当前位置:文档之家› 在实际应用中柯西积分公式的用途正文

在实际应用中柯西积分公式的用途正文

在实际应用中柯西积分公式的用途正文
在实际应用中柯西积分公式的用途正文

柯西积分公式的应用

摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用.

关键词:解析函数;复积分;柯西积分公式.

1 前言

《实变函数与泛函分析》是综合性大学理工科的基础课程,其中柯西积分定理和柯西积分公式是基础,是关键,也是19实际最独特的创造,是抽象科学中最和谐的理论之一.许多重要的性质定理由它们直接或者间接推导出来的.

柯西积分公式是复变函数的基本公式,是解析函数的一种积分表达式,它深刻地反映了解析函数在解析区域内边界值与内部值的关系.柯西积分公式的基本理论和相关性质已经有了详细而全面的阐述.但柯西积分公式仍然存在一些有待解决和完善的方面.有些理论的证明比较复杂,为初学者带来了诸多的不便;柯西积分公式只给出了求解光滑周线域的复积分方法;已经证明了的理论给出的例题还不够.考虑到柯西积分公式是复变函数积分的基础,对其进行研究具有较强的理论意义和现实意义.

通过阅读大量的专着,期刊还有网上的资料,本文将对实变函数中的柯西积分公式和它的几个重要的推论的意义及其性质进行归纳总结,并举出相应的例子,化抽象为具体;还将对柯西积分公式的使用条件和使用方法进行总结;然后总结归纳参考文献中得到的结论,并试图将归纳得到的这些结论做进一步的推广;在论文的最后,会选取一些经典例题做供大家参考!为完成本文我查阅大量的相关资料,力求把课本上的知识运用到实践中去.

2 预备知识

柯西积分定理

设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c

dz z f . 推广的柯西积分定理

设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则

0)(=?c

dz z f . 复周线柯西积分定理

设D 是有复周线---++++=n C C C Λ210C C 所围成的有界1+n 连通区域,函数)z (f 在

D 内解析,在C D D +=上连续,则0)(=?c

dz z f . 柯西积分公式

设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则有

?-=c d z

f i z f ζζζπ)(21)( (D z ∈). 3 柯西积分公式的推论

解析函数平均值定理

如果函数)(z f 在R z <-0ζ内解析,在闭圆R z ≤-0ζ上连续,则 ?ππ?d e R z

f z f i ?+=2000)(21)(,

即)(z f 在圆心0z 的值等于它在圆周上的值的算术平均数.

证:设C 表示圆周R z =-0ζ,则π?ζ?20,0≤≤=-i e R z ,

即 ?ζi e R z +=0,

由此 ?ζ?d e iR d i =,

根据柯西积分公式

高阶导数公式

设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则函数)(z f 在区域D 内有各阶导数,并且有

这是一个用解析函数)(z f 的边界值表示其各阶导函数内部值的积分公式.

现行教材中,仅应用数学归纳法证明了它的特殊形式——高阶导数公式,而数学归纳法比较繁琐.下面首先给出引理,然后利用该结论导出高阶导数公式一种简单的证明.

引理 设Γ是一条可求长的曲线,)(z f 是Γ上的连续函数,对于每个自然数m 及复平面C 上的每个点Γ?z ,定义函数

那么每个)(z F m 在区域Γ-=C D 上解析,且

证明:首先证明)(z F m 是区域G 上的连续函数,即要证明,对于G 内的任意点a ,不论0>ε多么小,总存在0>δ,只要δ<-a z (z 在G 内的点),就有ε<-)()(a F z F m m .

因为

])

)((1)()(1)()(1)[()()(1)11()(1)(12111

m m m m k k k m m m a z a z a z a z a z a z a z --++--+---=-----=----=--∑ζζζζζζζζζζζζΛ(1)

所以 ζζζζζζζζζζζd a z a z f a z d a f z f a F z F m m m m m m ]11

[)(])()()()([)()(--++---≤---=

-??ΓΓΛ (2)

因为)(z f 在Γ上连续,所以存在某个常数0>M ,使得对于Γ上一切点ζ,

M f ≤)(ζ.设a 与Γ的距离为r .那么对于任意Γ∈ζ及2

r a z <-,有2

,2r r z r

r a >≥->≥-ζζ.于是有(2)得 l r

Mm a z a F z F m m m 1)2()()(+-<-, 其中l 为曲线Γ的长.

令 l

Mm r a z l r Mm a z m m m 1112)2(+++<-?<-εε. 取 )2

1,2min(11l Mm r m m ++=εδ. 那么,当δ<-a z ,就有ε<-)()(a F z F m m .

其次证明)(z F m 在区域G 上解析,且满足)()(1z mF z F m m +=',在G 内任取一点a ,设

a z G z ≠∈,,由(1)得 ??Γ-Γ---++--=--ζζζζζζd z

a z f d z a z f a z a F z F m

m m m ))(()())(()()(1Λ,

因为Γ∈a ,所以对于满足不等式m k ≤≤1的每个k ,k z z f --))((ζ在Γ上连续.根据前一部分的证明,上式右边的每个积分都在G 上定义了一个变量z 的连续函数,因此,当a z →时的极限存在,即 )()()()()()(111

a mF d z f d a f a F m m m m +Γ+Γ+=-++-='??ζζζζζζΛ. 对于G 内的一切a 均成立.

