当前位置:文档之家› 镉的毒性机理

镉的毒性机理

镉的毒性机理
镉的毒性机理

2镉的毒性机理

1.2.1镉与氧化应激

镉可以通过增强膜脂质过氧化和改变细胞内的抗氧化系统而在不同组织诱导氧化损伤。Cd”消耗谷胱甘肽(GSH)和蛋白结合巯基,增强了活性氧(ROS)如超氧自由基、羟基自由基、过氧化氢等,这些ROS进一步促进脂质过氧化物生成(洪峰,2002)。镉中毒会导致线粒体呼吸调节功能和氧化磷酸化偶联发生障碍。这种呼吸功能的障碍,会消耗大量的氧,出现明显的氧渗漏现象,产生大量自由基,这也可能是镉中毒时自由基产生的机制之一。

牟素华等(2003)报道,过量镉可诱导大鼠血清、肝、肾组织中LPO含量显著增加。Bagchi D(1997)等给大鼠经口慢性染镉,在60d和75d之间观察到肝、脑中最大LPO,镉处理75d后,尿脂质过氧化代谢产物MDA排泄增加1.8倍,表明低剂量慢性染镉造成组织损伤与氧化应激有关。刘晓玲等(2003)将中华绒螯蟹浸泡在2.0mg/LCdCl2溶液中,分别于第0、6、12、24、48,72、96h检查发现,河肝胰腺的抗氧化酶活性随时间发生规律性变化,肝胰脏SOD活性降低,随时间的延长,在暴露72h后,SOD活性恢复并超过未染毒时22.3%,表明Cd”中毒导致细胞内氧自由基大量积累从而诱导酶活性升高;CAT活性先下降后增高,随后减少,最后以低于对照组的水平趋于平衡;肝胰腺中谷胱甘肽过氧化物酶(GSH-Px)活性的变化规律与SOD相似,在解除氧自由基毒性方面有一定的协调性。杨淑华(2006)研究表明,亚慢性镉染毒能使鸡卵巢SOD、GSH-Px活性下降,MDA

含量增加,呈现明显的时间.剂量效应。凌艺辉等(2005)也报道镉接触工人体内的脂质过氧化产物增多,抗氧化酶SOD、GSH.1ax和谷胱甘肽硫转移酶(GsT)活性降低,且接触时间长的人群比短的人群体内MDA的含量更高,而SOD、GSH.Px和GST活性更低。镉可抑制人和动物体内抗氧化酶活性,导致脂质过氧化物堆积从而引起组织损伤。抗氧化酶是体内主要清除自由基的酶,它的活性下降,组织清除自由基能力降低,发生氧化损伤(梁弟等,2002),如镉与SOD、谷胱甘肽还原酶(GSSG-R)的巯基结合,与GSH.Px中的硒(Se)形成Cd-Se复合物,或取代CuZa.SOD 中的Zn形成CuCd-SOD,从而使这些酶的抗氧化活性降低或丧失。镉与抗氧化酶(SOD、GSH.Px、CAT)中的金属发生竞争性替代作用。抑制了这些酶的活性。富含巯基的金属硫蛋白(MT)、GSH以及微量元素Zn、sc能颉颃镉的生殖毒性现象也证实了这一点。

1.2.2镉与酶

镉与含羟基(-OH)、氨基(.NH:)、巯基(一SH)的蛋白质分子结合,生成镉一蛋白质,使许多酶系统受到抑制,甚至使酶失去生物活性,从而破坏组织器官中酶系统正常的生理功能,影响机体对蛋白质、脂肪和糖类等营养物质的消化吸收。此外,镉与锌蛋白酶发生亲合反应,置换出锌,干扰、降低那些需要锌的酶的生物活性和生理功能,这是镉毒性的重要机制之一。廖晓岗等(1999)用2mg/kg体重CdCl2对大鼠腹腔注射,结果镉对睾丸间质细胞超微结构和葡萄糖-6一磷酸酶(G-6-Pase)活性有早期直接损伤,且酶活性改变早于超微结构变化,说明镉可能直接影响该酶活性。张凯(1991)研究表明镉可以降低氨基比林.N.脱甲基

酶、G一6-Pase的活力,同时可使肝微粒体脂质过氧化作用加强,表明镉降低微粒体酶活性可能是通过激活膜的脂质过氧化所致。张峰等(2003)研究表明镉可以降低睾丸和附睾组织中的碱性磷酸酶(ALP)、乳酸脱氢酶(LDH)、碳酸酐酶等的活性。ALP是一锌的胞浆结合酶,镉与蛋白质巯基的结合比锌稳定,故镉能将含锌酶ALP中的锌不可逆地置换

出来,导致ALP性下降(朱善良等,2003)。

膜结合酶的活性直接涉及膜的功能.线粒体膜表面Na+.K+.ATPase、Ca2+.ATPase 和

M92+-ATPase与膜离子交换和运输密切相关。杨长华等(1996)用组织学及组织化学方法

观察大鼠长期饮用含镉300mg/L水对肾脏的毒性作用,结果与正常组大鼠比较,饮含镉水

组大鼠肾近曲小管的琥珀酸脱氢酶(SDH)、ATPase的活性及糖原明显降低,说明镉己造

成肾小管细胞的实质性损伤。姜傥等(1997)研究发现,肾小管上皮细胞经体外染镉30min

后,细胞Nr-K+-ATPase活性明显受抑制,胞浆内游离ca2+浓度显著升高,胞浆内ca2+浓

度的升高与Na+-K+-ATPase活性下降之间存在着明显的相关性。肖银霞(2006)通过体外

试验发现,染镉组脾淋巴细胞膜Na+-K+ATPase、M92+.ATPase和Ca2+-ATPase的活性降低,

且具有时间效应。

有人认为低浓度的镉可代替Ca2+激活钙调蛋白(CaM),进而直接和Ca2+、

M92+.ATPase

的巯基(一SH)部分结合,产生抑制作用(陈永耀等,2001)。高浓度氧化荆直接损害线粒

体中电子传递和产能,ATP合成水平大大下降,细胞由于匮乏能量而步入坏死,因为ATP

是凋亡复合体必不可少的组成部分,ATP的丧失会延长caspase的激活(Stait SE 等,1996)。

1.2.3镉与细胞凋亡

近几年细胞凋亡已成为各国学者对镉分子毒理学研究的一个热点。Habeebu SS 等

(1998)研究发现,镉能诱导鼠肝细胞凋亡,并且凋亡发生在坏死之前。刘占旗等(2005)

