生原料产生的短纤维批号小,同样的代数手感没有大化纤的好(经过处理的除外)疵点多,偶尔有粗细不均匀,超倍长一般客观存在,常规再生料做的物理指标要稍差。

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

竹炭纤维的知识

竹炭纤维简介 BAMBOO CHARCOAL FIBER 竹碳纤维 竹炭素有“黑钻石”的美誉,在国际上被誉为“二十一世纪环保新卫士”。是取毛竹为原料,采用了纯氧高温及氮气阻隔延时的煅烧新工艺和新技术,使得竹炭天生具有的微孔更细化和蜂窝化,然后再与具有蜂窝状微孔结构趋势的聚酯改性切片熔融纺丝而制成的。该纤维最大的与众不同之处,就是每一根竹炭纤维都呈内外贯穿的蜂窝状微孔结构。这种独特的纤维结构设计,能使竹炭所具有的功能100%的发挥出来。这款集多功能于一身竹炭纤维的诞生,是纺织多功能原料一次革命性的创新 竹炭纤维的生产 竹炭是竹材资源开发的又一个全新的具有卓越性能的环保材料。将竹子经过800度高温干燥炭化工艺处理后,形成竹炭。竹炭具有很强的吸附分解能力,能吸湿干燥、消臭抗菌并具有负离子穿透等性能。竹炭纤维则是运用纳米技术,先将竹炭微粉化,再将纳米级竹炭微粉经过高科技工艺加工,然后采用传统的化纤制备工艺流程,即可纺丝成型,制备出合格的竹炭纤维。 竹炭纤维与竹原纤维、竹浆纤维的区别 竹炭纤维与竹原纤维、竹浆纤维有那些区别呢?竹原纤维是将天然的竹材锯成生产上所需要的长度,然后通过机械、物理的方法去除竹子中的木质素、多戊糖、竹粉、果胶等杂质,从竹材中直接分离出来的纤维。其生产工艺与麻纤维相类似,是纯粹的天然绿色环保型纤维。竹浆纤维则属于化学纤维中的再生纤维素纤维,先将竹子制成适合纺丝的竹浆粕,然后经湿法纺丝获得竹浆纤维。其生产工艺与粘胶相类似。 竹炭纤维的特点 1、柔滑软暖,似“绫罗绸缎”:竹纤维具有单位细度细、手感柔软;白度好、色彩亮丽;韧性及耐磨性强,有独特的回弹性;有较强的纵向和横向强度,且稳定均一,悬垂性佳;柔软滑爽不扎身,比棉还软,有着特有的丝绒感。 2 、吸湿透气,冬暖夏凉:竹纤维横截面布满了大大小小椭圆形的孔隙,可以瞬间吸收并蒸发大量的水分。天然横截面的高度中空,使得业内专家称竹纤维为“会呼吸”的纤维,还称其为“纤维皇后”。竹纤维的吸湿性、放湿性、透气性居各大纺织纤维之首。冬暖夏凉由竹纤维的中空特征决定,竹纤维纺织品夏秋季使用,使人感到特别的凉爽、透气;冬春季使用蓬松舒适又能排除体内多余的热气和水份,不上火,不发燥。 3.抑菌抗菌,抗菌率9 4.5%:经全球最大的检验、测试和认证机构SGS检测,同样数量的细菌在显微镜下观察,细菌在棉、木纤维制品中能够大量繁衍,而细菌在谈竹庄竹纤维面料上经24小时后则减少94.5%。这一成果也为防“非典”提供了防护服的选择,这是其它纺织原料不可比拟的。 4 、绿色环保,抗紫外线:竹纤维是从原竹中提练出来的绿色环保材料,它具有竹子天然的防螨、防臭、防虫和产生负离子特性。经中国科学院上海物理研究所检测