下面使用这个引理证明高阶导数公式:

证明:由柯西积分公式,对于G 内的任意点z ,有 ?Γ-=ζζζπd z f i z f )(21)(,?Γ-=ζζζπd z f i z F m

m )()(21)(. 记)()(1z F z f =根据引理,

即 ?Γ+-=

ζζζπd z f i m z f m m 1)()(2!)(. 柯西不等式

设函数)(z f 在区域D 内解析,a 为D 内一点,以a 为心作圆周R a r =-ζ:,只要r 及其内部K 均含于D ,则有 Λ,2,1,)(max )(,)(!)()(==≤=-n z f R M R

R M n a f R a z n n . 证:由上面的推导可由柯西积分公式得到高阶导数公式,下面再有高阶导数公式证明柯西不等式.应用上面得到的定理,则有

注:柯西不等式是对解析函数各阶导数模的估计式,说明解析函数在解析点a 的各阶导数的估计与它的解析区域的大小密切相关.

刘维尔定理

有界整函数)(z f 必为常数

证:设)(z f 的上界为M ,则在柯西不等式中,对无论什么样的R ,均有M R M ≤)(.于是命1=n 时有 R

M a f ≤')(, 上式对一切R 均成立,让+∞→R ,即知0)(='a f ,而a 是z 平面上任一点,故)

(z f

在z 平面上的导数为零,所以,)(z f 必为常数

摩勒拉定理

若函数)(z f 在单连通区域D 内连续,且对D 内任一周线C ,有

0)(=?c

dz z f , 则)(z f 在D 内解析.

证:在假设条件下,即知

在D 内解析,且)()()(D z z f z F ∈='.但解析函数)(z F 的导函数)(z F '还是解析的.即是说)(z f 在D 内解析.

4 奇点在积分路径C 上的柯西积分公式

我们一般讨论的复积分,要就被积函数在积分路径上有界,并且奇点不在积分路径上,这类积分可以直接套用柯西积分公式可求,如果积分路径上存在奇点,就不满足条件了,就不能直接用柯西积分公式了,此时一般用复积分概念,利用极限来求解,但比较复杂,甚至求不出结果.下面结合Holder 条件和奇异积分相关知识,对被积函数分析变形,针对奇点在积分路径上的复积分得出一种新的求解公式.

定义1 设C 是复平面内的简单逐段光滑曲线,C z ∈0,函数)(z f 在}{0z C -上连续,在0z 附近无界,在C 上0z 的两边各取一点21,z z ,若

存在,则称此极限值是f 沿C 的奇异积分,记为

定义2 设C 是复平面内的简单逐段光滑曲线,C z ∈0,函数)(z f 在}{0z C -上连续,在0z 附近无界,以0z 为心、充分小的正数ε为半径做圆周,使它与C 的交点恰为21,z z ,若极限dz z z z f i z z c ?-→-21,0

0)(21lim πε存在,则称此极限值是f 沿C 的柯西主值积分,记为 定理1 设C 施光滑曲线,取正向,若f 满足Holder 条件,即

(其中a K ,都是实常数,21,z z 是C 上任意两点)则称柯西主值积分存在,且有 证:dz z z dz i z f dz z z z f z f i dz z z z f i z z c z z c c ???---+--=-2121,0

0,0002)()()(21)(21πππ

又 )

0(,)]arg()[arg()]log()[log(102010201,021→→---=---=-?-επi z z z z i z z z z dz z z z z c

(其中)log(0z z -为21,z z c -上任意连续分支,ε=-=-0201z z z z ),

)]arg()[arg(0201z z z z ---为当z 从2z 沿21,z z c -变动到1z 时0z z -的幅角改变量,当0→ε即02,1z z z →时,它的极限值为π.

又因为)(z f 满足Holder 条件,即

而10<≤a ,则积分

存在.

于是,得

定理2 若C 是简单逐段光滑曲线,D 是以C 为边界的有界单连通区域,)(z f 在D 内解析,在}{0z D -上连续)(0C z ∈,在0z 的邻域有 K z D z a z z K z f a },{,10,)(00-∈<≤-≤

为常数

则 0)(=?dz z f c . 证:以0z 为心,充分小的0>ε为半径作圆,在C 上取下一小段弧εC ,在D 内得到圆弧εL ,取正向,有柯西积分定理

设εL 的参数方程为,,210θθθεθ<≤=-i e z z

)0(,0)()(121021

→→-==-≤-???εθθθθεεεεθθa L a a L K d K dz z z K dz z f . 故

定理3 设区域D 的边界是周线(或复周线)C ,)(z f 在D 内解析,在C D D +=上连续,且在C 上)(z f 满足Holder 条件,则有

此式称为0z 在边界C 上的柯西积分公式.

证:)(z f 满足Holder 条件,则有

那么由定理1知:

于是由定理3得

故有

另外,当C 是复平面内的简单逐段光滑曲线,C z ∈0,函数)(z f 在}{0z C -上连续,在0z 附近无界,以0z 为心、充分小的正数ε为半径做圆周,使它与C 的交点恰为21,z z ,若极限dz z z z f i z z c ?-→-21,0

0)(21lim πε不一定存在.因此,此时的柯西积分主值不能确定,故此时0z 在边界C 上的柯西积分公式也不能确定.

柯西积分公式的方法与技巧

柯西积分公式是复积分基本公式,是解析函数的一种积分表达式,它深刻地反映了解析函数在解析区域内边界值与内部值的关系.解析函数的高阶导数给我们一个利用导数来求积分的公式,是求沿闭曲线的积分更加简洁.而尤其重要的是,高阶导数公式告诉我们:只要函数)(z f 在D 内处处可导(解析),则它的各阶导数在区域D 内存在.

到此为止,我们已经掌握了关于复积分计算的基本定理和公式.因此,计算复积分不再是应用某一定理或某一公式,而往往是同时应用几个定理或几个公式,这就要求我们加强对综合问题的分析、研究和求解能力的培养.