研究表明,氯化镉可以诱导大鼠肾细胞系(NRK)细胞凋亡,氯化镉处理一定时间后,NRK

细胞早期、中晚期凋亡率显著增加,并具有剂量.效应关系;在201unol/L氯化镉染毒条件

下,早期与中晚期细胞凋亡率随时间延长而增加。朱伟等(2005a)研究表明,CdCI,可引

起腺垂体一肾上腺皮质系统出现明显的凋亡征象,电镜检查可见核固缩、核膜不规则、染色

体边聚等凋亡早期形态学变化,在此过程中半胱天冬酶家族成员caspase.9及其酶原mRNA

表达呈现出与凋亡率较为一致的趋势。Li M等(2000)对U937细胞进行不同浓度的镉处

理,发现镉能引起细胞凋亡,在凋亡的过程中伴随有胞内钙离子浓度的升高和由

此引起的

钙依赖性蛋白酶Calpain的激活以及线粒体膜电位的卜.降、caspase蛋白酶的激活。

在由机体不同的诱导物引起凋亡相关基因表达进而激活细胞发生凋亡的过程中,信号

传递机制起十分关键作用,细胞凋亡过程中复杂的信号传递途径可概括为三个环节。即第

一信号系统,包括各种生理调节下细胞凋亡的诱因如糖皮质激素、腺苷酸、细胞受体的激

活剂等刺激因素和非生理条件下的刺激因素如DNA修饰剂、毒素、化疗药物等刺激因素

等;当第一信号系统与细胞膜结合并作用以后。则可与细胞内的激素受体相作用.或刺激

第二信使系统,如Cas+、cAMP等;第三环节就是细胞凋亡信号传导系统的最后环节,即

6

最后共同通道,改变某些基因的表达,诱导细胞调亡的发生(彭黎明等.2000)。镉能通过钙通道进入细胞内,替代钙发出信号,发挥c一+的作用,另一方面,镉进入

细胞后,可刺激细胞内钙的移动,从而诱导或激活胞液的核酸内切酶(吴训伟,2000),还

有观点认为镉金属硫蛋白(Cd.MT)也能激活核酸内切酶,从而导致DNA断裂,发生凋

亡(Hamada T等,1996:Mikhailova MV等,1997)。一些原癌基因和抑癌基因在镉引起

细胞凋亡中起着重要的作用。镉干扰线粒体功能,并引起脂质过氧化作用,最后导致细胞

凋亡。氧化应激可以导致细胞膜脂质过氧化,形成的ROS中间产物很容易与细胞膜上不饱

合脂肪酸及胆固醇反应,这种发生在细胞膜上的氧化损伤可能导致凋亡.

1.3试验的目的和意义

镉是一种重要的环境污染物,从大气、土壤到生物链的传递不容__

镉污染与职业性镉中毒

镉污染与职业性镉中毒 镉中毒以环境污染与职业中毒两种形式危害人体健康,由于目前现代医学对慢性镉中毒还没有特效治疗手段,所以企业与地方政府必须做好建设项目职业病危害预评价与环境预评价工作,防患于未然。 据新华网报道,2012年1月7日广西河池市龙江河出现许多死鱼,随后当地民众告知环保部门。1月15日,河池市环环保部门检测到龙江河镉严重超标,镉浓度超标80倍。此次事件严重影响沿江居民和下游广西柳州市370万人的饮水安全。事发后,广西官方采取措施降低污染影响,向江中投放聚合氯化铝等稀释污染水体,力保柳州和下游水源安全。这次镉污染事件涉案企业是金城江立德粉材料厂,该厂将污水直接排放,该厂涉嫌违法的6名责任人被刑拘。 污染环境与危害健康的镉污染 类似广西河池的镉污染事件在我国也曾多次发生过。据《新京报》等媒体报道,2003年湖南省浏阳市镇头镇引进一家民营股份制化工企业——长沙湘和化工厂,主要生产粉状硫酸锌和颗粒状硫酸锌,2004年4月,这家企业未经审批建设了一条炼铟生产线。此后不久,当地村民反映厂区周围树林大片枯死,部分村民相继出现全身无力、头晕、胸

闷、关节疼痛等症状。有关机构对周边群众进行体检,截止到2009年7月31日,在2888人中发现尿镉超标509人。当地环境监测部门调查结果显示,湘和化工厂厂区为镉严重污染区,周边500m范围内的土壤已经受到明显的镉污染,厂区周边500~1200m范围属轻度污染区,土壤镉含量随着厂区距离的增加呈现明显梯度递减。当地干部、群众痛心地说,“建起一个厂,毁了一个村”。当时,这一镉污染事件导致浏阳数千群众上街游行抗议。当地政府有关部门经调查取证,将造成污染的湘和化工厂永久关闭,湘和化工厂法人代表被刑事拘留,浏阳市环保局局长和分管副局长被停职,相关责任人在接受调查。 镉污染事件在其他国家的工业化进程中也曾发生过。1931年,位于日本中部的富山县出现了一种怪病,患者大多是妇女,表现为手、脚、腰部等关节疼痛。病症持续几年后,患者会发生全身疼痛现象,行动困难,甚至呼吸都会带来难以忍受的痛苦。随着病情发展,患者骨骼软化、萎缩,四肢弯曲,脊柱变形,骨质松脆,就连咳嗽都能引起骨折;患者疼痛难忍,常常大叫“痛死了!”“痛死了!”由此得名“痛痛病”。1946—1960年,日本医学界从事临床、病理、流行病学、动物实验和分析化学的人员经过长期研究后发现,“ 痛痛病”是由于神通川上游的神冈矿山废水引起的镉中毒所造成。 “痛痛病” 引起日本及世界各国重视。人们由此意识到镉的危害。在我国,近年来屡屡发生的慢性镉中毒事件,正在以环境污染和职业中

基因毒性杂质作用原理-中文版

遗传毒性致癌物发生致癌和致突变的作用,第一步一般认为都是和DNA发生反应。从机理上理解基因毒性杂质的作用原理,不用死记硬背,就能轻松记住所有的基因毒性杂质。 根据Miller的理论: 致癌物要么是亲电试剂,要么可以代谢成亲电试剂。然后和DNA的亲核基团发生反应。 DNA的亲核活性基团主要有: ?碱基上的氮 ?碱基上的氧 ?磷酸酯骨架 先来看一下DNA的结构 双螺旋的DNA主要含有四个碱基,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶以及磷酸酯的串联骨架。 这些嘧啶和嘌呤上面的氮氧都富有电子,如果遇见一些缺电子的试剂,很容易发生取代等反应。 事实上,DNA的反应种类除了只反应某一处位点外,还会有一些比较复杂的反应类型: ?可以看到有的碱基上不仅含有一个亲核位点,如果一个致癌物有两处亲电位点,反应一处后,还会和碱基的另外一个位点反应,生成一些小环。 ?双亲电基团的另外一个基团也有可能和两个不同的碱基链接,甚至可以和两个螺旋上的不同碱基链接。 ?也会有可能另外一个基团和蛋白质反应,造成DNA-蛋白质的链接。 DNA的反应活性除了亲核性之外,主要受空间结构的影响。

Guanine中的N7位置位于DNA双螺旋的大沟槽处,空间较大,容易和亲电试剂接触,反应活性显然要比Adenine中处于小沟槽中的N3(红色数字)要高。 当然根据结构也能预知,Adenine的N1和Cytosine的N3(绿色数字)位置处于狭窄的分子空间内,又有氢键相连,所以基本上没有反应活性。DNA反应并不都是反应在氧和氮上,比如粉红色的C8位置也能发生反应,不过该反应也是先和相邻的N7反应然后重排到C8。 纯粹的理论说明略显枯燥,下面会详细介绍每一类含有警示结构的致癌物。 酰化试剂 酰基卤化物 酰基卤化物由于卤原子电负性较大,吸引电子,导致羰基碳非常缺电子,一旦和DNA接触,会和腺嘌呤的羰基氧发生酯化反应。 二甲氨基甲酰氯和二乙氨基甲酰氯被IARC归为致癌物2A类。 异氰酸酯是具有多种商业应用的高活性化合物。广泛用于制造聚氨酯泡沫、弹性体、涂料、粘合剂、涂料、杀虫剂和许多其他产品。单芳基异氰酸酯是制造药品和农药的重要中间体。 观察到胞嘧啶、腺嘌呤和鸟嘌呤的外环氨基上的氨和异氰酸酯反应,胸腺嘧啶未检测到加合物。 烷基化直接作用试剂