大豆分离蛋白改性的研究进展

基金项目:国家自然科学基金资助项目(20704044); 作者简介:李海萍(1984-),女,硕士研究生; 3通讯联系人,E 2mail :cesyjz @https://www.doczj.com/doc/b718531738.html,. 大豆分离蛋白改性的研究进展 李海萍,易菊珍3 (中山大学化学与化学工程学院高分子研究所,广州 510275) 摘要:首先介绍了大豆分离蛋白的基本组成与结构,然后分别从化学改性、酶改性和物理改性三个方面对 大豆分离蛋白改性进行了综述。其中,在化学改性方面,针对大豆分离蛋白中含有的氨基、羧基、巯基等不同活性基团的改性原理及研究现状进行了介绍。在酶改性方面,主要介绍了谷胺酰胺转胺酶、木瓜蛋白酶等对大豆分离蛋白的改性作用。在物理改性方面,介绍了共混、加热改性等目前研究较多的方法。通过化学、物理和酶等方法等来引起分子结构的微变化,可使人们获得各种符合预期的性能优良的产品,开发其在医药、化工等领域的应用潜力。 关键词:大豆分离蛋白;结构;改性 引言近年来,由于全球石油危机及环境污染问题,以石油为原料、不可降解的聚合物材料的广泛使用引起 了大家的担忧[1],而且塑料垃圾掩埋后,有毒单体和小分子低聚物的释放又会污染地下水资源 ,给人类和 生物体健康构成威胁。因此,人们致力于研究通过可再生农作物开发环境友好、可生物降解的材料。大豆分离蛋白(s oybean protein is olate ,SPI )是一种重要的植物蛋白,是每年都可进行大量种植的可再生资源,而且具有无毒、可降解等优点,在材料领域具有广泛的应用前景。大豆蛋白包含多种功能团,如氨基、羟基、巯基、酚基、羧基等。这些活性基团可作为化学改性或交联的位点,来合成各种功能可与以石油为原料的材料相当或更优的新型聚合物。因此,本文介绍了大豆分离蛋白的基本组成与结构,并对基于大豆分离蛋白功能基团的改性研究进行了综述。 1 大豆分离蛋白的基本组成及结构 大豆分离蛋白(S oybean Protein Is olate ,SPI )是以低变性脱脂豆粕为原料,采用现代化的加工技术制取的一种蛋白质含量较高的功能性食品添加剂或食品原料。其主要组成元素为C 、H 、O 、N 、S 和P ,还含有少量的Zn 、Mg 、Fe 和Cu 。大豆分离蛋白中蛋白质含量高达90%以上,含有多种人体必需氨基酸,其主要 氨基酸含量如表1所示[2]。 SPI 主要包括β 2大豆伴球蛋白(7S 球蛋白,β2conglycinin )和大豆球蛋白(11S 球蛋白,glycinin )两种成分[3]。其中β2大豆伴球蛋白是由α’2(69kDa )、β2(68kDa )和β2(42kDa )三种亚基组成的分子量约为~180kDa 的三聚体糖蛋白,三种亚基分子量不同文献报道有所差别[4]。大豆球蛋白是由五种分子量为54kDa ~64kDa 的亚基(G 12G 5)组成的分子量约为~320kDa 的六角形化合物。各个亚基的基本结构通式为A 2SS 2B ,其中A 表示分子量为34~44kDa 的酸性多肽,B 表示分子量约为20kDa 的碱性多肽,A 和B 由 二硫键(SS )连接。Utsumi [5]、Maruyama 等[6]利用基因重组技术并通过X 射线晶体衍射法推导出大豆球蛋 白和β2大豆伴球蛋白结构模型,如图1所示。

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能和工艺配方要求。为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。 1、拉伸强度:是制品能够抵抗拉伸破坏的根限能力。 它是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系: 补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。低不和橡胶随着用量的增加达到最在值可保持不变。 E:拉伸强度与软化剂的关系:

竹炭改性涤纶纤维生产线建设项目可行性研究报告

XXX有限责任公司 竹炭改性涤纶纤维生产线建设项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/b718531738.html, 高级工程师:高建