当被积函数为有理函数或被积函数可化为分母为多项式的函数式,如果在封闭曲线C 内含有分母的一个零点而分子在C 内处处解析(即对?c dz z g )(,0)()(z z z f z g -=或1

0)()(+-n z z z f ,0z 在C 内,而)(z f 在C 内处处解析),则可直接应用柯西积分公式或高阶导数公式来计算积分.而在有理函数情形,若C 内含有分母一个以上零点而分子解析,则要先将被积函数化为部分分式,然后依据具体问题是用恰当的方法去求积.

6 举例应用

例1 计算积分 x y x C z

z dz c 4:,cos )4(222=+-?. 解:化x y x 422=+为4)2(22=+-y x ,即22=-z .C 内有奇点2,2π

,作以2

π和2为

心的位于C 内的互不相交且互不包含的小圆周1C 和2C ,依复闭合定理与柯西积分公式,有

例2 计算积分 (1)?=-++1)3141(z dz z z ,(2)?=-++4)3

141(z dz z z 分析:(1)和(2)的主要区别在于积分路径上是否存在奇点,(1)的结果很好求,符合积分定理的条件,可直接使用柯西积分定理.(2)应为奇点4-=z 在积分路径上,所以就不能直接用柯西积分定理来求,但满足定理3条件,可利用定理3求值.

解(1)直接用柯西积分定理得

(2)因为 ???===-++=-++4443

4)3141(

z z z z dz z dz dz z z 又有柯西积分公式有 i i z dz z z ππ2|123

34=?=-==? 由定理3有 i z f i z dz z z ππ=?=+-==?4040|2

)(24 所以 i i i dz z z z πππ32)3141(4=+=-++?= 例3 计算积分?+∞

sin dx x x 分析:此题如果用广义积分来求解,计算繁冗,有一定难度,但通过变形,转化为复数,利用定理3求解就简单多了. 解:dx ix x i x dx x x dx x x dx x x R R R

R

R R ????+-+-+∞→+∞→+∞∞-+∞+===sin cos lim 21sin lim 21sin 21sin 0 (其中经过定积分的计算可以得到积分?+-=R R

dx x x 0cos ) 设iz e z f =)(,)(z f 满足Holder 条件,且

z

z f )(的奇点0=z 在积分路径上,由定理3得 (其中R Γ是连接R -和R +的一段弧,则],[R R C R +-+Γ=是闭曲线)

由约当引理知0=?Γdz z

e R iz

所以 221lim 21sin 0

ππ=?==??+-+∞→+∞i i dx x e dx x x R

R ix R 参考文献

[1] 钟玉泉.复变函数论[M].北京:高等教育出版社,2009

[2] 孙清华,孙昊.复变函数内容、方法和技巧[M].武汉:华中科技大学出版社,2003

[3] 西安交大.复变函数第四版[M].西安:高等教育出版社,2007

[4] 杨丽,张伟伟.柯西积分公式的应用[J].沧州师范专科学校学报.2006,22 (3):65-67

[5]易才凤,潘恒毅.柯西积分公式及其在积分中的应用[J].江西师范大学学报.2010,34 (1):5-7,12

[6] 邱双月.复积分的计算[J].邯郸学院学报.2009,19 (3):57-60

[7] 朱茱,刘敏.

z在积分路径c上的柯西积分公式[J].阜阳师范学院学报.2004,21

(4)

:60-63

[8] 完巧玲.周线上复积分的几种算法[J].陇东学院学报.2010,21 (2):7-9

[9] 张庆.Cauchy积分公式及其应用[J].唐山师专学报.2000,22 (2):27-28

[10] 崔冬玲.复积分的计算方法.淮南师范学院学报.2006, (3):31-32

[11] 李敏,王昭海.巧用复变函数积分证明实积分.考试周刊.2009,41 :64

[12] 泰华妮.复变函数积分方法的教学思考.考试周刊.2011,58 :73-74

[13] 官春梅.用留数计算一类数列极限.中国科技创新导刊.2010 :105

[14] 韦煜.高阶导数公式的证明[J].黔南民族师范学院学报.2003 (6):8-9

柯西准则及其应用

柯西准则及其应用 摘 要:柯西准则是实数完备性六大定理之一,它是极限论的基础.它的应用贯穿于数学分析课程学习始终.一般地,数学分析课程教材在讨论柯西准则时都只就0x x →一种情形来讨论,本文将补给并详细证明其它五种情形函数极限的柯西准则,同时探讨总结柯西准则在极限、级数、积分等方面的灵活应用. 关键词:柯西准则;应用;极限存在;优越性 引言:柯西准则是实数完备性六大定理之一,它是极限论的基础.它的应用非常广泛,贯穿于数学分析课程学习始终.一般地,数学分析课程教材在讨论柯西准则时都只就0x x →一种情形来讨论,即 设函数()f x 在00(;)U x δ'内有定义,0 0()lim x x f x →存在的充要条件是:任给0ε>,存在正数 δ(<δ'),使得对任何x ',x ''∈00(;)U x δ,都有()()f x f x '''-<ε. 事实上,当0x x +→,0x x - →,x →+∞,x →-∞,x →∞五种情形函数极限存在的柯西 准则可以类比,它们的应用也非常广泛.本文将详细叙述并证明其它五种情形函数极限的柯西准则,同时探讨总结柯西准则在极限、级数、积分等方面的灵活应用,充分展示其在解决上述几个方面问题的优越性和博大精深之处. 1 柯西准则的其它五种形式 定理1.1 设函数f 在00(;)U x δ+'内有定义.0 0()lim x x f x + →存在的充要条件是:任给0ε>,存 在正数()δδ'<,使得对任何x ',x ''∈00(;)U x δ+,均有()()f x f x '''-<ε. 证 必要性 设0 ()lim x x f x A + →=,则对任给的ε>0,存在正数δ(<δ'),使得对 00(;)x U x δ+?∈, 有()2 f x A ε -<.于是对00(;)x x U x δ+'''?∈,,有 充分性 设数列{}00(;)n x U x δ+?且0lim n n x x →∞ =,按假设,对任给的ε>0,存在正数δ(<δ'),使得对任何x ',x ''∈00(;)U x δ+,有()()f x f x ε'''-<. 由于0()n x x n →→∞,对上述的δ>0,存在N >0,使得当n m ,>N 时有00(;)n m x x U x δ+∈, 从而有 ()()n m f x f x ε-<. 于是,按数列极限的柯西收敛准则,数列{}()n f x 的极限存在,记为A ,即()lim n n f x A →∞ =.

