当前位置:文档之家› 高考物理复习资料(非常推荐)

高考物理复习资料(非常推荐)

高考物理复习资料(非常推荐)
高考物理复习资料(非常推荐)

高考物理复习资料

警记:固步自封是进步的最大障碍,欢迎同行交流教学

学好物理要记住:最基本的知识、方法才是最重要的。

学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) (最基础的概念、公式、定理、定律 最重要) 每一题弄清楚(对象、条件、状态、过程)是解题关健

力的种类:(13个性质力) 说明:凡矢量式中用“+”号都为合成符号 “受力分析的基础”

重力: G = mg 弹力:F= Kx

滑动摩擦力:F

= μN

静摩擦力: O ≤ f

≤ f m

浮力: F 浮

= ρgV 排

压力:

F= PS = ρghs

万有引力: 电场力: F 电

=q E =q 库仑力: F=K 真空中、点电荷)

磁场力: 公式: (B ⊥I )

(2)、洛仑兹力:磁场对运动电荷的作用力。公式: f=BqV (B ⊥V) 方向:左手定则

分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快。

核力:只有相邻的核子之间才有核力,是一种短程强力。

运动分类:(各种运动产生的力学和运动学条件、及运动规律)重点难点

高考中常出现多种运动形式的组合 匀速直线运动 F

=0 V 0≠0 静止

匀变速直线运动:初速为零,初速不为零,

匀变速直曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力

只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 圆周运动:竖直平面内的圆周运动(最低点和最高点); 匀速圆周运动(是什么力提供作向心力)

简谐运动;单摆运动; 波动及共振;分子热运动; 类平抛运动;带电粒子在f 洛作用下的匀速圆周运动

物理解题的依据:力的公式 各物理量的定义 各种运动规律的公式 物理中的定理定律及数学几何关系

θCOS F F F F 2122212F ++= ? F 1-F 2 ? ≤ F ≤ ∣F 1 +F 2∣、三力平衡:F 3=F 1 +F 2

非平行的三个力作用于物体而平衡,则这三个力一定共点,按比例可平移为一个封闭的矢量三角形

多个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力的合力一定等值反向

匀变速直线运动:

基本规律: V t = V 0 + a t S = v o t +

12

a t 2

几个重要推论: (1) 推论:V t 2

-V 02

= 2as (匀加速直线运动:a 为正值 匀减速直线运动:a 为正值) (2) A B 段中间时刻的即时速度: (3) AB 段位移中点的即时速度:

V t/ 2 =V =V V t 02+=s t =T

S S N

N 21++= V N ≤ V s/2 =

v v o t 22

2

+

(4) S 第t 秒 = S t -S t-1= (v o t +

12a t 2) -[v o ( t -1) +12a (t -1)2]= V 0 + a (t -12

) (5) 初速为零的匀加速直线运动规律

①在1s 末 、2s 末、3s 末……ns 末的速度比为1:2:3……n ; ②在1s 、2s 、3s ……ns 内的位移之比为12

:22

:32

……n 2;

③在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1); ④从静止开始通过连续相等位移所用时间之比为1:()21-:32-)……(n n --1)

⑤通过连续相等位移末速度比为1:

2:3……n

(6) 匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.

(7) 通过打点计时器在纸带上打点(或照像法记录在底片上)来研究物体的运动规律

初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数;

匀变速直线运动的物体 中时刻的即时速度等于这段的平均速度

⑴是判断物体是否作匀变速直线运动的方法。?s = aT 2

⑵求的方法 V N =V =

s t =T S S N

N 21++ 2T

s s t s 2v v v v n 1n t 0t/2+==+==+平

⑶求a 方法 ① ?s = a T 2

②3+N S 一N S =3 a T 2

③ S m 一S n =( m-n) a T 2

(m.>n) ④画出图线根据各计数点的速度,图线的斜率等于a ; 识图方法:一轴、二线、三斜率、四面积、五截距、六交点

研究匀变速直线运动实验:

右图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量

的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …。测出相邻计数点间的距离s 1、s 2、s 3 … 利用打下的纸带可以: ⑴求任一计数点对应的即时速度v :如T

s s v c 232+=

(其中T =5×0.02s=0.1s )

⑵利用“逐差法”求a :()()2

3216549T s s s s s s a ++-++=

⑶利用上图中任意相邻的两段位移求a :如2

23T s s a -=

⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速

度,画出v-t 图线,图线的斜率就是加速度a 。

注意:a 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离。

b 时间间隔与选计数点的方式有关(50Hz,打点周期0.02s,(常以打点的5个间隔作为一个记时单位)

c 注意单位,打点计时器打的点和人为选取的计数点的区别

竖直上抛运动:(速度和时间的对称)

上升过程匀减速直线运动,下落过程匀加速直线运动.全过程是初速度为V 0加速度为-g 的匀减速直线运动。

(1)上升最大高度:H = V g

o 2

2 (2)上升的时间:t= V g o (3)从抛出到落回原位置的时间:t =

2V g o

(4)上升、下落经过同一位置时的加速度相同,而速度等值反向

(5)上升、下落经过同一段位移的时间相等。 (6) 适用全过程S = V o t -

12

g t 2

; V t = V o -g t ; V t 2-V o 2 = -2gS (S 、V t 的正、负号的理解) 几个典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动

牛二:F

= m a 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4)同体性 (5)同系性 (6)同单位制

万有引力及应用:与牛二及运动学公式

1思路:卫星或天体的运动看成匀速圆周运动,

F 心=F 万 (类似原子模型)

2方法:F 引=G 2r

Mm = F 心= m a 心= m ωm R v =2 2

R= m 422πT R =m42πn 2 R

地面附近:G

?GM=gR 轨道上正常转:G 2r

= m R v 2 (v 或E K )与r 关系,r

最小

时为地球半径,

v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);T 最小=84.8min=1.4h 】

G 2r Mm =m 2

ωr = m r T 224π ? M=2324GT r π ? T 2

=2

324gR r π? 2T 3G πρ=

(M=

ρV

π3

4

r 3) s 球面=4πr 2 s=πr 2 (光的垂直有效面接收,球体推进辐射) s 球冠

=2πRh

3理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v

第一宇宙

=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h

4同步卫星几个一定:三颗可实现全球通讯(南北极有盲区)

轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o

/h (地理上时区) a =0.23m/s 2

5运行速度与发射速度的区别 6卫星的能量:

r 增?v 减小(E K 减小

应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天

典型物理模型:

连接体是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。

解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体考虑分受力情况,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