重金属镉对人体有哪些危害

镉不是人体必需元素 伤害骨骼,导致免疫力下降 “由于镉不是人体必需的元素,镉过量人体会出现很多不良症状。”据朱高红主任介绍,通常镉中毒,人体会出现咽喉干痛、干咳、胸闷、呼吸困难、口内有金属味、头晕、全身乏力、关节酸痛、寒颤发热,严重者出现支气管肺炎、蛋白尿等。如长期接触,会导致肺水肿、肾损害;有致癌、致畸、致突变的可能性。 朱主任说:“镉确实会影响人的骨骼,导致骨软化、骨质疏松,影响人体的生长、发育,导致免疫力下降。”镉的危害,还不仅仅限于骨痛病,它还会导致细胞损伤和退行性变,促使动脉粥样硬化、高血压、冠心病、糖尿病的发生,肝组织坏死、干燥性鼻炎,萎缩性鼻炎。如果损害到中枢神经系统,还有可能出现脑损害,脑神经发育不良,记忆力下降,弱智等情况。因此,镉污染不容小视。 不偏食能获取人体需要元素 对抗镉吃含锌、铁、钙食物 金属元素在人体生命活动中虽然非常重要,但摄入过多反而会对人体产生危害。只要在日常生活中注意合理调节饮食结构,不偏食,就可以获得满足正常人体需要的金属元素。” 相信很多人对于人体金属元素的摄入,仅限于钙、铁、锌这几大类。“其实,人体正常需要吸收的金属元素还有很多,它们包括了镁、铜、硒、钠、钾、磷、铬、钴、锰、钼、碘、氟。” 朱主任介绍说:“比如镁元素就很重要。”缺镁会导致人体虚弱、精神错乱、高血压、抽搐、痉挛、心律不齐等问题,而坚果、豆类、谷类、海鲜、深色蔬菜、巧克力等都属于含镁较高的食物。 朱主任还表示:“平时可以多喝牛奶,多吃新鲜蔬菜水果。”慢性镉中毒会引起肾脏受损,因此膳食中应增加钙和磷酸盐的摄入,供给充足的锌和蛋白质。 【建议】多吃含锌、铁、钙丰富的食物可以对抗镉。 维生素C有利于排出重金属 绿叶蔬菜、高纤维食物要多吃 随着人类社会的发展,水、空气、土壤遭受的污染越来越严重,“大家只有多注意一些生活细节,才能避免遭受危害,”朱主任说。例如:尽量避开车多的马路和有烟雾的环境;做菜时,尽量去掉蔬菜最外层的叶子等。多吃含有有益矿物质的食物,比如坚果,能阻碍人体对有害重金属的吸收;多吃纤维含量高的食物,如燕麦、芹菜等,可以吸附重金属,减少其在体内的吸收度。 【建议】还需多吃绿叶蔬菜,这些绿叶蔬菜中含有大量的维生素C,能促进重金属的排出。

人体摄入镉有哪些危害

人体摄入镉有哪些危害? 来源:科技日报作者:李颖 镉是一种重金属,长期积累将对人体的骨骼、肾脏造成危害,是对人体健康威胁最大的有害元素之一。新生儿体内几乎不含镉,人体中的镉几乎全部是出生后从食物和环境中蓄积的。 作为重金属,镉原本以化合物形式存在,与人类生活并不交会。但是工业革命释放了这个魔鬼。国外有研究推算,全球每年有2.2万吨镉进入土壤。而中国快速工业化过程中遍地开花的开矿等行为,使原本以化合物形式存在的镉、砷、汞等有害重金属释放到了自然界。这些有害重金属通过水流和空气,污染了中国相当大一部分土地,进而污染了稻米,再随之进入人体。 几年来,南京农业大学农业资源与生态环境研究所教授潘根兴和他的研究团队,在全国六个地区(华东、东北、华中、西南、华南和华北)县级以上市场随机采购大米样品91个,结果同样表明:10%左右的市售大米镉超标。多位学者表示,基于被污染稻田绝大多数不受限制地种植水稻的现实,10%的镉超标稻米基本反映当下中国的现实。更为严重的是,中国几乎没有关于重金属污染土地的种植规范,大量被污染土地仍在正常生产稻米。 镉的毒性具有累积效应 “长期接触大剂量的镉对人体组织和器官的危害是多方面的。”首都医科大学附属北京朝阳医院职业病与中毒医学科主任医师郝凤桐教授介绍说,镉吸收进入人体后,形成镉硫蛋白,通过血液到达全身,并有选择性地蓄积于肾脏、肝脏中,“肾脏可蓄积吸收量的1/3,是镉中毒的靶器官。” 郝凤桐透露,慢性镉中毒的初期症状为倦怠无力、头痛眩晕、鼻黏膜萎缩、咳嗽、胃痛和体重减轻。病情发展以后,患者会出现腰背及膝关节痛、牙齿上出现黄色的镉环、周身骨骼疼痛、骨质疏松、活动时刺痛加剧等症状,还会发生轻微外伤就可致骨折等。有些严重患者还出现肺气肿、呼吸功能下降、肾功能衰弱、肾结石、尿蛋白、肝脏损害和贫血等病症。 值得注意的是,你即使吃了几次镉大米也不会马上中毒。因为,镉污染造成的健康危害需要长期积累才会显现,在时间上具有滞后性。“也就是说,镉的毒性累积而损害人体的效应是长期的,即使停止了食用高镉大米,损害健康的状况依然会持续。这对在镉污染区自种水稻自食大米的农民而言,以及对一直吃高镉大米的城镇居民来说,尤需警惕。” 疑是中毒应做检测治疗

毒性中药修治机理解析

毒性中药修治机理解析 【关键词】毒性中药;修治机理 用于临床治疗的毒性中药均需经过规范的加工炮制方可入药,其目的在于降低或消除药物的毒性,以保证临床用药的安全、合理、有效。因此,对于毒性中药选择合理的炮制方法是确保临床安全用药的前提条件。笔者拟就毒性中药的炮制机理浅析如下,希望斧正。 1 净制制毒 即除去药材中某些非药用的毒性部位,从而达到安全用药的操作方法。如蕲蛇去头足入药,斑蝥去头、足、翅方可入药,还有诸如人参“去芦免吐”、山茱萸“去核免滑”等。现代药理学研究表明,蕲蛇的头部毒腺中确实含有大量出血性及溶血性的毒质成分;而斑蝥所含的毒性成分斑蝥素其中相当一部分以镁盐的形式存在于动物软组织内,从斑蝥足关节处分泌。 2 水处理制毒 系采用清水对药材进行漂、浸,其间不断翻动和换水,从而使药材中的毒性成分水解或者溶解于水中,以达到减低及消除毒性的操作方法。如传统的水飞雄黄,即因夹杂于其中的As2O2为剧毒成分,且