柯西极限存在准则

柯西极限存在准则 柯西极限存在准则又叫柯西收敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε . 充分性证明: (1)、首先证明Cauchy列有界 取ε=1,根据Cauchy列定义,存在自然数N,对一切n>N,有 Ia(n)-a(N+1)I<1。 令M=max{|a(1)|,|a(2)|,…,|a(N)|,|a(N+1)|+1} 则对一切n,成立|a(n)|≤M。 所以Cauchy列有界。 (2)、其次在证明收敛 因为Cauchy列有界,所以根据Bolzano-Weierstrass定理(有界数列有收敛子列)存在一个子列aj(n)以 A为极限。那么下面就是要证明这个极限A也就是是Cauchy列的极限。(注意这种证明方法是实数中常用 的方法:先取点性质,然后根据实数稠密性,考虑点领域的性质,然后就可以证明整个实数域的性质了) 因为Cauchy列{a(n)}的定义,对于任意的ε>0,都存在N,使得m、n>N时有 |a(m)-a(n)|<ε/2 取子列{aj(n)}中一个j(k),其中k>N,使得 |aj(k)-A|<ε/2 因为j(k)>=k>N,所以凡是n>N时,我们有 |a(n)-A|<=|a(n)-aj(k)|+|aj(k)-A|<ε/2+ε/2=ε 这样就证明了Cauchy列收敛于A. 即得结果:Cauchy列收敛

复变函数的积分 柯西定理

第三章 复变函数的积分 §3-1复变函数的积分 【刘连寿、王正清编著《数学物理方法》P 29-31】 复变函数积分的定义: 设C 为复平面上以0z 为起点,而以z %为终点的一段路径(即一根曲线),在C 上取一系列分点011,,,,n n z z z z z -=%L 把C 分为n 段,在每一小段[1k k z z -] 上任取一点k ξ作和数: ()()()11 1 n n n k k k k k k k S f z z f z ξξ-===-=?∑∑, 其中1k k k z z z -?=- 如果当n →∞且每一小段的长度(1||||k k k z z z -?=-)趋于零时, 和式()1 n k k k f z ξ=?∑的极限存在,并且其值与k z 及k ξ的选取方式无关,则称这一极限为()f z 沿 路径C 由0z 到z %的积分: ()()1 lim lim n n k k C n n k f z dz S f z ξ→∞ →∞ ===?∑? , C 称为积分路径(()f z 在C 上取值,即z 在C 上变化)。 若C 为围线(闭的曲线),则积分记为: ()C f z dz ?? . (围道积分) 几点说明: 1. 复变函数的积分不仅与积分端点有关,还与积分路径有关。(与我们以前在高等数学中学过的实变函数的线积分类似。)

2.因为 z x iy =+,dz dx idy =+,()()(),,f z u x y iv x y =+,于是 ()()()(),,C C f z dz u x y iv x y dx idy =++?????? ()()()(),,,,C C u x y dx v x y dy i v x y dx u x y dy ????=-++???? ??, 所以复变函数的积分可以归结为两个实变函数的线积分,它们分别是复变函数积分的实部和虚部。 3.从复变函数积分的定义出发,可以直接得出复变函数的积分具有如下简单性质: (1)0C dz z z =-?%,z %、0z 分别为C 之起点、终点。 (2)()()()()11221122C C C a f z a f z dz a f z dz a f z dz ±=±???????,1a 、2a 为复常数。 (3)()()()1 2 C C C f z dz f z dz f z dz =+???, 其中积分路径C 由路径1C 、2C 连接 而成。 (4)()()C C f z dz f z dz - =-??, C - 表示与C 方向相反的同一条曲线。 4.围道积分的环绕方向: 若积分路径C 的两端点重合(即C 为自身不相交的封闭曲线),则计算积分()C f z dz ??时必须先规定积分路径的环绕方向(因为:()()C C f z dz f z dz - =-??蜒 )。 以后凡遇围道积分,如 不加特别说明,都假定积分路径的环绕方向为沿逆时钟方向。 ( C 为逆时钟方向,C - 代表顺时钟方向)