两木块的相互作用力N=

2

12

112m m F m F m ++

讨论:①F 1≠0;F 2=0

N=

F m m m 212

+ (与运动方向和接触面是否光滑无关)

保持相对静止

② F 1≠0;F 2=0 N=2

12112m m F m F m ++

F=

2

11221m m g)

(m m g)(m m ++

F 1>F 2 m 1>m 2 N 1

N 5对6=

F M

m

(m 为第6个以后的质量) 第12对13的作用力 N 12对13

=

F nm

12)m

-(n

水流星模型(竖直平面内的圆周运动)

态。(圆周运动实例)①火车转弯 ②汽车过拱桥、凹桥3③飞机做俯冲运动时,飞行员对座位的压力。 ④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)

(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)

(得由合002

sin tan v L

Rgh

v R v m L h

mg mg mg F ===≈=θθ

①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合

/R ③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=mv 2

/R

即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。

(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:

①临界条件:由mg+T=mv 2

/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力为向心力,恰能通过最高点。即mg=mv 临2

/R

结论:绳子和轨道对小球没有力的作用(可理解为恰好转过或恰好转不过的速度),只有重力作向心力,临界速度V 临=

gR

②能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) ③不能过最高点条件:V

/L (临界条件T 1=0, 临界速度V 临=

gR , V ≥V

才能通过)

最低点状态: T 2- mg = mv 低2/L 高到低过程机械能守恒: 1/2mv 低2

= 1/2mv 高2

+ mgh

T 2- T 1=6mg (g 可看为等效加速度)

半圆:mgR=1/2mv 2

T-mg=mv 2

/R ? T=3mg

(3)有支承的小球,在竖直平面作圆周运动过最高点情况:

①临界条件:杆和环对小球有支持力的作用知)

(由R

U m N mg 2

=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)

圆心。

增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(0

00>==>><<

作用

时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)

(力的大小用有向线段,但(支持)时,受到杆的作用力,速度当小球运动到最高点时N gR v N v mg N N gR v 0=<<

恰好过最高点时,此时从高到低过程 mg2R=1/2mv 2

低点:T-mg=mv 2

/R ? T=5mg

注意物理圆与几何圆的最高点、最低点的区别

(以上规律适用于物理圆,不过最高点,最低点, g 都应看成等效的)

2.解决匀速圆周运动问题的一般方法

(1)明确研究对象,必要时将它从转动系统中隔离出来。 (2)找出物体圆周运动的轨道平面,从中找出圆心和半径。 (3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。

(5)??

??

?=∑===∑022

22y x F R T m R m R v m

F )(建立方程组πω 3.离心运动

在向心力公式F n =mv 2

/R 中,F n 是物体所受合外力所能提供的向心力,mv 2

/R 是物体作圆周运动所需要的向心力。当提供的向心力等于所需要的向心力时,物体将作圆周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运动,即离心运动。其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

斜面模型

斜面固定:物体在斜面上情况由倾角和摩擦因素决定

μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面

μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ) 搞清物体对斜面压力为零的临界条件

超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )

向上超重(加速向上或减速向下);向下失重(加速向下或减速上升) 难点:一个物体的运动导致系统重心的运动

1到2到3过程中 绳剪断后台称示数 (13除外)超重状态 系统重心向下加速

斜面对地面的压力? 铁木球的运动

地面对斜面摩擦力? 用同体积的水去补充 导致系统重心如何运动

轻绳、杆模型

绳只能承受拉力,杆能承受沿杆方向的拉、压、横向及任意方向的力

杆对球的作用力由运动情况决定

只有θ=arctg(a/g)时才沿杆方向 最高点时杆对球的作用力

最低点时的速度?,杆的拉力?

换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失,再下摆机械能守恒

假设单B 下摆,最低点的速度V B =

R 2g ?mgR=2

2

1B

mv 整体下摆2mgR=mg 2R +'2

B

'2A mv 21mv 21+

'A

'B V 2V = ? '

A V =gR 53 ; '

A '

B V 2V ==gR 25

6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功

若 V 0<

gR ,运动情况为先平抛,绳拉直沿方向的速度消失

即是有能量损失,绳拉紧后沿圆周下落。不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?

动量守恒:内容、守恒条件、不同的表达式及含义:

列式形式:'

p

p =;0p =?;21p -p ?=?

实际中的应用:m 1v 1+m 2v 2='22'

11v m v m +;

0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共

注意理解四性:系统性、矢量性、同时性、相对性

解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(有时先要规定正方向)求解并讨论结果。 碰撞模型:特点?和注意点:

①动量守恒;

②碰后的动能不可能比碰前大;

③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。

m 1v 1+m 2v 2='22'

11v m v m + (1)

'K 2'K 1K 2k 12121E m 2E m 2E m 2E m 2+=+

'2

22'12221mv 21mv 21mv 21mv 21+=+ (2 ) 2221212m P 2m P +=2

'221'212m P 2m P + '1

v

'2v

2=0 ;222

1

'1

v =21121m m )v m -(m +(主动球速度下限) '

2v =2

111m m v m 2+(被碰球速度上限)

若m 1=m 2,则

,交换速度。 m 1>>m 2,则

m 1<

一动一静:若v 2=0, m 1=m 2时,

。 m 1>>m 2时,

m 1<

一动静的完全非弹性碰撞(子弹打击木块模型)重点 mv 0+0=(m+M)'v

'v =

M

m mv 0

+(主动球速度上限,被碰球速度下限)

20mv 21='2M)v m (21++E 损 E 损=20mv 21一'2

M)v (m 21+=M)

2(m mMv 2

0+ 由上可讨论主动球、被碰球的速度取值范围

21121m m )v m -(m +

m mv 0

+

讨论:①E 损 可用于克服相对运动时的摩擦力做功转化为内能

E 损=fd 相=μmg ·d 相

=20mv 21一'2

M)v (m 21+=

M)

2(m mMv 2

0+? d 相

=M)f 2(m mMv 20+=M)

g(m 2mMv 2

0+μ ②也可转化为弹性势能;

③转化为电势能、电能发热等等

人船模型:

一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒

mv=MV ms=MS s+S=d

?

s=

机械振动、机械波:

基本的概念,简谐运动中的力学运动学条件及位移,回复力,振幅,周期,频率及在一次全

振动过程中各物理量的变化规律。

单摆:等效摆长、等效的重力加速度 影响重力加速度有:

①纬度,离地面高度

②在不同星球上不同,与万有引力圆周运动规律(或其它运动规律)结合考查 ③系统的状态(超、失重情况)