能够溶解于水中,在水飞研磨为极细粉的反复操作过程中,As2O2逐渐溶解于水而被除去,且水飞次数及用水量越多,雄黄内所含的As2O2含量就越低。又如半夏及天南星在炮制之前,也要求用水漂洗至口尝无或微有麻辣感,以使毒质被水漂洗溶出,再行下一步炮制操作。再如附子和乌头等经过长时间的漂洗处理,可使乌头碱毒质随水而大量去除。现代研究表明,将草乌总生物碱除尽后的水溶液仍然具有较强的毒性,所以,乌头中除含有剧毒的乌头碱外,还有其它水溶性的毒质存在。因此,浸泡和漂洗过程对于去除乌头毒性成分是必不可少的步骤。 传统炮制马钱子有童便浸泡和甘草水浸泡等方法,因为长时间浸泡可降低其主要毒性成分番木鳖碱的含量。近年来有人试验使用醋酸溶液浸泡取代传统浸泡法,以期通过酸与碱的结合增强番木鳖碱在水中的溶解度,降低其毒质含量而达到药用的标准。 3 热处理制毒 3.1 干热制毒 将毒性药材置于容器中加热拌炒,或者加入一定量的固体辅料连续加热,其间不断翻动,通过高温破坏或者分解毒性成分,以使药物毒性降低或消除。如马钱子经过砂炒可使其所含的番木鳖碱和士的宁受到不同程度的破坏。番木鳖碱成人口服5~10 mg即可导致中毒,

镉污染与职业性镉中毒

镉污染与职业性镉中毒集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

镉污染与职业性镉中毒镉中毒以环境污染与职业中毒两种形式危害人体健康,由于目前现代医学对慢性镉中毒还没有特效治疗手段,所以企业与地方政府必须做好建设项目职业病危害预评价与环境预评价工作,防患于未然。 据新华网报道,2012年1月7日广西河池市龙江河出现许多死鱼,随后当地民众告知环保部门。1月15日,河池市环环保部门检测到龙江河镉严重超标,镉浓度超标80倍。此次事件严重影响沿江居民和下游广西柳州市370万人的饮水安全。事发后,广西官方采取措施降低污染影响,向江中投放聚合氯化铝等稀释污染水体,力保柳州和下游水源安全。这次镉污染事件涉案企业是金城江立德粉材料厂,该厂将污水直接排放,该厂涉嫌违法的6名责任人被刑拘。 污染环境与危害健康的镉污染 类似广西河池的镉污染事件在我国也曾多次发生过。据《新京报》等媒体报道,2003年湖南省浏阳市镇头镇引进一家民营股份制化工企业——长沙湘和化工厂,主要生产粉状硫酸锌和颗粒状硫酸锌,2004年4月,这家企业未经审批建设了一条炼铟生产线。此后不久,当地村民反映厂区周围树林大片枯死,部分村民相继出现全身无力、头晕、胸闷、关节疼痛等症状。有关机构对周边群众进行体检,截止到2009年7月31日,在2888

人中发现尿镉超标509人。当地环境监测部门调查结果显示,湘和化工厂厂区为镉严重污染区,周边500m范围内的土壤已经受到明显的镉污染,厂区周边500~1200m范围属轻度污染区,土壤镉含量随着厂区距离的增加呈现明显梯度递减。当地干部、群众痛心地说,“建起一个厂,毁了一个村”。当时,这一镉污染事件导致浏阳数千群众上街游行抗议。当地政府有关部门经调查取证,将造成污染的湘和化工厂永久关闭,湘和化工厂法人代表被刑事拘留,浏阳市环保局局长和分管副局长被停职,相关责任人在接受调查。 镉污染事件在其他国家的工业化进程中也曾发生过。1931年,位于日本中部的富山县出现了一种怪病,患者大多是妇女,表现为手、脚、腰部等关节疼痛。病症持续几年后,患者会发生全身疼痛现象,行动困难,甚至呼吸都会带来难以忍受的痛苦。随着病情发展,患者骨骼软化、萎缩,四肢弯曲,脊柱变形,骨质松脆,就连咳嗽都能引起骨折;患者疼痛难忍,常常大叫“痛死了!”“痛死了!”由此得名“痛痛病”。1946—1960年,日本医学界从事临床、病理、流行病学、动物实验和分析化学的人员经过长期研究后发现,“痛痛病”是由于神通川上游的神冈矿山废水引起的镉中毒所造成。 “痛痛病”引起日本及世界各国重视。人们由此意识到镉的危害。在我国,近年来屡屡发生的慢性镉中毒事件,正在以环境污染和职业中毒两种形式,危害着人们的健康。

氰化物毒性原理

氰化物毒性原理 【毒理作用】 氰化物进入机体后分解出具有毒性的氰离子(CN-),氰离子能抑制组织细胞内42种酶的活性,如细胞色素氧化酶、过氧化物酶、脱羧酶、琥珀酸脱氢酶及乳 酸脱氢酶等。其中,细胞色素氧化酶对氰化物最为敏感。氰离子能迅速与氧化型细胞色素氧化酶中的三价铁结合,阻止其还原成二价铁,使传递电子的氧化过程中断,组织细胞不能利用血液中的氧而造成内窒息。中枢神经系统对缺氧最敏感,故大脑首先受损,导致中枢性呼吸衰竭而死亡。此外,氰化物在消化道中释放出 的氢氧离子具有腐蚀作用。吸入高浓度氰化氢或吞服大量氰化物者,可在2-3分钟内呼吸停止,呈“电击样”死亡。 【中毒量及致死量】 口服氢氰酸致死量为0.7~3.5mg/kg;吸入的空气中氢氰酸浓度达0.5mg/L 即可致死;口服氰化钠、氰化钾的致死量为1~2mg/kg。成人一次服用苦杏仁40~60粒、小儿10~20粒可发生中毒乃至死亡。未经处理的木薯致死量为150~300g。此外很多含氰化合物(如氰化钾、氰化钠和电镀、照相染料所用药物常含氰化物)都可引起急性中毒。 【甜杏仁和苦杏仁】 杏仁可分为甜杏、苦杏、桃杏、李杏、甘杏、美国杏仁等数十种,因食用功能、口感不同而又划分苦杏仁、甜杏仁。 苦杏仁(又称北杏),主要特征: 1、甘苦,必须用清水浸泡3天才能去除苦味。 2、苦杏仁在去苦味过程中杏仁味道会大量流失,因此无杏仁香味。 3、苦杏仁有微毒性(冲泡时需高温热开水冲泡,以去毒性)。