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目负责人 (1) 1.1.6项目投资规模 (1) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (2) 1.1.9项目建设期限 (2) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4 编制原则 (4) 1.5研究范围 (4) 1.6主要经济技术指标 (4) 1.7综合评价 (5) 第二章项目建设背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2项目提出缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1顺应我国服装行业快速发展的需要 (8) 2.2.1推动我国纺织行业技术进步升级的需要 (9) 2.2.2满足当前竹炭改性涤纶纤维市场需求的需要 (9) 2.3.4提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.5增加当地就业带动产业链发展的需要 (10) 2.3.6带动当地经济快速发展的需要 (11) 2.4项目建设可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (12) 2.4.3技术可行性 (13) 2.4.4管理可行性 (13) 2.5可行性分析结论 (14) 第三章项目市场分析 (15) 3.1我国服装行业发展状况分析 (15) 3.2我国服装行业发展前景分析 (16) 3.4我国纺织品行业发展状况分析 (16)

涤纶短纤维工艺流程设计

(2014-2015学年第一学期)《高分子材料加工厂设计》 课程论文 题目:涤纶纤维厂工艺流程设计 姓名: 学院:材料与纺织工程学院 专业:高分子材料与工程 班级: 学号: 联系方式: 任课教师: 教务处制 2014年12月28日 涤纶纤维厂工艺流程设计 摘要:本项目讨论了利用废旧聚酯瓶生产涤纶短纤维的方法。同

时讨论了它的工艺流程、后处理、工厂设计等可行性方案,本项目的实施对瑞安的经济发展、环境治理具有重要意义。 关键词:聚酯瓶;工厂设计;环境保护;可行性方案 Polyester fiber factory process design Abstract:this project discuss how to using waste polyester bottles. And it’s process、after treatment、plant design,this project put into effect can give RuiAn city more economic development and environmental governance. Key: Polyester bottles; Plant design; Environmental protection; LTD. 前言 涤纶是世界产量最大,应用最广泛的合成纤维品种,占世界合成纤维产量的60%以上。大量应用于衣料、床上用品、各种装饰布料、国防军工特殊织物等纺织品以及其他工业用纤维制品,如过滤材料、

绝缘材料、轮胎帘子线、传送带等。随着国内经济持续快速增长和国内居民消费能力的不断提高,国内地区涤纶短纤维的需求量也不断增长。中国涤纶系列产品产能以惊人的速度增长着,涤纶纤维产能的迅速增长,使得中国正逐渐发展成为世界涤纶类产品的重要加工基地,并成为世界涤纶纤维产量最大的国家。 由此,我厂准备在瑞安市建造一个年产1万吨涤纶纤维厂,随着常规能源煤、石油、天然气的开采,常规能源被大量消耗、逐步减少的同时也带来了环境问题,本厂秉着低碳、节能的宗旨,该项目的实施将带来较为可观的经济效益与社会效益。 目录 前言 (2) 目录 (3) 第一章 (6) 第一节概述 (6) 第二节项目建设的必要性及有利条件 (7)

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

大豆蛋白纤维

大豆纤维的探究及应用 院系:外语系 学号:201313060124 姓名:司淼

目录 大豆纤维 大豆纤维释义 大豆纤维简介 大豆蛋白纤维 大豆纤维纱线 大豆纤维的面料 大豆纤维染整 大豆纤维服饰 大豆纤维衣服正确洗涤方法

大豆纤维释义 1. Soy Fiber 属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。 2. SB=soybean SB=soybean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维简介 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 经过工业化规模生产,大豆纤维从纺纱到织造到染整的相关生产技术均已相对成熟,其价格已从初期的每吨7万多元,降至3.5万元左右,已被下游应用企业所认可,产业链结构也逐步形成. 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。 用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。 此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、高级寝卧具的理想材料;或者加入少量氨纶,手感柔软舒适,用于制作T恤、内衣、沙滩装、休闲服、运动服、时尚女装等,极具休闲风格。 大豆蛋白纤维是由华康集团董事长李官奇先生历经十年研究开发成功,获得世界发明专利金奖,李官奇先生的这项发明为纺织业带来了一场新的革命,在纤维材料发展史上和人造