柯西收敛准则的3种不同证法

柯西收敛准则的不同证法方法一:用定理2证明柯西收敛准则 证明:必要性:易知,当{ a n }有极限时(设极限为a),{ a n }一定是一个柯 西数列。因为对任意的ε>0,总存在N(N为正整数)。使得当n ,m>N时,有| a n -a|< ε, | a m -a|<ε ∴| a n - a m |≤| a n -a|+| a m -a|<ε,即{ a n }是一个柯西数列。 充分性:先证明柯西数列{ a n }是有界的。不妨取ε=1,因{ a n }是柯西数 列,所以存在某个正整数N 0,当n > N 时有| a n –a No+1 |<1,亦即当n ,N> N 时| a n |≤| a No+1 |+1即{ a n }有界。不妨设{ a n }?[a ,b],即a≤a n≤b,我们 可用如下方法取得{ a n }的一个单调子列{ a nk }: (1)取{ a nk }?{ a n }使[a,a nk ]或[a nk,b]中含有无穷多的{ a n }的项; (2)在[a,a nk ]或[a nk ,b]中取得a nk+1∈ { a n }且满足条件(1)并使nk+1>nk; (3)取项时方向一致,即要么由a→b要么由b→a。 由数列{ a n }的性质可知以下三点可以做到,这样取出一个数列{ a nk }?{ a n} 且{ a nk }是一个单调有界数列,必有极限设为a,下面我们证明{ a n }收敛于a。 因为lim n→∞a nk =a,则对ε>0,正整数K,当k >K时| a nk -a|< 2 ε 。另一方面由于 { a nk }是柯西数列,所以存在正整数N,使得当n ,m>N时有| a n – a m |< 2 ε , 取n 0=max(k+1,N+1),有n 0≥n N+1>N以及 > k+1 >k。所以当n >N时| a n-a|≤| a n – a m |+| a m -a|<ε。 ∴{ a n }收敛于a。 方法二:用定理3证明柯西收敛准证 证明:必要性显然。下证充分性。 设{x n }是柯西数列,即对任意的ε>0,存在N >0,使得当n , m > N时, 有| x n – x m | <ε (1) 令y n =sup{ x n+p | p =1,2,…} z n =inf { x n+p | p =1,2,…} 显然,y n 是单调递减数列,z n 是单调递增数列。取M =max{ x 1 ,x 2 ,…,

复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则2232 (4)?C z z dz z -+=-?10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02 i z i i z i i i e dz e e e ππ ππππ---==-=?

2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππππππ------??==- ?????--=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分||C z dz z ??的值,其中C 为正向圆周: (1) 220 0||2 2,022224. 2 i i i z C z e e ie d id i θθ ππθθπ θθπ-==≤≤?==? ?积分曲线的方程为 则原积分I=

在实际应用中柯西积分公式的用途正文

柯西积分公式的应用 姓名:武小娜 班级:2014级数学教育 学号:201430626 摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用. 关键词:解析函数;复积分;柯西积分公式. 1 前言 的相关资料,力求把课本上的知识运用到实践中去. 2 预备知识 2.1 柯西积分定理 设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c dz z f . 2.2 推广的柯西积分定理

设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则 0)(=?c dz z f . 2.3 复周线柯西积分定理 设D 是有复周线---++++=n C C C Λ210C C 所围成的有界1+n 连通区域,函数 )z (f 在D 内解析,在C D D +=上连续,则0)(=?c dz z f . 2.4 柯西积分公式 3.2 高阶导数公式 设区域D 的边界是周线(或复周线)C ,函数)(z f 在D 内解析,在C D D +=上连续,则函数)(z f 在区域D 内有各阶导数,并且有 这是一个用解析函数)(z f 的边界值表示其各阶导函数内部值的积分公式. 现行教材中,仅应用数学归纳法证明了它的特殊形式——高阶导数公式,而数学归纳法比较繁琐.下面首先给出引理,然后利用该结论导出高阶导数公式一

种简单的证明. 引理 设Γ是一条可求长的曲线,)(z f 是Γ上的连续函数,对于每个自然数m 及复平面C 上的每个点Γ?z ,定义函数 那么每个)(z F m 在区域Γ-=C D 上解析,且 证明:首先证明)(z F m 是区域G 上的连续函数,即要证明,对于G 内的任意点a ,不论0>ε多么小,总存在0>δ,只要δ<-a z (z 在G 内的点),就有 2 ,2r r z r r a >≥->≥-ζζ.于是有(2)得 l r Mm a z a F z F m m m 1)2()()(+-<-, 其中l 为曲线Γ的长. 令 l Mm r a z l r Mm a z m m m 1112)2(+++<-?<-εε.

论文分析中的柯西准则

分析中的柯西准则 【摘要】本文主要论述了数列的柯西收敛准则,函数极限存在的柯西准则,级数收敛的柯西准则,函数列一致收敛的柯西准则,函数项级数一致收敛的柯西准则,平面点列的柯西准则,含参量反常积分一致收敛的柯西准则的应用并进行了总结和证明,并通过大量的例题体现了它们的地位和作用.柯西收敛准则是证明收敛与发散的基本方法,并且通过此种方法还推出了很多简单的方法,由此可见柯西准则的重要地位,此种方法的优越性也是显而易见的,就是通过本身的特征来判断是否收敛,这就给证明带来了方便,本文将这几种准则作了以下总结,并且探讨了它们之间的一些关系. 【关键词】柯西准则,收敛,一致收敛 Some Canchy criteria in the Mathematical Analysis 【Abstract】This passeage discusses the sequence of cauchy criterion function limit, the convergence of cauchy criterion, the convergence of the series, the function of cauchy criterion listed uniform convergence of cauchy criterion function series, uniform convergence of cauchy criterion, plane of cauchy criterion, some abnormal integral parameter uniform convergence of cauchy criterion and summarized and proof, and through a lot of sample reflected their status and role. Cauchy convergence criteria is proved the convergence and spread the basic method and through this method also launched many simple method, thus the important position of cauchy criterion, this kind of method is obvious superiority of the characteristics of itself, through to judge whether to prove the convergence, and this will bring convenience to the standards for the following summary, and probes into some of the relationship between them. 【Key words】cauchy criterion, convergence, uniform convergence