④所处的物理环境有关,有电磁场时的情况

⑤静止于平衡位置时等于摆线张力与球质量的比值 注意等效单摆(即是受力环境与单摆的情况相同) T=2π

g L

?g=22T L 4π 应用:T 1=2πg

L O

T 2=2π

g L -L O ? ?2

2212T -T L

4g ?=π 沿光滑弦cda 下滑时间t 1=t oa =

g

R

2g R 2=

沿ced 圆弧下滑t 2或弧中点下滑t 3: t 2=t 3=4T =g R 42π=

g

R

共振的现象、条件、防止和应用

机械波:基本概念,形成条件、

特点:传播的是振动形式和能量,介质的各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,

②起振方向与振源的起振方向相同, ③离源近的点先振动,

④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长

波长的说法:①两个相邻的在振动过程中对平衡位置“位移”总相等的质点间的距离

②一个周期内波传播的距离 ③两相邻的波峰(或谷)间的距离

④过波上任意一个振动点作横轴平行线,该点与平行线和波的图象的第二个交点之间的距离为一个波长 波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf

波速与振动速度的区别 波动与振动的区别:

研究的对象:振动是一个点随时间的变化规律,波动是大量点在同一时刻的群体表现, 图象特点和意义 联系:

波的传播方向?质点的振动方向(同侧法、带动法、上下波法、平移法)

知波速和波形画经过(?t )后的波形(特殊点画法和去整留零法)

波的几种特有现象:叠加、干涉、衍射、多普勒效应,知现象及产生条件

热学 分子动理论:

①物质由大量分子组成,直径数量级10-10m 埃A 10-9m 纳米nm ,单分子油膜法

②永不停息做无规则的热运动,扩散、布朗运动是固体小颗粒的无规则运动它能反映出液体分子的运动 ③分子间存在相互作用力,注意:引力和斥力同时存在,都随距离的增大而减小,但斥力变化得快。分子力是指引力和斥力的合力。

热点:由r 的变化讨论分子力、分子动能、分子势能的变化

物体的内能:决定于物质的量、t 、v 注意:对于理想气体,认为没有势能,其内能只与温度有关,

一切物体都有内能(由微观分子动能和势能决定而机械能由宏观运动快慢和位置决定)

有惯性、固有频率、都能辐射红外线、都能对光发生衍射现象、对金属都具有极限频率、对任何运动物体都有波长与之对应(德布罗意波长)

内能的改变方式:做功(转化)外对其做功E 增;热传递(转移)吸收热量E 增;注意(符合法则) 热量只能自发地从高温物体传到低温物体,低到高也可以,但要引起其它变化(热的第二定律)

热力学第一定律ΔE =W+Q ?能的转化守恒定律?第一类永动机不可能制成. 热学第二定律?第二类永动机不能制成

实质:涉及热现象(自然界中)的宏观过程都具方向性,是不可逆的

①热传递方向表述: 不可能使热量由低温物体传递到高温物体,而不引起其它变化

(热传导具有方向性)

②机械能与内能转化表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化 (机械能与内能转化具有方向性)。知第一、第二类永动机是怎样的机器?

热力学第三定律:热力学零度不可达到 一定质量的理想气体状态方程:

T

PV

=恒量 (常与ΔE =W+Q 结合考查)

动量、功和能 (重点是定理、定律的列式形式)

力的瞬时性F=ma 、时间积累I=Ft 、空间积累w=Fs

力学:p=mv=

K

mE 2

动量定理 I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初

动量守恒定律的守恒条件和列式形式:

'p p =;0p =?;21p -p ?=? E K =m

2p mv 212

2=

求功的方法:

力学:① W =Fscos α

② W= P ·t (?p=

t w =t

FS

=Fv) ③动能定理 W 合=W 1+ W 2+ --- +W n =ΔE K =E 末-E 初 (W 可以不同的性质力做功) ④功是能量转化的量度(易忽视) 惯穿整个高中物理的主线

重力功(重力势能的变化) 电场力功 分子力功 合外力的功(动能的变化)

电学: W AB =qU AB =F 电d E =qEd E ? 动能(导致电势能改变) W =QU =UIt =I 2Rt =U 2t/R Q =I 2Rt

E=I(R+r)=u 外+u 内=u 外+Ir P 电源=uIt= +E 其它 P 电源=IE=I U +I 2Rt

安培力功W =F 安

d =BILd ?内能(发热) R

V

L B L R BLV B 22== 单个光子能量E =hf

一束光能量E 总=Nhf(N 为光子数目) 光电效应mV m 2/2=hf -W 0

跃迁规律:h γ =E 末-E 初 辐射或吸收光子 ΔE =Δmc 2 注意换算

单位:J ev=1.9×10

-19

J 度=kw/h=3.6×106J 1u=931.5Mev

与势能相关的力做功特点:

如重力,弹力,分子力,电场力它们 做功与路径无关,只与始末位置有关.

机械能守恒条件:

(功角度)只有重力,弹力做功;(能角度)只发生重力势能,弹性势能,动能的相互转化 机械能守恒定律列式形式:

E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)

除重力和弹簧弹力做功外,其它力做功改变机械能

滑动摩擦力和空气阻力做功W =fd 路程?E 内能(发热)

特别要注意各种能量间的相互转化

物理的一般解题步骤:

1审题:明确己知和侍求

是最薄弱的环节)

(如:光滑,匀速,恰好,,弹性势能最大或最小等等) 2选对象和划过程(整体还是隔离,全过程还是分过程)

3选坐标,规定正方向.依据(所选的对象在某种状态或划定的过程中)

有时可能要用到几何关系式. 5,最后结果是矢量要说明其方向.

静电场:概念、规律特别多,注意理解及各规律的适用条件;电荷守恒定律,库仑定律

三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小”: 中间电荷量较小且靠近两边中电量较小的;

313221q q q q q q =+ 只要有电荷存在周围就存在电场

力的特性:电场中某位置场强:q F

E =

2r

Q E = d U E =

某点电势?描述电场能的特性:q

W 0

A →=

?(相对零势点而言)

理解电场线概念、特点;常见电场的电场线分布要求熟记,

特别是等量同种、异种电荷连线上及中垂线上的场强特点和规律

能判断:电场力的方向?电场力做功?电势能的变化(这些问题是基础)

两点间的电势差U 、U AB :(有无下标的区别)

静电力做功U 是(电能?其它形式的能) 电动势E 是(其它形式的能?电能)

Ed -q

W U B A B

A A

B ===

→??(与零势点选取无关) 电场力功W=qu=qEd=F 电S E (与路径无关)

等势面(线)的特点,处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线

垂直于导体表面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;表面曲率大的地方等势面越密,E 越大,称为尖端放电