氟碳橡胶改性涂层材料赋予橡胶表面的耐磨防粘等-中国聚合物网

氟碳橡胶改性涂层材料赋予橡胶表面的耐磨、防粘等特性V1.0 在航空航天工业、汽车工业、机械制造、石油开采、炼油及其他工业生产中,需要大量在燃油、润滑油、液压油等油类中使用的橡胶制品,然而按标准工艺生产的橡胶制品均存在耐磨性、耐油等方面的不足,人们通过采用各种化学粘结、等离子喷涂、离子注入等方法,对橡胶进行处理,皆因过程复杂、设备昂贵、性能不理想, 而得不到广泛应用;即使是二氟化氙(XeF2)表面氟化的表面处理也因需要特殊设备而无法进入寻常生产厂而同样得不到广泛的应用。 因此操作简单,处理效果好的表面处理是工业界急需要找寻的工艺方法。氟碳表面改性涂层材料赋予普通橡胶的表面耐磨、防粘、耐腐等特性来解决这类问题。 一、普通橡胶普遍存在的问题: 1、耐油问题:橡胶制品在使用过程如果和油类介质长期接触,油类能渗透到橡胶内部使其产生溶胀,致使橡胶的强度和其他力学性能降低。油类能使橡胶发生溶胀,是因为油类渗入橡胶后,产生了分子相互扩散,使硫化胶的网状结构发生变化。橡胶的耐油性,取决于橡胶和油类的极性,橡胶分子中含有极性基团,如氰基、酯基、羟基、氯原子等,会使橡胶表现出极性。极性大的橡胶和非极性的石油系油类接触时,两者的极性相差较大,此时橡胶不易溶胀。如丁腈橡胶、氢化丁腈橡胶、丙烯酸酯橡胶、氯醇橡胶、氯磺化聚乙烯橡胶、氟橡胶、氟硅胶等对非极性的油类有良好的耐油性。近年来,世界各国都在大力开发综合性能优良的耐油橡胶,主要是利用合成阶段的改性、多元共聚,加工阶段的不同橡胶共混、橡塑并用、添加有用的填充剂等方法来改善耐油橡胶的综合性能,已取得了很大的成效。 2、耐磨性问题橡胶的主要用途之一是用作活动密封件。由于旋转轴的转速较高,密封制品要承受很大的摩擦扭矩,尤其是在润滑效果不良的情况下,密封区域的生热较大,会导致胶料发粘或与金属粘合性能提高,使密封件破坏,进而导致密封失效。降低摩擦区域温度比较有效的方法之一是在橡胶中加入润滑填料,以降低胶料的摩擦因数。如二硫化钼及石墨加入橡胶生产配方中。另外,使用聚四氟乙烯(PTFE),聚四氟乙烯具有优良的耐介质和耐大气老化性能,使用范围广,有良好的自润滑性能,摩擦因数很小,将其包覆在橡胶表面可大大减小橡胶制品的表面摩擦因数,提高耐磨性能和耐介质性能。但是,聚四氟乙烯的表面能较低,很难与其它材料复合,目前研究的聚四氟乙烯包覆方法有如下几种:辐照接枝法、等离子体活化法、化学腐蚀法、静电喷涂法、媒介法。而经氟碳橡胶表面改性性处理的过的橡胶能达到比聚四氟乙烯更小的表面能。 二、一般橡胶表面化学改性的方法及应用局限性:表面改性可在不影响橡胶胶基材性能的性况下减小其表面的微观结构、致密封性、耐磨性。表面改性的方法分为表面化学改性和物理包覆。表面化学改性方法有氟化、溴化、碘化和磺化,其中氟化的方法有:XeF2氟化,等离子体活化氟化及离子注入法。用二氟化氙晶体对橡胶制品进行表面氟化已实现了工业化应用;物理包覆方法主要有聚对亚苯基二甲基薄膜包覆、润滑膜表面涂覆、聚四氟乙烯包覆和其它氟化物包覆。 1、各种表面化学改性性方法只是对橡胶表面进行改进,处理后表面改性层易磨损,使用时间有限; 2、各种改性方法只能做为表面处理剂,不能作为配方综合的提高橡胶综