02第二讲 函数列的一致收敛性,柯西准则

数学分析第十三章函数列与函数项级数 函数列的一致收敛性 柯西准则 第二讲

数学分析第十三章函数列与函数项级数 定义1{ ,}n f f D 设函数列与函数定义在同数集上一,x D ∈对一切都有 |()()|n f x f x ε-<, {}n f D f 则称函数列在上一致收敛于,记作 →→()()(),. n f x f x n x D →∞∈由定义看到, 一致收敛就是对D 上任何一点, 于极限函数的速度是“一致”的. 函数列趋若对,,N ε任给的正数总存在某一正整数使当n N 时,>这种一致性体现为:函数列的一致收敛性

数学分析第十三章函数列与函数项级数 例2 中的函数列sin nx n ?????? 是一致收敛的,,x ε正数不论(,)-∞+∞因为对任意给定的取上什么值, N ε1只要取=,n N 当时恒有>

数学分析第十三章函数列与函数项级数 在D 上不一致收敛于f 的正面陈述是: {}n f 函数列存在某正数0,ε对任何正数N , 必定存在0x D ∈和00x n 与的取值与N 有关), ( 注意: >0n N 正整数使得0000 ()().n f x f x ε-≥{}(0,1)0.n x 在上不可能一致收敛于由例1 知道, 下面来证明这个结论. 事实上, 若取01,2,2N ε对任何正整数=≥10011(0,1),N n N x N 取正整数及??==-∈ ???就有001101.2 n x N -=-≥

柯西收敛准则

第十讲、柯西收敛准则 定理10.1 . (柯西收敛准则)数列{x n}极限存在的充要条件是:对于 ?>存在正数N , 使当n >N 时, 对于一切p∈+有| | εx x ε0 +?< n p n 注记10.1. (I)柯西准则的意义是:数列{x n}是否有极限可以根据其一 般项的特性得出,而不必事先知晓其极限的具体值(见下面的例子10.2)。(II)定理10.1 的逆否命题为: (柯西收敛准则)数列{x n}极限不存在的充要条件是: ?ε0 > 0,使得对 ?∈, 均存在n >N 时, 存在p∈,使得 N | | + +?≥ + x x ε n p n 0 例子10.1 设x n sin 2n =,试用柯西收敛准则证明该数列极限存在。 n 证明:注意到 sin 2(n p) sin 2n sin 2(n p) sin 2n ++ |x x |= ??≤ + n+p n ++ n p n n p n 1 1 2 ≤+≤ n p n n +

2 ∈有于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= + 2 sin 2n n p n n +?≤<。故由定理10.1 柯西收敛准则可知 ε n n 证毕。 例子10.2.设x n 1 1 1 =++++,证明数列{ } 1 x 收敛。 2 3 n 2 2 2 n 证明:注意到

1 1 1 |x x |= n p n +?+++ +++ 2 2 2 (n 1) (n 2) (n p) 1 1 1 ≤+++ n(n 1) (n 1)(n 2) (n p 1)(n p) ++++?+ 1 1 1 1 1 1 =?+++?++++??+ n n 1 n 1 n 2 n p 1 n p 1 1 1 =?< n n p n + 1 于是,对?ε> 0,取正数ε, 则当n >N 时, 对于一切p N= 1 |x x | n p n +?≤<ε。故由定理10.1 柯西收敛准则可知 n ++++ 1 1 1 存在。 lim 1 n→∞n 2 3 2 2 2 ∈有 +

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

复变函数的积分柯西定理

第三章 复变函数的积分 第一节 复变函数积分的概念 教学内容:复变函数的积分的定义、复变函数积分的计算问题、复变 函数积分的基本性质、柯西积分定理. 教学要求:1、了解复变函数积分的定义和性质,会求复变函数在曲线 上的积分 2、会用柯西积分定理和复合闭路定理计算积分,了解不定 积分的概念 教学过程: 一、复变函数的积分的定义 定义3.1设在复平面上有一条连接A 及B 两点的光滑简单曲线C 设),(),()(y x iv y x u z f +=是在C 上的连续函数.其中 ),(y x u 及),(y x v 是)(z f 的实部及虚部.把曲线C 用分点 B z z z z z A n n ==-,...,,,1210分成n 个小弧段,其中 ),...,2,1,0(n k y x z k k k =+=

在每个狐段上任取一点k k k ηξ?+=,作和式 ))((11 -=-∑k n k k k z z f ? (1) 令|}{|max 11-≤≤-=k k n k z z λ,当0→λ时,若(1)式的极限存在,且此极限值不依赖于k k k ηξ?+=的选择,也不依赖于曲线C 的分法,则就称此极限值为)(z f 沿曲线C 的积分.记作 =? C z z f d )())((lim 11 -=→-∑k n k k k z z f ?λ 当)(z f 沿曲线C 的负方向(从B 到A )积分,记作?- C z z f d )( 当)(z f 沿闭曲线C 的积分,记作()dz z f C ? 定理3.1 若),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,则)(z f 沿C 可积,且 ,d ),(d ),(d ),(d ),(d )(y y x u x y x v i y y x v x y x u z z f C C C ++-= ?? ? (2) 证明: ) )((11 -=-∑k n k k k z z f ? )]())][(,(),([11 1k k n k k k k k k k y y i x x iv u -+-+=+=+∑ηξηξ ], ))(,())(,([) )(,())(,(1 1 11 11 1 11 1∑∑∑∑-=+=+-=+=+-+-+---=n k k k k k n k k k k k n k k k k k n k k k k k y y u x x v i y y v x x u ηξηξηξηξ 由),(),()(y x iv y x u z f +=沿光滑简单曲线C 连续,可知 ),(),,(y x v y x u 沿光滑简单曲线C 也连续,当0→λ时,有