静电感应,静电屏蔽

电容器的两种情况分析

始终与电源相连U 不变;当d 增?C 减?Q=CU 减?E=U/d 减 仅变s 时,E 不变。 充电后断电源q 不变:当d 增?c 减?u=q/c 增?E=u/d=

s kq 4d q/c επ=不变(s

q

面电荷密度)仅变d 时,E 不变; 带电粒子在电场中的运动: ① 加速

2mv 21

qEd qu W ===加 m

2qu v 加=

②偏转(类平抛)平行E 方向:L=v o t

竖直:2

2

22222mv L

qU 4dU L U t md qU 21t m qE 21t 21y 偏加偏偏=====a tg θ=

偏2dU L U V at

V V 00==⊥

速度:V x =V 0 V y =at

o

o y v gt v v tg ==

β (β为速度与水平方向夹角)

位移:S x = V 0 t S y =2

2

1at

o

o 22

1v 2gt

t v gt tg =

=α (α为位移与水平方向的夹角)

③圆周运动

④在周期性变化电场作用下的运动

结论:①不论带电粒子的m 、q 如何,在同一电场中由静止加速后,再进入同一偏转电场,它们飞出时的侧移和偏转角是相同的(即它们的运动轨迹相同)

②出场速度的反向延长线跟入射速度相交于O 点,粒子好象从中心点射出一样 (即2

L tan y b

==

α) 证:o

o y v gt

v v tg =

o

o 2v 2gt t v gt tg 2

1=

αβ2tg tg =(αβ的含义?)

恒定电流: I=

t q (定义) I=nesv(微观) I=R u R=I u (定义) R=S

L

ρ(决定) W =QU =UIt =I 2Rt =U 2t/R Q =I 2Rt P =W/t =UI =U 2/R =I 2R

E=I(R+r)=u 外+u 内=u 外+Ir P 电源=uIt= +E 其它 P 电源=IE=I U +I 2Rt 单位:J ev=1.9×10-19J 度=kw/h=3.6×106

J 1u=931.5Mev 电路中串并联的特点和规律应相当熟悉

路端电压随电流的变化图线中注意坐标原点是否都从零开始

电路动态变化分析(高考的热点)各灯表的变化情况

1程序法:局部变化?R 总?I 总?先讨论电路中不变部分(如:r)?最后讨论变化部分 局部变化↑↓?↓?↑?↑?露内总总U U I R R i ?再讨论其它

2直观法:

①任一个R 增必引起通过该电阻的电流减小,其两端电压U R 增加.(本身电流、电压)

②任一个R 增必引起与之并联支路电流I 并增加; 与之串联支路电压U 串减小(称串反并同法)

??

?↓

↑????↑↓

↑?串并并联的电阻与之串局部U I u I R 、i i i 当R=r 时,电源输出功率最大为P max =E 2/4r 而效率只有50%,

电学实验专题

测电动势和内阻

(1)直接法:外电路断开时,用电压表测得的电压U 为电动势E U=E (2)通用方法:A V 法测要考虑表本身的电阻,有内外接法;

①单一组数据计算,误差较大

②应该测出多组(u ,I)值,最后算出平均值

③作图法处理数据,(u ,I)值列表,在u--I 图中描点,最后由u--I 图线求出较精确的E 和r 。

(3)特殊方法

(一)即计算法:画出各种电路图

r)

(R I E r)(R I E 2211+=+= =E 122121I -I )R -(R I I =

r 122

211I -I R I -R I (一个电流表和两个定值电阻)

r I u E r I u E 2211+=+= =E 211221I -I u I -u I =

r 211

2I -I u -u

(一个电流表及一个电压表和一个滑动变阻器)

r

R u u E r

R u u E 2

221

1

1+=+

= 21122121R u -R u )R -(R u u E = 2

1122121R u -R u R )R u -(u r =(一个电压表和两个定值电阻)

(二)测电源电动势ε和内阻r 有甲、乙两种接法,如图 甲法中所测得ε和r 都比真实值小,ε/r 测=ε测/r 真;

乙法中,ε测=ε真,且r 测= r+r A 。

(三)电源电动势ε也可用两阻值不同的电压表A 、B 测定,单独使用A

表时,读数是U A ,单独使用B 表时,读数是U B ,用A 、B 两表测量时,读数是U , 则ε=U A U B /(U A -U )。

电阻的测量

A V 法测:要考虑表本身的电阻,有内外接法;多组(u ,I)值,列表由u--I 图线求。怎样用作图法处理数据 欧姆表测:测量原理

两表笔短接后,调节R o 使电表指针满偏,得 I g =E/(r+R g +R o )

接入被测电阻R x 后通过电表的电流为 I x =E/(r+R g +R o +R x )=E/(R 中+R x ) 由于I x 与R x 对应,因此可指示被测电阻大小

使用方法:机械调零、选择量程(大到小)、欧姆调零、测量读数时注意挡位(即倍率)、拨off 挡。 注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。 电桥法测

X R R R R 3

21=1

32R R R R =?

半偏法测表电阻 断s,调R 0使表满偏; 闭s,调R ’使表半偏.则R 表=R ’

一、测量电路( 内、外接法 ) 记忆决调 “内”字里面有一个“大”字

当R v 、R A 及R x 末知时,采用实验判断法:

动端与a 接时(I 1;u 1) ,I 有较大变化(即121121I I -I u u -u <)说明v 有较大电流通过,采用内接法

动端与c 接时(I 2;u 2) ,u 有较大变化(即1

21121I I -I u u -u >)说明A 有较强的分压作用,采用内接法 测量电路( 内、外接法 )选择方法有(三)

①R x 与 R v 、R A 粗略比较 ② 计算比较法 R x

v A R R 比较

③当R v 、R A 及R x 末知时,采用实验判断法:

二、供电电路( 限流式、调压式 )

以“供电电路”来控制“测量电路”:采用以小控大的原则

电路由测量电路和供电电路两部分组成,其组合以减小误差,调整处理数据两方便

三、选实验试材(仪表)和电路,

按题设实验要求组装电路,画出电路图,能把实物接成实验电路,精心按排操作步骤,过程中需要测?物理量,结果表达式中各符号的含义.

选量程的原则:测u I,指针超过1/2, 测电阻刻度应在中心附近.

方法: 先画电路图,各元件的连接方式(先串再并的连线顺序)

明确表的量程,画线连接各元件,铅笔先画,查实无误后,用钢笔填,

先画主电路,正极开始按顺序以单线连接方式将主电路元件依次串联,后把并联无件并上.