生物改性竹炭的设备制作方法与相关技术

本技术是生物改性竹炭的制备方法,包括如下步骤:1)竹炭微生物固化装置装填了在9001100℃条件下烧制的竹炭;2)烧制的竹炭经破碎后,筛分出直径为4~5mm的颗粒;3)将筛分出来的竹炭放在竹炭微生物固化装置中的真空接种箱内;4)在真空接种箱内引进工程微生物HI DEM菌剂,菌剂与原水混合比例为1/1000体积比,使稀释培养液浸没竹炭颗粒,投菌量与竹炭比例为40mL培养液/10g竹炭;5)采用循环增减大气压方法处理接种箱;6)采用静止培养的方法处理接种箱,为710天。优点:制备得到固定化微生物竹炭,采用脂磷法对生物量进行测定,结果表明本方法有效,可满足生物竹炭接触过滤床固定化微生物数量需求。 技术要求 1.生物改性竹炭的制备方法,其特征在于:包括如下步骤: 1)竹炭微生物固化装置装填了在900-1100℃条件下烧制的竹炭; 2)将烧制的毛竹竹炭经破碎后,筛分出直径为4~5mm的颗粒; 3)将筛分出来的毛竹竹炭颗粒放在竹炭微生物固化装置中的真空接种箱内; 4)在真空接种箱内引进工程微生物HI-DEM菌剂,菌剂与原水混合比例为1/1000体积比,使稀释培养液浸没竹炭颗粒,投菌量与竹炭比例为40mL培养液/10g竹炭; 5)采用循环增减大气压方法处理接种箱; 6)采用静止培养的方法处理接种箱,时间为7-10天; 所述采用循环增减大气压方法处理接种箱,包括如下步骤:

1)通过真空抽气泵对竹炭微生物固定装置进行抽负压; 2)关闭真空接种箱的空气阀门、A阀门和C阀门,打开B阀门,开启抽真空装置; 3)由A限压阀控制接种箱内真空度为负1个大气压4小时; 4)进行加正压,打开A阀门和C阀门,关闭B阀门,向接种箱内压入空气,由B限压阀控制接种箱内压力为正1个大气压4小时; 5)重复步骤1)至4),循环5次; 竹炭微生物固化装置,其结构是:真空抽气泵一路通过C阀门、B限压阀进入真空接种箱; 所述竹炭微生物固化装置其结构是真空抽气泵的另一路通过B阀门、A限压阀进入真空接种箱;真空抽气泵与B阀门间是A阀门,真空接种箱上设空气阀门盖。 技术说明书 生物改性竹炭的制备方法 技术领域 本技术是一种生物改性竹炭的制备方法,属于生物改性竹炭制备技术领域,乃是通过培养高效的微生物菌群,采用循环增减大气压与静止培养相结合的方法,将其固定在竹炭表面和内部孔隙上,制备得到固定化微生物竹炭。 背景技术 固定化微生物技术是70年代末由固定化酶技术发展起来的,它是指通过物理或化学手段将游离的微生物固定在限定的空间区域并使其保持活性、可反复利用的方法;固定微生物的方法大致可以分为包埋法、吸附法、共价结合法和交联法。 其中吸附法具有反应温和、对细胞活性影响较小、操作简单、载体可重复利用等优点,是传统的固定微生物的方法;由于竹炭具有较大的比表面积和合理的孔径分布,所以吸附法也是其固定化微生物最常用的方法。