柯西积分定理与柯西积分公式的由来及其应用

( 2012 届) 本科毕业论文(设计) 题目:柯西积分定理与柯西积分公式的由来及其应用 学院:教师教育学院 专业:数学与应用数学(师范) 班级:数学082 学号: 姓名: 指导教师: 完成日期: 教务处制

诚信声明 我声明,所呈交的论文(设计)是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得______或其他教育机构的学位或证书而使用过的材料。我承诺,论文(设计)中的所有内容均真实、可信。 论文(设计)作者签名:签名日期:年月日

授权声明 学校有权保留送交论文(设计)的原件,允许论文(设计)被查阅和借阅,学校可以公布论文(设计)的全部或部分内容,可以影印、缩印或其他复制手段保存论文(设计),学校必须严格按照授权对论文(设计)进行处理,不得超越授权对论文(设计)进行任意处置。 论文(设计)作者签名:签名日期:年月日

柯西积分定理与柯西积分公式的由来及其应用 王莉莉 (嘉兴学院数学与信息工程学院) 摘要:复变函数是综合性大学或师院类院校理工专业的必修课,是实变函数微积分的推广和发展.其中柯西积分定理和柯西积分公式是复变函数理论的基础,是研究复变函数理论的关键.它的核心内容是柯西积分定理,即解析函数沿围线的积分值为零.本文研究了柯西积分定理和柯西积分公式的相关概念、证明、推广及在代数基本定理证明、实积分计算中的应用,论述了柯西积分定理与复变函数的积分有着密切的联系,利用柯西积分定理很容易导出著名的柯西积分公式,还对留数定理作了简要介绍,利用留数定理可以分别得到复变函数中的柯西积分定理、柯西积分公式和高阶导数公式. 关键词:复变函数;柯西积分定理;柯西积分公式;留数定理

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

柯西积分定理的一个简单证明

柯西积分定理的一个简单证明 摘要:本文用到零的同源环给出了柯西定理的一个证明。证明运用了解析函数基本的局部性质,没有额外的几何以及拓扑论证。 本文的目的是给出关于柯西定理for circuits homologous to 0的一个简洁明了的证明。 柯西定理:假设D 是C 的一个开子集,γ是D 中的一个环。假设γ是与零同源的,并且每个E 中的D ω?都是确定的。那么对于每一个D 中解析函数f : (1)()0f z dz γ=? (2)对于任意与γ无关且属于D 的w ,有11(,)()(2) ()()Ind w f w i z w f z dz γγπ--=-? 证明:考虑D D C ?→的函数g ,且对z w ≠满足(,)(()())/()g w z f z f w z w =--,(,)'()g w w f w =。可知g 是连续的,并且对每个,z w ,(,)g w z 是解析的。给定:h C C →,并且在D 上()(,)h w g w z dz γ=?,在E 上1()()()h w z w f z dz γ-=-?。假设C D E =?,由 于(,)0Ind w γ=,则这两种()h w 的表示在D E ?是相等的。 那么可知h 在D 和E 上都是可导的,所以h 是整函数。由于γ的映射是有限的,并且E 包含了∞的一个邻域,()0h w →时有w →∞。这表明h 是连续的(刘伟尔定理),并且h=0.则对于所有D ω∈不依赖于γ,(,)g w z dz γ?=0。这样就证明了(2) 。最后设u 是D 中不依赖于γ的定点。将(2)用于函数()()z f z z u →-,计算w u =的情况,便得到(1)。

柯西(Cauchy)

柯西(Cauchy) Cauchy(1789-1857) 法国数学家,力学家. Cauchy最重要的数学贡献在微积分学,复变函数和微分方程方面.他是分析学的重要奠基人。 Cauchy发现并阐明了级数收敛准则和一些辨别法,提出关于极限理论的方法,并以精确的极限概念给出了函数的连续性,可微性,无穷级数的收敛性,定积分,反常积分等定义。Cauchy对微积分的严格论述,使数学界大为震惊.据说,著名数学家Laplace在一次科学会议上听到Cauchy谈到级数收敛性的问题时,十分紧张,立刻回家核实自己在《天体力学》中所用的级数是否收敛,直到确认所用的每一个级数都收敛时,才松了一口气.在复变函数方面,他探讨了Cauchy-Riemann条件,建立了Cauchy积分定理和公式.在微分方程方面,他是探讨微分方程解的存在问题的第一个数学家.还利用Fourier变换来研究线性微分方程。 Cauchy在代数学,力学,天文学方面也有很多贡献。仅在固体力学这一门学科中以他的名字命名的定理和定律就有16条之多。 他的著作甚丰,共出版了7部著作和800多篇论文。以《分析教程》(1821),《无穷小计算讲义》(1823)和《微分计算教程》(1826-1828)最为著名,堪称数学史上划时代的著作。著名数学家Abel指出:“每一个在数学研究中喜欢严密性的人都应该读这本杰出的著作(《分析教程》).”Cauchy是位加固数学大厦的巨匠,历史上罕见的数学大师。 Cauchy一生成就辉煌,但也出现过失误。特别是他当时作为数学权威,对两位尚未成名的数学新秀Abel 和Galois的开创性论文,不仅未及时作出结论,而且将他们送审的论文遗失,这一错误常常受到后人的批评。