注意事项:表的量程选对,正负极不能接错;导线应接在接线柱上,且不能分叉;不能用铅笔画

用伏安法测小电珠的伏安特性曲线:测量电路用外接法,供电电路用调压供电。

微安表改装成各种表:关健在于原理

首先要知:微安表的内阻、满偏电流、满偏电压。

采用半偏法先测出表的内阻;最后要对改装表进行较对。 (1)改为V 表:串联电阻分压原理 g g g

g g g 1)R -(n R )u u -u (R R u -u R u ==?= (n 为量程的扩大倍数) (2)改为A 表:串联电阻分流原理

g g g g g g g R 1

-n 1R I -I I R )R I -I (R I ==?= (n 为量程的扩大倍数)

(3)改为欧姆表的原理

两表笔短接后,调节R o 使电表指针满偏,得 I g =E/(r+R g +R o )

接入被测电阻R x 后通过电表的电流为 I x =E/(r+R g +R o +R x )=E/(R 中+R x ) 由于I x 与R x 对应,因此可指示被测电阻大小

磁场 基本特性,来源,

方向(小磁针静止时极的指向,磁感线的切线方向,外部(N →S)内部(S →N)组成闭合曲线

要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健) 脑中要有各种磁源产生的磁感线的立体空间分布观念

能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图) 会从不同的角度看、画、识 各种磁感线分布图

安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验 安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量

F 安=B I L

?

推导 f 洛=q B v 建立电流的微观图景(物理模型)

典型的比值定义

(E=

q F

E=k 2r Q ) (B=L I F B=k 2

r

I ) (u=

q

w b

a →q W 0

A A →=?) ( R=

I u R=S L ρ) (C=u

Q C=d k 4s

πε) 磁感强度B :由这些公式写出B 单位,单位?公式

B=

L I F ; B=S φ ; E=BLv ? B=Lv E ; B=k 2r

I

(直导体) ;B=μNI (螺线管)

qBv = m R v 2

? R =qB mv ? B =qR

mv ; qBv = qE ? B=v E =v d u

=dv u

电学中的三个力:F

=q E =q d

u F 安=B I L f 洛= q B v

注意:①、B ⊥L 时,f 洛最大,f 洛= q B v

(f B v 三者方向两两垂直且力f 方向时刻与速度v 垂直)?导致粒子做匀速圆周运动。

②、B || v 时,f 洛=0

?做匀速直线运动。③、B 与v 成夹角时,(带电粒子沿一般方向射入磁场),

可把v 分解为(垂直B 分量v ⊥,此方向匀速圆周运动;平行B 分量v || ,此方向匀速直线运动。)

?合运动为等距螺旋线运动。

带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。

规律:qB

mv R R

v m qBv 2

=?= (不能直接用) qB

m 2v

R 2T ππ==

1、找圆心:①(圆心的确定)因f 洛一定指向圆心,f 洛⊥v 任意两个f 洛方向的指向交点为圆心; ②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。

2、求半径(两个方面):①物理规律qB

mv R R

v m qBv 2

=?=

②由轨迹图得出几何关系方程 ( 解题时应突出这两条方程

)

几何关系:速度的偏向角?=偏转圆弧所对应的圆心角(回旋角)α=2倍的弦切角θ

相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。

3、求粒子的运动时间:偏向角(圆心角、回旋角)α=2倍的弦切角θ,即α=2θ

t 4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件

a 、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。

b 、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。 注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。

电磁感应:.

法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。 [感应电动势的大小计算公式]

1) E =BLV (垂直平动切割)

2) E =n ΔΦ/Δt=n ΔBS/Δt= n B ΔS/Δt (普适公式) (法拉第电磁感应定律) 3) E= nBS ωsin (ωt+Φ);E m =nBS ω (线圈转动切割)

4)E =BL 2ω/2 (直导体绕一端转动切割) 5)*自感E 自=nΔΦ/Δt =LΔI/Δt ( 自感 )

楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。

B 感和I 感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I 感的B 是阻碍产生I 感的原因) B 原方向?;B 原?变化(原方向是增还是减);I 感方向?才能阻碍变化;再由I 感方向确定B 感方向。 能量守恒表述:I 感效果总要反抗产生感应电流的原因

电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。 一般可归纳为:

导体组成的闭合电路中磁通量发生变化?导体中产生感应电流?导体受安培力作用? 导体所受合力随之变化?导体的加速度变化?其速度随之变化?感应电流也随之变化 周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动

功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手, 分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。

光学:反射定律(物像关于镜面对称);

折射定律介

介λλγ=

===sinC 90sin sin sin n o v C i 色散中从红到紫光,

由偏折情况判断各色光的:n 、v 、f 、λ、C 临E 光子大小、能否发生光电效应等, 全反射的条件:光密到光疏;入射角等于或大于临界角

全反射现象:让一束光沿半圆形玻璃砖的半径射到直边上,可以看到一部分光线从玻璃直边上折射到空气

中,一部分光线反射回玻璃砖内.逐渐增大光的入射角,将会看到折射光线远离法线,且越来越弱.反射光越来越强,当入射角增大到某一角度C 临时,折射角达到900,即是折射光线完全消失,只剩下反射回玻璃中的光线.这种现象叫全反射现象.折射角变为900时的入射角叫临界角

应用:光纤通信(玻璃sio 2) 内窥镜 海市蜃楼 沙膜蜃景 炎热夏天柏油路面上的蜃景

水中或玻璃中的气泡看起来很亮.

理解:同种材料对不同色光折射率不同;同一色光在不同介质中折射率不同。

几个结论:1紧靠点光源向对面墙平抛的物体,在对面墙上的影子的运动是匀速运动。

2、两相互正交的平面镜构成反射器,任何方向射入某一镜面的光线经两次反射后一定与原入射方向平行反向。

3、光线由真空射入折射率为n 的介质时,如果入射角θ满足tg θ=n ,则反射光线和折射光线一定垂直。

4、由水面上看水下光源时,视深n d d /'=;若由水面下看水上物体时,视高nd d ='。

5、光线以入射角i 斜射入一块两面平行的折射率为n 、厚度为h 的玻璃砖后,出射光线仍与入射光线平行,但存在侧移量△)sin cos 1(dsin x

2

2

i

n i i -+

= 两反射光间距i

i 2

2

'sin -n dsin2x =

?

双缝干涉: 条件f 相同,相位差恒定(即是两光的振动步调完全一致) 当其反相时又如何?