4、食疗效果与甜杏仁相同。 5、杏仁油含量约49%,磨成粉后粉质比较湿。 6、因苦味重,食用的人不多,所以苦杏仁原料价格比较低廉。 甜杏仁(又称南杏),主要特征: 1、磨成粉状后有微甜(直接试吃杏仁粉即可知道)。 2、杏仁脂肪含量较低(粉质比较干燥)。 3、杏仁香味很明显,因此不需要用水浸泡,香味自然也不会流失。 4、无毒性。 5、食疗效果与苦杏仁相同。 6、原料价格比较贵。 甜杏仁又叫南杏仁,苦杏仁又叫北杏仁. 甜杏仁大而扁,杏仁皮色浅,味不苦,无毒。苦杏仁个小,杏仁厚,皮色深,近红色,苦味,有毒。 甜杏仁的味道微甜、细腻,可以生食,是流行的小吃,还可以作为原料加入蛋糕、曲奇和菜式等之中。 苦杏仁的味道则要浓一些,未经煮熟的苦杏仁中含有有毒氢氰酸。这样的杏仁一定要经过沸煮以去除毒性。苦杏仁去皮去尖,热水浸泡一天,不加盖煮熟,可食用。生食或加工不当可致中毒。苦杏仁可作为中药使用,降气止咳平喘,润肠通便。用于咳嗽气喘、胸满痰多、血虚津枯、肠燥便秘。 一般中药店可以买 到,也可以在副食品的摊档买到。

镉对小鼠肝脏毒性作用的实验观察

镉对小鼠肝脏毒性作用的实验观察(综合设计实验) 镉对小鼠肝脏毒性作用的实验观察 一、实验研究依据实验目的与意义 肝脏是镉急性中毒损伤的主要靶器官之一。鼠急性中毒后,镉主要蓄积于肝脏。有文献报道,镉有很强的亲硫性。在肝脏中,镉易与 巯基结合从而诱导金属硫蛋白生成镉一硫蛋白【1】,因而金属硫蛋白对 急性镉中毒有应急保护作用【2】,但若镉在短期内大量转运到肝脏,便 导致肝内金属硫蛋白相对不足,不能与镉有效结合而引起肝功能障碍, 这可能是镉引起血清AST、ALT活性及MDA升高的原因之一。【3】有研究发现,染镉后,从外观上看,小鼠肝脏体积肿大,肝叶肿胀明显,肝叶间有粘连、边缘变钝,颜色紫黑,质地变硬。【3】镜下肝 实质细胞的肿胀、嗜酸性变、淋巴细胞浸润及核固缩等肝细胞损伤改 变。 本研究通过动物实验,了解镉对小鼠肝脏的毒性作用,并从氧化应激方面探讨其作用机制。 二、实验内容与方法 (1)、实验动物:健康成年清洁级昆明种小鼠40只,雌雄各半。 (2)、主要试剂与仪器: ●仪器:7230分光光度计;显徽镜;分析天平;SIGMA 2K15型冷冻高速 离心机; ●试剂:氯化镉(CdCI 2,A.R.)、HNO 3 -HClO 4 、蒸馏水、生理盐水

(3)、动物分组与染毒:体重18—25g的健康成年清洁级昆明种小鼠随机区组分 为4组,每组10只,雌雄各办临用前以生理盐水配制CdCI 2溶液,CdCI 2 染毒 剂量分别为0.5、 1.0、 2.0mg/kg,染毒组小鼠皮下注射氯化镉溶液(10ml/kg 体重),对照组注射生理盐水(10ml/kg体重),连续染毒三天。各组小鼠最后一次染毒24小时后摘眼球采血或断头取全血,4°下用3000r/min离心10分钟制备血清。小鼠处死后迅速摘出肝脏,生理盐水洗净、吸干、称重。血清用于AST、ALT生化指标测定,取部分肝脏用于SOD、MDA测定。 三、观察指标 1.AST、ALT活性的测定:AST、ALT检测试剂盒,比色法。 2.MDA测定采用:硫代巴比妥酸(TBA)法.以1,1,3,3—四乙氧基丙烷(TEP)为标准,单位以每克蛋白中与TBA反应物(TBARS)的μmol数表示。蛋 白质测定采用Lowry法,以小牛血清白蛋白为标准;MDA检测试剂盒,比色法。 3.SOD测定:SOD检测试剂盒,比色法。 4.肝重、体重、脏器系数:称重法。 5.肝匀浆蛋白质测定:考马氏亮蓝比色法 四、数据统计处理方法 各组检测指标计算均数、标准差,数据各组间比较采用F检验。 五、预期实验结果

第四章 抗感染免疫

第四章抗感染免疫 一、选择题 【A型题】 1.外毒素的感染免疫是依靠抗毒素的哪种作用机制? A.调理作用 B.黏附作用 C.灭活作用 D.清除作用 E.以上都不是 2.用于人工被动免疫的生物制品有: A.菌苗 B.疫苗 C.BCG D.类毒素 E.抗毒素 3.霍乱肠毒素的作用机制是: A.激活肠黏膜腺苷酸环化酶使cAMP增多 B.激活肠黏膜腺苷酸环化酶使cGMP增多 C.抑制肠黏膜腺苷酸环化酶使cAMP减少 D.抑制肠黏膜腺苷酸环化酶使cGMP减少 E.以上都不是 4.正常体液中作用革兰阳性菌的抗菌物质是: A.补体 B.防御素 C.溶菌酶 D.白细胞素 E.血小板素 5.能激活补体旁路途径使之发挥防御作用的物质是: A.外毒素 B.内毒素 C.血浆凝固酶 D.组蛋白 E.酯酶 6.sIgA发挥局部抗感染的作用机制是: A.通过免疫调理作用增强免疫力 B.可激活补体旁路途径 C.直接与病原体结合使之不能定植于黏膜 D.直接破坏病原体使之失活 E.中和病原体的毒素作用 7.通过与补体C3b将细菌和吞噬细胞联结而发挥免疫调理作用的抗体是: A.IgM B.IgA C.IgG D.IgD E.IgE 8.在多数情况下IgG的保护作用大于IgM,其原因是: A.IgG分子小,易入炎症区 B.IgG含量高,作用强 C.IgM无免疫调理作用 D.IgM半衰期短 E.IgG可激活补体