表面改性医用橡胶的光谱研究

第19卷,第4期 光 谱 学 与 光 谱 分 析V ol.19,No.4,pp553-555 1999年8月 Spectroscopy and Spect ral Analysis Aug ust,1999  表面改性医用橡胶的光谱研究* 罗传秋 刘 泳 杨继萍 翁 健 北京大学化学与分子工程学院,100871 北京 摘 要 本文用衰减全反射傅里叶红外光谱(A T R-F T IR)和X射线光电子能谱(X P S)对两种表面改性的耐 药性能优良的医用橡胶样品进行了研究,结果表明两种样品表面层和体相组成完全不同,其表面层为氟化聚 合物,体相为丁基橡胶。样品Ⅱ表面层氟的相对含量高于样品Ⅰ表面,且以CF2为主;在相同条件下进行氩离 子刻蚀,样品Ⅱ表面层较样品Ⅰ表面层不同深度的F/C原子比的变化相对小。 主题词 医用橡胶, 表面改性, 红外光谱, 光电子能谱   1999-04-20收,1999-05-28接受;*本课题获得分子动态与稳态结构国家重点实验室的资助 引 言 丁基橡胶不仅具有优良的气密性,其耐热耐水耐油性耐摩擦性亦佳,并且具有较好的抗氧化性,常用做药品瓶塞,但是其耐药性即化学惰性有限,在接触某些药品时会使药品变色,甚至使液体药品产生浑浊变质。为此采用多种方法对其表面进行改性,使其表面具有化学惰性。国际上现多采用赋予橡胶塞表面氟化聚合物层,此法既经济又实用。本文用表面光谱分析的有力手段(A T R-F T IR和X P S方法),对两种耐药性能甚佳的橡胶塞进行了分析,并对这两种样品的表面层与体相的组成进行了比较。 1 实验部分 1.1 样品与仪器设备 样品三种:代号Ⅰ,Ⅱ,Ⅲ,Ⅰ和Ⅱ为表面具有改性层的医用胶塞,Ⅲ为已知组成的丁基胶塞。 每种胶塞用刀片分别取表面层薄片(代号1),内部薄片(代号2);厚度为0.5~ 1.0mm。刀片用乙醇清洗,样品要求平整。 仪器:[美]Bio-RA D F T S-65A衰减全反射傅里叶红外光谱;[英]V G公司ESC A L AB-5型多功能电子能谱仪; O ly mpus BH2型显微镜(带照相设备)。 1.2 实验条件 (1)A T R-F T IR分辨率为4cm-1,扫描次数32; (2)X P S用A1靶,管压10kV,管流18.5m A。样品表面刻蚀用氩离子束,实验采取两种条件,离子束加速电压3kV,样品电流50μA,12min;4kV,90μA,5min;每隔1min将样品盘转动90°,以保证对样品膜表面溅射的均匀性。 (3)显微照相放大倍数为4,10,20,40。2 结果与讨论 1.目测未改性丁基胶塞Ⅲ与改性的胶塞Ⅰ和Ⅱ表面有明显的差别,Ⅰ和Ⅱ表面光亮,用显微镜分别观察两类样品的纵剖面薄片,可见经表面改性的样品Ⅰ和Ⅱ表面具有一层一定透明度的聚合物膜,它与本体之间界面无空隙;样品Ⅲ无分层现象。经放大拍照,测量样品Ⅰ和Ⅱ的表面层平均厚度分别为0.24和0.22mm。 2.A T R-F T IR可以测试样品浅表面分子中基团的振动转动,其探测深度一般小于500nm,A T R-F T IR的实验结果见图1、图2、图3和表1。图1、图2分别是样品Ⅰ、Ⅱ的表面和内部薄片的A T R-F T IR图,图3是已知丁基胶塞的A T R-F T I R图。由图1、2可见Ⅰ和Ⅱ两种样品表面层和内部的特征基团有明显的差别,其内部Ⅰ-2和Ⅱ-2的特征谱带与样品Ⅲ(见图3)的特征谱带一致。 Fig.1 ATR-FTIR spectra of sampleⅠ

相关主题
文本预览
相关文档 最新文档