亮条纹位置: ΔS =n λ; 暗条纹位置:

λ2

1)

(2n S +=

?(n =0,1,2,3,、、、); 条纹间距 :1)

-L(n da L x d 1-n a d L X =?=?==

?λλ (ΔS :路程差(光程差);d 两条狭缝间的距离;L :挡板与屏间的距离) 测出n 条亮条纹间的距离a

薄膜干涉:由膜的前后两表面反射的两列光叠加,

实例:肥皂膜、空气膜、油膜、牛顿环、光器件增透膜 (厚度是绿光在薄膜中波长的1/4,即增透膜厚度d =λ/4)

衍射:现象,条件单缝圆孔柏松亮斑(来历) 任何物体都能使光发生衍射致使轮廓模糊

三种圆环区别单孔衍射中间明而亮,周围对称排列亮度减弱,条纹宽变窄的条纹

空气膜干涉环间隔间距等亮度的干涉条纹

牛顿环内疏外密的干涉条纹

干涉、衍射、多普勒效应(太阳光谱红移 宇宙在膨胀)、偏振都是波的特有现象,证明光具有波动性,

衍射表明了光的直线传播只有一种近似规律;说明任何物理规律都受一定的条件限制的.

光五种学说:原始微粒说(牛顿),波动学说(惠更斯),电磁学说(麦克斯韦),

光子说(爱因斯坦),波粒两相性学说(德布罗意波)概率波

各种电磁波产生的机理,特性和应用,光的偏振现象说明光波是横波,也证明光的波动性.

激光的产生特点应用(单色性,方向性好,亮度高,相干性好)

爱因斯坦光电效应方程:mV m2/2=hf-W0

光电效应实验装置,现象,所得出的规律(四)爱因斯坦提出光子学说的背景

一个光子的能量E=hf (决定了能否发生光电效应)

光电效应规律:实验装置、现象、总结出四个规律

①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个极限频率的光不能产生光电效应。

②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。

③入射光照到金属上时,光子的发射几乎是瞬时的,一般不超过10-9s

④当入射光的频率大于极限频率时,光电流强度与入射光强度成正比。

康普顿效应(石墨中的电子对x射线的散射现象)这两个实验都证明光具粒子性光波粒二象性:

?情况体现波动性(大量光子,转播时,λ大),?粒子性光波是概率波(物质波) 任何运动物体都有λ与之对应

原子和原子核

汤姆生发现电子从而打开原子的大门,枣糕式原子模型,

卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说

而核式结构又与经典的电磁理论发生矛盾①原子是否稳定,②其发出的光谱是否连续

玻尔补充三条假设

定态----原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量.

跃迁----原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子

(其能量由两定态的能量差决定)

能量和轨道量子化----定态不连续,能量和轨道也不连续;(即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道分布也是不连续的)

光子的发射与吸收(特别注意跃迁条件):原子发生定态跃迁时,要辐射(吸收)一定频率的光子:hf=E初-E末氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:E n=E1/n2,r n=n2r1,

其中E1=-13.6eV, r1=5.3×10-10m,

(大量)处于n激发态原子跃迁到基态时的所有辐射方式共有C2n=n (n-1)/2种

E51=13.06 E41=12.75 E31=12.09 E21=10.2;(有规律可依)

E52=2.86 E42=2.55 E32=1.89;E53=0.97 E43=0.66;E54=0.31

氢原子在n能级的动能、势能,总能量的关系是:E P=-2E K,E=E K+E P=-E K。

由高能级到低能级时,动能增加,势能降低,且势能的降低量是动能增加量的2倍,故总能量(负值)降低。(类似于卫星模型)

核变化从贝克勒耳发现天然放射现象开始衰变(用电磁场研究):

α衰变形成外切(同方向旋),β衰变形成内切(相反方向旋), 且大圆为α、β粒子径迹。αβ衰变的实质

β衰变是核内的中子转变成了质子和中子

半衰期(由核决定,与物理和化学状态无关)、 同位素等重要概念 放射性标志 质子的发现(卢瑟福)用α粒子轰击氮核,并预言中子的存在.

H O N He 1

117814742

+→+

中子的发现(查德威克)钋产生的α射线轰击铍

n C Be H 1

01269442

+→+

正电子的发现(约里奥居里和伊丽芙居里夫妇)α粒子轰击铝箔 四种核反应变化(衰变,人工核转变,重核裂变,轻核骤变)

做平抛运动物体,任意时刻速度的反向延长线,一定通过此时刻速度的反向延长线沿抛出方向水平总

移的中点。

2、带电粒子做类平抛运动中,所有带电粒子射出电场的速度的反向延长线交于极板中点。

3、两通电直导线通过磁场相互作用:

不平行:有转动到平行且电流同向趋势,再吸引。 平行时:同向电流吸引,反向电流排斥。

交流电:正弦式交流电的产生,规律e=NBS ωsin ωt (各量的含义、计时起点、图线特征、且与线圈形状和

轴的位置无关,明确四值:瞬时值,最大值,有效值(根据电流的热效应定义)、平均值(波形与时间轴面积跟时间的比值) 正弦波:.U 效=

2

u m

e=311sin ωt=311sin314t 不对称方波:2

I I I 22

21+=

不对称的正弦波 2

I I I 2

m2

2m1+=

电容:隔直通(交) 线圈:通低频,阻高(交)频 变压器:原理电磁感应 理想 P 入=P 出 ,

1

2

2121I I n n u u == 注意多组副线圈的情况

远距离输电 电压关系u 升= u 线+u 降= IR 线+U 降 P 出=P 线+P 降(或Iu 升+Iu 降) 变压器输入功率随(负载电阻和副线圈匝数)的变化而变化的两种情况 电磁波,麦克斯韦电磁场理论:变化的磁场产生电场;变化的电场产生磁场。 理解:?变化的电场?怎样变化的磁场

LC 振荡电路,各物理量对应关系,变化规律,充放电过程中物理量的变化情况 T=2πLC L

素:越粗,越长,匝数密,有铁芯,L 大 C 因素:介质 s d

He Th U 422349023892+→e

Pa Th 0

12349123490-+→e

Si P n P He Al 0

1301430

15

1

030154227

13

;

+→+→+

高考要求的学生实验(19个)按广东高考考点编制

113长度的测量

会使用游标卡尺和螺旋测微器,掌握它测量长度的原理和方法. 114. 研究匀变速直线运动

右图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后(每隔5个间隔点)取一个计数点A 、B 、C 、D …。测出相邻计数点间的距离s 1、s 2、s 3 … 利用打下的纸带可以: ⑴求任一计数点对应的即时速度v :如T

s s v c 232+=

(其中T =5×0.02s=0.1s )