9.溶菌酶不能单独破坏革兰阴性菌的原因主要是由于: A.肽聚糖无五肽桥 B.肽聚糖外有外膜保护 C.肽聚糖为二维构型 D.肽聚糖含量少 E.胞质周围间隙中酶可破坏溶菌酶 10.目前尚无特异的防治内毒素致病的措施,其原因是内毒素: A.作用无组织特异性 B.作用于胞内 C.抗原性弱,不能制成疫苗 D.引起化学性中毒 E.一次产量较大 11.病毒入侵机体后最早产生的具有免疫调节作用的免疫分子是: A.sIgA B.IFN C.中和抗体D.IgM E.补体结合抗体 12.抗病毒感染中起局部免疫作用的抗体是: A.IgG B.IgM C.IgA D.SIgA E.IgE 13.常用于制备病毒灭活疫苗的试剂是: A.氯仿B.乙醚C.酚类D.甲醛E.过氧化氢 14.病毒中和抗体的作用是: A.直接杀伤病毒B.阻止病毒吸附C.阻止病毒核酸转录D.阻止病毒脱壳E.阻止蛋白合成 15.下列哪种病毒感染人体后可获得持久免疫力? A.流感病毒B.单纯疱疹病毒C.腺病毒 D.脊髓灰质炎病毒E.人乳头瘤病毒 16.在以下病毒中,机体内虽有特异性抗体,但仍可感染并发病的是: A.脊髓灰质炎病毒B.单纯疱疹病毒C.流感病毒 D.甲型肝炎病毒E.柯萨奇病毒 17.新生儿血中测出下列哪类抗体可诊断为宫内感染? A.IgG B.IgA C.IgM D.IgE E.IgD 18.病毒感染宿主细胞后,产生特异性杀伤的主要免疫细胞是: A.CD4+T B.CD8+T C.MφD.NK E.中性粒细胞 19.下列哪种抗病毒免疫方式属获得性非特异免疫? A.单核吞噬细胞系统B.补体及病毒抑制物C.生理年龄状态 D.干扰素E.屏障作用 20.病毒感染后无法获得持久免疫力的最重要原因是: A.无病毒血症B.抗原易变异C.表浅感染D.短暂感染E.免疫耐受21.干扰素的特性是: A.无种属特异性B.由宿主基因编码C.能直接发挥抗病毒作用 D.抗病毒作用比特异性抗体强E.需IgG和补体辅助抗病毒 22.一般认为抗病毒免疫效应最强的是: A.干扰素B.病毒抑制物C.IgG抗体D.细胞免疫效应E.IgM中和抗体23.下列哪种病毒不会透过血脑屏障? A.乙脑病毒 B.麻疹毒素 C.乳头瘤病毒 D.可萨奇病毒 E.埃克病毒 24.关于干扰素,下列叙述哪项不正确? A.是一组具有高活性的多功能堂蛋白 B.可由病毒及其它干扰素诱生剂诱生 C.不能由病毒寄生的宿主细胞产生 D.产生后对邻近的细胞可发生作用 E.其作用发生早于抗体 25.关于干扰素的叙述,下列哪项是错误的? A.由宿主细胞基因编码

抗病毒药作用机制及应用范围

抗病毒药作用机制及应用范围 当前全世界SARS累计病例数超过7000例,我国SARS病例数超过5000例。各地医疗机构的SARS治疗方案中都考虑到了抗病毒疗法。国内外的研究已表明,SARS的病原体主要是一种新型冠状病毒,而冠状病毒是RNA病毒。但是我们注意到有的医院在SARS治疗方案中,列入了像更昔洛韦和膦甲酸钠这样只对DNA病毒有效的药物。这样不但会影响疗效,还可能出现不应有的毒性或副作用,而且也会造成药品资源的浪费。本文旨在简要介绍部分抗病毒药的作用机制及应用范围,供选择SARS抗病毒治疗药物时参考。 1、核苷类似物抗病毒药 利巴韦林 利巴韦林(病毒唑)是一种合成的核苷类似物,它可抑制多种RNA和DNA病毒。其作用机制尚未完全确定,并且对不同的病毒作用机制相异。利巴韦林-5'-单磷酸酯能阻断肌苷-5'-单磷酸酯向黄嘌呤核苷-5'-单磷酸酯的转化,并干扰鸟嘌呤核苷酸以及RNA和DNA的合成。利巴韦林-5'-单磷酸酯在某些病毒,也抑制病毒特异性信息RNA的加帽(capping)过程。 此药在儿科主要用于治疗住院婴幼儿呼吸道合胞病毒(RSV)肺炎和毛细支气管炎,用雾化吸入法给药。利巴韦林还被用于治疗青少年的副流感病毒和甲型及乙型流感病毒感染。口服利巴韦林治疗流感无效。但静脉或口服利巴韦林减低了拉沙热病人的病死率,特别是在发病6天以内用药时。另外,用静脉内利巴韦林治疗汉坦病毒引起的出血热肾病综合征和阿根廷出血热,有临床益处。而且已有人建议用口服利巴韦林方法预防刚果-克里米亚出血热。用干扰素与利巴韦林联合治疗慢性丙型肝炎病人,疗效显著优于单独用其中的任何一种药的疗效。上述这些病毒都是RNA病毒。香港和加拿大的研究者已将利巴韦林用于治疗SARS病人,并取得一定疗效,但加拿大研究者报告在一定比例病人引起溶血。 用大剂量口服利巴韦林治疗时,可出现对造血系统的毒性,包括溶血性贫血。利巴韦林有致突变性、致畸性和对胚胎的毒性,所以此药对妊娠妇女禁用;在用此药的病区,如医务人员中有妊娠者,有对胚胎发生毒性的危险。 阿糖腺苷 主要被用于治疗疱疹病毒属的病毒和乙肝病毒等DNA病毒的感染;它通过抑制病毒DNA聚合酶发挥抗病毒作用。其三磷酸酯水溶性差,需在大量液体中静滴,其单磷酸酯水溶性强,可作肌注。但其疗效有限、毒性作用相对大。 阿昔洛韦和伐昔洛韦阿昔洛韦(无环鸟苷)对若干疱疹病毒(均为DNA病毒),包括单纯疱疹病毒1和2型(HSV-1和-2)、水痘-带状疱疹病毒(ZV)和EB病毒的复制有强烈的选择性抑制作用,但对人类巨细胞病毒感染的疗效相对差。伐昔洛韦(valacyclovir)是阿昔洛韦的左旋缬氨