关于复变函数积分求解总结

关于求积分的各种方法的总结 摘要:函数的积分问题是复变函数轮的主要内容,也是其基础部分,因此有必要总结归纳求积分的各种方法.其主要方法有:利用柯西积分定理,柯西积分公式和用留数定理求积分等方法.现将这些方法逐一介绍. 关键词:积分,解析,函数,曲线 1.利用定义求积分 例1、计算积分()dz ix y x c ?+-2,积分路径C 是连接由0到i +1的直线段. 解:()10≤≤=x x y 为从点0到点i +1的直线方程,于是 ()dz ix y x c ?+-2 ()()iy x d ix y x i ++-= ?+10 2 ()()ix x d ix x x ++-= ?1 2 ()dx x i i ?+=1 21 3 1i -- =. 2.利用柯西积分定理求积分 柯西积分定理:设()z f 在单连通区域 D 内解析,C 为D 内任一条周线,则 ()0=?dz z f c . 柯西积分定理的等价形式:设C 是一条周线, D 为C 之内部,()z f 在闭域 C D D +=上解析,则()0=?dz z f c . 例2、求dz i z z c ? +cos ,其中C 为圆周13=+i z , 解:圆周C 为()13=--z z ,被积函数的奇点为i -,在C 的外部, 于是, i z z +cos 在以C 为边界的闭圆13≤+i z 上解析, 故由柯西积分定理的等价形式得dz i z z c ? +cos 0=. 如果D 为多连通区域,有如下定理: 设D 是由复周线---+++=n C C C C C 210所构成的有界多连通区域,()z f 在D 内

在实际应用中柯西积分公式的用途正文

柯西积分公式的应用 摘要:阐述了柯西积分公式在解析函数理论中的重要地位,叙述了各种不同表示形式的柯西积分公式和高阶导数公式,并举例说明了这些公式在积分计算中的应用. 关键词:解析函数;复积分;柯西积分公式. 1 前言 《实变函数与泛函分析》是综合性大学理工科的基础课程,其中柯西积分定理和柯西积分公式是基础,是关键,也是19实际最独特的创造,是抽象科学中最和谐的理论之一.许多重要的性质定理由它们直接或者间接推导出来的. 柯西积分公式是复变函数的基本公式,是解析函数的一种积分表达式,它深刻地反映了解析函数在解析区域内边界值与内部值的关系.柯西积分公式的基本理论和相关性质已经有了详细而全面的阐述.但柯西积分公式仍然存在一些有待解决和完善的方面.有些理论的证明比较复杂,为初学者带来了诸多的不便;柯西积分公式只给出了求解光滑周线域的复积分方法;已经证明了的理论给出的例题还不够.考虑到柯西积分公式是复变函数积分的基础,对其进行研究具有较强的理论意义和现实意义. 通过阅读大量的专着,期刊还有网上的资料,本文将对实变函数中的柯西积分公式和它的几个重要的推论的意义及其性质进行归纳总结,并举出相应的例子,化抽象为具体;还将对柯西积分公式的使用条件和使用方法进行总结;然后总结归纳参考文献中得到的结论,并试图将归纳得到的这些结论做进一步的推广;在论文的最后,会选取一些经典例题做供大家参考!为完成本文我查阅大量的相关资料,力求把课本上的知识运用到实践中去. 2 预备知识 柯西积分定理 设函数)(z f 在z 平面上的单连通区域D 内解析,C 为D 内任一条周线,则0)(=?c dz z f . 推广的柯西积分定理 设C 是一条周线,D 为C 之内部,函数)(z f 在闭域C D D +=上解析,则 0)(=?c dz z f . 复周线柯西积分定理

Cauchy积分定理

Cauchy积分定理证明及讨论 Cauchy积分定理是复变函数学中极为重要的理论,它给出了解析函数积分与路径无关的几个等价定理,提供了计算复变函数积分的一种简便方法,并成为证明复变函数问题的一种有力工具,同时与后面章节中的留数紧密相关。课本在“)('z f是G内的连续函数”这一条件下给出了黎曼证明,本论文将给出严谨的古莎证明,并进一步讨论与Cauchy积分定理相关的内容。 1.Cauchy积分定理基础知识.................................................................................................... - 2 - 1.1.Cauchy积分定理定义 ................................................................................................ - 2 -

1.2.黎曼证明 ....................................................................................................................... - 2 - 1.3.Cauchy 积分定理的推广 ............................................................................................ - 3 - 2.古莎证明 .................................................................................................................................. - 4 - 2.1.证明思想 ....................................................................................................................... - 4 - 3.一种新的证明方法 .................................................................................................................. - 4 - 4.Cauchy 积分定理应用 ............................................................................................................ - 6 - 5.Cauchy 积分定理与其他定理的关系 .................................................................................... - 7 - 5.1.Cauchy 积分定理与柯西积分公式的关系 ................................................................. - 7 - 5.2.Cauchy 积分定理与留数定理的关系 ......................................................................... - 8 - 5.3.Cauchy 积分定理与高阶导数公式的关系 ................................................................. - 9 - 6.小结 .......................................................................................................................................... - 9 - 1.Cauchy 积分定理基础知识 1.1.Cauchy 积分定理定义 首先给出Cauchy 积分定理的定义:设f(z)是单连通区域G 上的解析函数,γ 是G 中任意一条回路,则 ?=γ 0)(dz z f 1.2.黎曼证明 在“f(z)是G 内的连续函数”条件下,很容易得到黎曼证明: ???++-=γ γ γ dy y x u dx y x v i dy y x u dx y x u dz z f ),(),(),(),()(

相关主题
文本预览
相关文档 最新文档