⑵利用“逐差法”求a :()()2

3216549T s s s s s s a ++-++=

⑶利用上图中任意相邻的两段位移求a :如23T s s a -=

⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速

度,画出如右的v-t 图线,图线的斜率就是加速度a 。

注意事项 1、每隔5个时间间隔取一个计数点,是为求加速度时便于计算。 2、所取的计数点要能保证至少有两位有效数字

115.探究弹力和弹簧伸长的关系(胡克定律)探究性实验

利用右图装置,改变钩码个数,测出弹簧总长度和所受拉力(钩码总重量)的多组对应值,填入表中。算出对应的弹簧的伸长量。在坐标系中描点,根据点的分布作出弹力F 随伸长量x 而变的图象,从而发确定F -x 间的函数关系。解释函数表达式中常数的物理意义及其单位。

该实验要注意区分弹簧总长度和弹簧伸长量。对探索性实验,要根据描出的点的走向,尝试判定函数关系。(这一点和验证性实验不同。)

116.验证力的平行四边形定则

目的:实验研究合力与分力之间的关系,从而验证力的平行四边形定则。 器材:方木板、白纸、图钉、橡皮条、弹簧秤(2个)、直尺和三角板、细线 该实验是要用互成角度的两个力和另一个力产生相同的效果,看其用平行四边形定则求出的合力与这一个力是否在实验误差允许范围内相等,如果在实验误差允许范围内相等,就验证了力的合成的平行四边形定则。 注意事项:

1、使用的弹簧秤是否良好(是否在零刻度),拉动时尽可能不与其它部分接触产生摩擦,拉力方向应与轴线方向相同。

2、实验时应该保证在同一水平面内

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

最新高考物理直线运动真题汇编(含答案)

最新高考物理直线运动真题汇编(含答案) 一、高中物理精讲专题测试直线运动 1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1)(2)4s;18m(3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用. 2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。求: (1)汽车制动8s后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m

【解析】 【详解】 (1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---= ==,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ; 汽车的制动距离为:023******* t v v x t m m ++?= == . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】 解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动. 3.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ; (2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f . 【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】 (1) 客车到达减速带时的功能E k = 12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02 v v s t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N 4.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取 10m/s 2.求: (1)小球经过B 点时的速率;

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高考物理复习选用什么样的资料比较好

高考物理复习选用什么样的资料比较好 高考物理复习问题 学生:听说第一轮复习将做大量的习题,市场上的教辅资料可谓 汗牛充栋,选用什么样的资料比较好呢?在资料的使用上有什么秘诀吗? 老师:我本人不主张高三的学生做大量的习题,整天泡在题海中,但是不做题是不行的,必须经过实战演练才能知道哪些知识在理解上 或者应用上还有不足。对于教辅资料我认为不要太多,有两本就够了。在自己选择教辅资料时,我建议应该选择难易适度的。标准是这样的,假设一章有10道试题,如果你发现几乎没有不会的,那么这本教辅资 料对你来说就是过于简单了,如果有7到8道题经过长时间思考都没 有解题思路,那就是过于难了。过于简单和过于难都会浪费你宝贵的 复习时间,这样的教辅资料对一轮复习是不合适的。对于教辅资料的 使用也要注意一下几点: (1)哪些题是一看就会的,哪些题是经过深度思考才能做对的, 哪些题是经过深度思考后一点思路都没有的,这些题必须做好不同的 标识。 (2)对那些一点思路没有的习题,必须通过同学或老师的协助使 之变成有思路的习题,这些知识点就是你们备考路上的“拦路虎”, 一定要把他们都“消灭”了。 (3)要定期回头复习那些经过深度思考才做出的习题,保证思路 上的畅通。 (4)要把自己不会的习题、做错的习题实行归类,看看哪些题是 方法上的错误,哪些题是计算上的失误,哪些题是概念理解不透造成 的错误,设计一个表格记录下来。 掌握自己犯错的类型,就为防范错误做好了准备,整理一个错题 本是复习的一个好办法,便于集中查阅自己犯过的错误。当看到以前

出现过的问题,应该随时翻看课本里面相对应的内容,这样边记边看效果会更显著,不会的知识点就会越来越少了。 高考物理复习技巧 1.模型归类 做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型实行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还相关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成功了一半。 2.解题规范 高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就能够的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能协助我们在分步骤评分的评分标准中少丢几分。 3.大胆猜想 物理题目常常是假想出的理想情况,几乎都能够用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把相关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像提供的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。 4.知识分层

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

2019年高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

2020高考物理知识点总结.docx

2020 高考物理知识点总结 1.简谐振动 F=-kx{F: 回复力, k: 比例系数, x: 位移,负号表示 F 的方向与 x 始终反向 } 2.单摆周期 T=2π(l/g)1/2{l: 摆长 (m),g: 当地重力加速度值,成 立条件 : 摆角θ<100;l>>r } 3.受迫振动频率特点: f=f 驱动力 4.发生共振条件 :f 驱动力 =f 固, A=max,共振的防止和应用〔见第一册 P175〕 5.机械波、横波、纵波〔见第二册 P2〕 7.声波的波速 ( 在空气中 )0 ℃: 332m/s;20 ℃:344m/s;30 ℃:349m/s;( 声波是纵波 ) 8.波发生明显衍射 ( 波绕过障碍物或孔继续传播 ) 条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同 ( 相差恒定、振幅相近、振动 方向相同 ) 10.多普勒效应 : 由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{ 相互接近,接收频率增大,反之,减小〔见第二册 P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统 本身 ; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰 与波谷相遇处 ; (3)波只是传播了振动,介质本身不随波发生迁移 , 是传递能量的一种方式 ;

(4)干涉与衍射是波特有的 ; (5)振动图象与波动图象 ; 1) 常见的力 1.重力 G=mg(方向竖直向下, g=9.8m/s2 ≈10m/s2,作用点在 重心,适用于地球表面附近 ) 2.胡克定律 F=kx{ 方向沿恢复形变方向, k:劲度系数 (N/m) , x:形变量 (m)} 3.滑动摩擦力 F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力 (N) } 4.静摩擦力 0≤f静≤ fm( 与物体相对运动趋势方向相反, fm 为 最大静摩擦力 ) 5.万有引力 F=Gm1m2/r2(G= 6.67×10-11N?m2/kg2, 方向在它们 的连线上 ) 6.静电力 F=kQ1Q2/r2(k=9.0 ×109N?m2/C2,方向在它们的连线上 ) 7.电场力 F=Eq(E:场强 N/C,q:电量 C,正电荷受的电场力与 场强方向相同 ) 8.安培力 F=BILsin θ( θ为 B 与 L 的夹角,当 L⊥B时:F=BIL , B//L 时:F=0) 9.洛仑兹力 f=qVBsin θ( θ为 B 与 V 的夹角,当 V⊥B时: f=qVB,V//B 时:f=0) 注: (1)劲度系数 k 由弹簧自身决定 ; (2)摩擦因数μ 与压力大小及接触面积大小无关,由接触面材 料特性与表面状况等决定 ; (3)fm 略大于μFN,一般视为 fm≈μ FN;