镉的毒性和毒理学研究进展

2Chin J Ind Hyg Occup Dis,Febru ary1998,Vol.16,No.1 述 评 镉的毒性和毒理学研究进展 刘杰 镉(Cadmium)是一种重金属,它与氧、氯、硫等元素形成无机化合物分布于自然界中。镉对人体健康的危害主要来源于工农业生产所造成的环境污染。镉对肾、肺、肝、睾丸、脑、骨骼及血液系统均可产生毒性,被美国毒物管理委员会(ATSDR)列为第6位危及人体健康的有毒物质。环境中的镉不能生物降解,随着工农业生产的发展,受污染环境中的镉含量也逐年上升。镉在体内的生物半衰期长达10~30年,为已知的最易在体内蓄积的毒物。镉在肾脏的一般蓄积量与中毒阈值很接近,安全系数很低。在60年代提出了镉污染与日本“痛痛病”的因果关系后,环境中的镉与健康关系的研究日益受到重视。近几年来,有关镉毒理学研究的文献每年超过600篇(Medline检索)。美国目前有大约100个关于镉与健康的研究课题,涉及各个领域。国内对镉的毒性和毒理学的研究开展得也比较广泛,其中一些在中毒机制方面作了较深入的探讨,有的学者甚至进行了长达十几年的研究。 镉的毒性和毒理学研究进展主要包括以下几个方面: 一、镉污染与人类健康 1.环境中的镉:对环境中镉污染的早期关注局限于锌、铜、铅矿的冶炼。后来注意力转为镉在工业中的应用,如电池、电镀、合金、油漆和塑料等工业。经过多年的努力,国内外对职业劳动中接触镉的卫生保护已大大加强。近年来,对环境中的镉通过食物链对一般人群的潜在危害已受到高度重视。随着含镉磷肥的施用、污水灌溉等,土壤中镉含量增加,继而被某些植物摄取而进入食物链。1997年国际地球生化学会在美国加州专门对此问题进行了讨论并出版了专著;国际环境科学委员会(SCOPE)则进一步将土壤中镉的来源、价态、食物链中的转化以及对一般人群健康的影响定为目前镉研究的一个重点方向。 2.镉的摄入及监测:职业人群镉暴露的主要途径是吸入。对作业场所空气中镉的浓度进行监测并控制在容许范围之内,是保护工人健康的一个重要手段。对一般人群来说,镉暴露主要来源于食物和吸烟。人们每日可从食物中摄镉30~50 g,但仅有1%~3%被肠胃吸收。因此,对镉的胃肠吸收、体内分布和排泄的影响因素一直是镉毒理学研究中的一个热点。其中,镉与金属硫蛋白(m etal-lothio nein,MT)的结合,及镉与锌、钙的相互作用是影响镉体内代谢动力学的重要因素。血镉的含量可用来评价近期的镉暴露,尿镉含量则在一定程度上反映了镉性肾损伤和体内的镉负荷。尿中的 2-微球蛋白和尿M T的含量已作为镉暴露的生物标志物。 二、镉的毒性研究进展 1.镉的肾毒性:肾损伤是慢性染镉对人体的主要危害。一般认为镉所致的肾损伤是不可逆的,目前尚无有效的疗法。很多学者认为:镉所致的肾损伤是由在肝脏形成的镉-金属硫蛋白(M T)复合物(CdM T)引起的。因此,一次性大量注射CdMT造成肾损伤的动物模型用来研究镉的肾毒性机制已达20年之久。最近,用删除了M T的转基因动物的实验结果表明:镉所致的肾损伤并不一定依赖于CdM T的形成,无机镉亦能直接造成肾脏损伤。一次性注射CdM T主要造成肾小管细胞的坏死,而慢性染镉造成的病理改变则波及整个肾脏,包括肾小球的损伤和肾间质的炎症。慢性染镉 作者单位:66160美国堪萨斯城,堪萨斯大学医学中心药理毒理系

细胞毒性机理

槟榔的细胞毒理研究进展 肝细胞毒性: 单细胞凝胶电泳技术检测出槟榔碱会引起DNA损伤和G0/G1细胞周期阻滞,从而抑制正常肝细胞增殖 槟榔碱可以通过破坏小鼠肝细胞的超微结构而导致肝毒性: 槟榔碱的肝细胞受体细胞核体积减小、核膜凹陷、核周的异染色质富集,预示着细胞核组分有失活的趋势,是肝细胞凋亡的前兆;粗面内质网上潴泡和脂肪滴过量,对蛋白质的合成造成了影响;线粒体嵴扩张,反映出细胞器氧化还原系统的紊乱 血清中的肝毒性标志酶丙氨酸氨基转移酶、天冬氨酸氨基转移酶和碱性磷酸酶含量随着槟榔碱剂量的增加明显上调 肝脏中的谷胱甘肽巯基转移酶活性随着槟榔碱剂量的增加而增大,导致肝脏的解毒功能降低,使得肝脏更容易受到病毒的侵袭 乌头碱对新生大鼠心肌培养细胞损伤的研究 彗星电泳,也称之为单细胞凝胶电泳技术,检测单细胞损伤与修复 乌头碱的中毒机制主要为抑制心肌细胞膜电压门控型Na+通道失活,使Na+持续内流、延长细胞膜除极化时程而引发严重的心律失常 乌头碱对新生大鼠心肌培养细胞损伤的研究:采用单细胞凝胶电泳检测不同剂量乌头碱染毒前后心肌细胞内损伤,并采用软件分析 乌头碱对大鼠心肌培养细胞。表达的影响 乌头碱对大鼠心肌培养细胞调控蛋白表达的影响 六价铬的细胞毒理效应及其机制研究进展 从Cr(VI)导致胞内活性氧累积效应、诱发细胞凋亡、导致细胞癌变、毒理效应的基因组学研究等几方面, 论述了Cr(VI)对人体和动物的细胞毒理效应及其作用机制。 MTT比色法 比色法是一种常用的检测细胞存活和生长的方法。原理为活细胞线粒体中的琥泊酸脱氢酶能使外源性还原为不溶于水的蓝紫色结品甲瓒并沉积在细胞中,而死细胞不会如此。能溶解细胞中的甲瓒,用酶联免疫检测仪在波长处测定其吸光值,可间接反映活细胞数量。在一定细胞数范围内,结晶形成的量与活细胞数成正比。

重金属镉的毒性作用机制研究进展

重金属镉的毒性作用机制研究进展 环境科学11级龙家寰 2011021256 摘要:近年来,随着工业三废排放和污水污泥农用的增多,土壤镉污染问题日益严重,而土壤中过量的镉会对作物产生毒害,尤其是在可食部分的残留将会通过食物链危害人类的健康。本文综述了镉的危害,归纳了影响镉在土壤中的生物毒性的主要因素, 如土壤性质、复合污染及植物种类等。 关键词:镉,生物毒性机制,土壤镉污染 Abstract:In recent years,cadmium pollution of soil is increasingly serious with the growing of three industrial wastes and sewage sludge agricultural use. However,excessive cadmium pollution of soil can poison the crops,especially residual in the edible parts.And humans may be endangered by the poisoned crops through food chain.The review has summarized the harm of cadmium and conclude the main factors of the biotoxicity of the cadmium in soil,e.g.soil property, soil combined pollution of other heavy metal and floristics. Keywords:Cadmium,biotoxicity,Cadmium pollution of soil 随着现代工业的迅猛发展,环境污染对人体健康的影响日益严重,有关环境有毒物质对机体的毒性作用及其机制的研究受到普遍关注。镉作为一种重要的工业、环境污染物,因其对环境水、空气和土壤的污染而在动植物体内蓄,最终导致对人类健康的危害。镉的环境污染问题自20世纪20年代就已伴随锌的生产开始出现,但直到1968年在日本的富山县神通川流域出现了痛痛病之后,有关镉污染及其生物毒性问题才真正引起全世界的关注。镉污染问题已受到世界各国高度重视,美国毒性管理委员会(ATSRD)已把镉列为第六位危害人体健康的有毒物质(杨劲松,2006),联合国环境规划署(DNFP)也把镉列入重点研究的环境污染物,世界卫生组织(WTO)则将其作为优先研究的食品污染物。 1.重金属镉 镉位于周期系第II B族,是一种灰色而有光泽的金属,原子量为112.41,密度为 8.642g/cm3,镉的熔点为321.03℃,沸点为765℃,有延性和展性,可弯曲。镉的化合价为2,常温下镉在空气中会迅速失去光泽,表面上生成棕色氧化镉,可防止镉进一步氧化。镉不溶于水,能溶于硝酸、醋酸,在稀盐酸和稀硫酸中缓慢溶解。镉盐大多数为无色, 但硫化物为黄色或橙色。镉(Cd)是生物毒性最强的重金属元素,在环境中的化学活性强,移动性大,毒性持久,容易通过食物链的富集作用危及人类健康,对人体具有三致( 致病、致癌、致突变)作用,能诱发肾衰变、关节炎、癌症等病(Moreno C J,2000; Moriarty F,1999)。 有毒的镉化合物有: 醋酸镉, 硫酸镉, 硝酸镉, 氰化镉,氯化镉, 溴化镉, 碘化镉, 硫化镉, 氧化镉, 硒化镉, 邻氨基苯甲酸镉等。其中除硒化镉、硫化镉和氧化镉极微溶于水外, 其余都溶于水。土壤中的镉分为可溶性和非水溶性两大类,二者在一定条件下可相互转化。形态与其在植物体内迁移能力大小有关,其活性还与土壤的氧化还原环境有关(崔