如何上好高三物理复习习题课

如何上好高三物理复习习题课 高三物理复习时间紧,任务重,复习过程习题训练是必不可少的。进入高三,各种辅导资料、试卷铺天盖地席卷而来,不少学生和教师很容易陷入题海不能自拔。显然,这种 复习方式是低效的,甚至是低产的。在高三的物理复习中上好习题一直是一线物理 教师值得探究的一个课题,那么怎样才能高效的上好每节习题课呢?笔者认为应从以下几个方面着手。 一、精选例题,做到有的放矢 选择典型例题是练习课省时高效的重要环节。有的老师在一堂习题课上要讲好几道例题,这看似高效,但实际上无形的增加了学生的课堂负担,而收效甚微。要想让习题课省时高效,教师必须在课前结合教学内容,选择具有代表性、典型性、针对性的难度合适的例题,一般选近几年的高考题。选择例题时注意如下问题: 1、选择有典型性的例题:从发展学生智能的需要出发,典型性的问题应在内容上或方 法上同时具有代表性,能体现出重点概念和规律本质及其特征。在保证基础知识覆盖率和重点知识重复率的前提下,尽量做到“少而精”的原则。对各类型的题目进行严格的筛选,还应根据教学对象适当控制试题难度。高三的复习一定要紧紧围绕最典型的模型精选习题,从这些习题的解决过程中沉淀出最稳定的物理模型和解题方法来。 2、选择有针对性的例题:在选题时应从知识的角度出发,例题的选择要针对教学目标 和学生实际情况,尤其是学生学习的薄弱环节,教学内容与方法与学生的基础知识紧密联系的有针对性的例题。 3、选择有实际性的问题:新课程标准中指出——物理教学应体现从生活走向物理,从 物理走向社会,教师在选题时应从学生身边的生活实际出发,这样既可以激发学生学习物理的兴趣,同时还会使学生产生一种亲近感,感受到物理并不神秘,而是与生活同在,这样也会激起学生探求新知的强烈愿望。 二、精讲精练,培养学生的解题能力 高三物理习题课主要是运用讲授法,这就要求能在课堂中做到精讲精练。要有意识的培养学生的解题能力,包括分析问题的能力、解决问题的能力、运用数学知识解决问题的能力和物理语言表达能力。应该抓住以下几个要点: 1、讲明题意,摸清出题意图 有些物理试题隐含条件很模糊,学生很难发现,有时这些信息又是解题的关键,审好题就成为了关键。在平时的例题讲解中,这一类题型有必要让学生适当接触到,加强学生审题能力的培养。 例(02年上海市高考试题第8题)太阳从东边升起,西边落下,这是地球上的自然现

高考物理知识专题整理大全二:直线运动

二、直线运动 1、质点: ⑴定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。 ⑵物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。 2、位置、位移和路程 ⑴位置:质点在空间所处的确定的点,可用坐标来表示。 ⑵位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离 ⑶路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。 3、时间与时刻 ⑴时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等 ⑵时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等 4、速度和速率 ⑴平均速度:①v=Δs/Δt ,对应于某一时间(或某一段位移)的速度。 ②平均速度是矢量,方向与位移Δs 的方向相同。 ③公式2 0t v v v += ,只对匀变速直线运动才适用。 ⑵瞬时速度:①对应于某一时刻(或某一位置)的速度。 ②当Δt 0时,平均速度的极限为瞬时速度。 ③瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。 ④简称速度 ⑶平均速率:①质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平 均速率。 ②平均速率是标量。 一、知识网络 概念

③只有在单方向的直线运动中,平均速度的大小才等于平均速率。 ④平均速率是表示质点平均快慢的物理量 ⑷瞬时速率:①瞬时速度的大小。 ②是标量。 ③简称为速率。 5、加速度 ⑴速度的变化:Δv =v t -v 0,描述速度变化的大小和方向,是矢量。 ⑵加速度:①是描述速度变化快慢的物理量。 ②公式:a =Δv/Δt 。 ③是矢量。 ④在直线运动中,若a 的方向与初速度v 0的方向相同,质点做匀加速运动;若a 的方向与初速度v 0的方向相反,质点做匀减速运动 6、匀速直线运动: ⑴定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体 在做匀速直线运动 ⑵匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。 ⑶在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。 ⑷匀速直线运动的规律:①t s v = ,速度不随时间变化。 ②s=vt ,位移跟时间成正比关系。 ⑸匀速直线运动的规律还可以用图象直观描述。 ①s-t 图象(位移图象):依据S = vt 不同时间对应不同的位移, 位移S 与时间t 成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速 直线运动的速度。(有tg α= =S t v )所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t 1时间内的位移S 1)以及可直接读出发生任一位移S 2所需的时间t 2。 ②v-t 图象,由于匀速直线运动的速度不随时间而改变, 所以它的 速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。 例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。 例题: 小球从3m 高处落下,被地板弹回,在1m 高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m (B)3m,1m (C)3m,2m (D)4m,2m

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含详细答案

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含 详细答案 一、临界状态的假设解决物理试题 1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求: (1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。 【答案】(1)0.3;(2)1 3 ;(3)2m 【解析】 【分析】 【详解】 (1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小 21241m /s 3m /s 1 v a t ==?-?= 若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则 1mg ma μ= 联立可得 0.3μ= (2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律 2mg Ma μ= 得 1 3 m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能

2 20 1 1() 22 mgL mv M m v μ=-+ 解得 L =2m 2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。圆形底面的直径为2R ,圆筒的高度为R 。 (1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率; (2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。 【答案】(1)5n ≥甲;(2)2n >乙 【解析】 【详解】 (1)盛满甲液体,如图甲所示,P 点刚好全反射时为最小折射率,有 1 sin n C = 由几何关系知 2 2 2sin 2R C R R = ??+ ? ?? 解得 5n =则甲液体的折射率应为 5n ≥甲

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

高考物理专题:运动学

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= 反向时2202/14/1 4 10s m s m t v v a t -=--=-= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此 时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运 动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速度s m gh v /320==, 由题意知整个过程运动员的位移为-10m (以向上为正方向),由202 1 at t v s +=得: -10=3t -5t 2 解得:t ≈1.7s 思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

相关主题
文本预览
相关文档 最新文档