镉化物半数致死量

在国内外的文献中,很少有镉化物染毒大鼠的急性毒性研究,对于镉化物染毒小鼠的急性毒性试验虽有所报道,但结果很不一致,例如氯化镉对小鼠经口染毒的LD50 分别为9.9mg/kg [8] 和94.lmg/kg [9],氯化镉腹腔注射于小鼠的LD50 为5.2mg/kg[10],硫酸镉对小鼠的LD50 为88.0mg /kg [11,12]等。本试验用氯化镉腹腔注射大鼠的LD50 为18.37mg/kg; 这些结果与过去文献报道的结果相差较大,其原因可能有以下几点:①本试验所用的动物是大鼠,而且为SPF 级别,饲养条件是采用标准饲养环境设施。但上述报道都是采用小鼠进行实验,而且很少有达到标准化,日龄和营养状况也很难一致,因此可能存在较大的误差;②氯化镉相比硫酸镉来说,Cl- 对机体有刺激性,可能促进Cd 的吸收,对机体的毒性强于硫酸镉;③不同的实验所采用的外源性毒物进入机体的方式有所不同,其LD50 结果也会有一定的差别。在毒理学研究中,化学毒物半数致死剂量(LD50)的检测极易受到生物参数、染毒途径、动物种类和种属,以及实验环境和操作技术等因素的影响。本试验采用SPF 级别大鼠,标准化的实验方法和实验条件,并用超纯水为溶媒,超纯水是既将水中的导电介质几乎完全去除,又将水中不 离解的胶体物质、气体及有机物均去除至很低程度的水,这种水中除了水分子外,几乎没有什么杂质,更没有细菌、病毒、含氯二恶英等有机物,尽量减少实验试剂的干扰,可提高可信度和准确度。本研究结果为镉化物的大鼠急性毒性补充了新的科学数据,为下一步建立慢

性镉中毒大鼠模型提供剂量依据,也制订卫生标准提供了参考。

外源化学物的毒性作用机理毒性作用是化学物与生物人或动物机体

外源化学物的毒性作用机理 毒性作用: 是化学物与生物(人或动物)机体相互作用的结果。 毒性作用出现的性质和强度主要受三个方面的影响: (1)化学物因; (2)机体因素; (3)化学物与机体所处的环境条件; (4)化学物的联合作用 化学物因素 化学物的生物学活性与其化学结构及理化特性有关系,同时又受化学物的剂型、不纯物含量等因素影响。 一、化学结构 毒物的化学结构决定毒物的理化性质和毒物的化学活性,后两者又决定毒物的毒性,因此化学结构的改变可引起毒性作用的变化。有机毒物在这方面表现比较有规律。 例如: 1.苯具有麻醉作用和抑制造血机能的作用,当苯环中的氢被甲基取代后(成为甲苯或二甲苯)抑制造血机能的作用即不明显。苯环中的氢被甲基取代后,其作用性质有很大改变,具有形成高铁血红蛋白的作用。 2.烷、醇、酮等碳氢化合物,碳原子愈多,则毒性愈大(甲醇与甲醛除外)。但碳原子数超过一定限度时(一般为7~9个碳原子),毒性反而下降(如戊烷毒性作用<己烷<庚烷,但辛烷毒性迅速减低=。 3. 烷烃类的氢若为卤族元素取代时,其毒性增强,对肝的毒作用增加;且取代愈多,毒性愈大,如CCl4>CHCl3>CH2Cl2>CH3Cl。 二、理化性质 化学物质的理化特性对于它在外环境中的稳定性,进入机体的机会与体内代谢转化过程均有重要影响。 例如:

溶解度 ①毒物在水中的溶解度直接影响毒性的大小,水中溶解度越大,毒性愈大。如As2S3溶解度较As2O3小3万倍,其毒性亦小。 ②影响毒性作用部位:如刺激性气体中在水中易溶解的氟化氢(HF)、氨等主要作用于上呼吸道,而不易溶解的二氧化氮(NO2)则可深入至肺泡,引起肺水肿。 ③脂溶性物质易在脂肪蓄积,易侵犯神经系统。 2.分散度毒物颗粒的大小可影响其进入呼吸道的深度和溶解度,从而可影响毒性。 3.挥发性吸人毒物的毒性除与其半数致死浓度大小有关外,与其挥发性的大小亦有关。例如:苯与苯乙烯的LC50均为45mg/L左右,但苯的挥发性较苯乙烯大ll倍,故其危害性远较苯乙烯为大。在慢性毒性试验时,用喂饲法染毒应注意毒物的挥发性,毒物加入饲料中可因挥发而减低剂量。 三、不纯物和化学物的稳定性 在生产环境中生产或使用的化学物质常含有一定数量的不纯物,其中有些不纯物的毒性比原来化合物的毒性高,对此若不加注意,可影响对化合物毒性的正确评定。例如除草剂2,4,5-三氯苯氧乙酸(2,4,5-T),在早期对此化合物进行研究时,由于样本中夹杂有相当量的四氯二苯-对位-二恶烷(TCDD)(30mg/Kg),此种杂质毒性非常大,急性经口LD50(雌大鼠)仅为2,4,5-T的雌大鼠经口LD50的400万分之一。因此,即使2,4,5-T中杂质含量很低(低于0.5mg/kg),仍影响其毒性。2,4,5-T 的胚胎毒性是由于杂质所引起,而不是2,4,5-T本身所致 毒物在使用情况下不稳定可能影响毒性。如有机磷酸酯杀虫剂库马福司在储存中形成的分解产物对牛的毒性增加。所以在进行毒理学试验研究之前,应获得使用情况下的稳定性资料。 四、毒物进入机体的途径 毒物可经不同途径进入机体。由于途径不同,毒物在体内经历的过程各异,因而对毒物作用亦产生明显影响,表5—l列举了几种毒物的例子。 机体因素 各种动物对同一毒物的反应不一。有人据154种化合物的毒性试验,所用动物有3~6种,结果见小鼠敏感者有38种,家兔敏感者28种,狗敏感者44种,可见动物对于不同毒物的敏感性有明显差异。人对毒物的作用一般比动物敏感。据260种化合物人与动物致死量的比较,大多数毒物对动物的致死量要比人高l~10倍,约有3%高出25~450倍,仅有8%左右人的致死量要比动物高。说明大多数情况人对毒物的敏感性要比动物高,少数情况动物敏感性高于人。 环境中某些毒物在一定条件(相同剂量及接触条件)下作用于人群,其中个体之间的反应会有很大差异,可从无任何作用到出现严重损伤以至死亡。以服用药物为例,同一种药物,经肝脏代谢出现于血浆中的半量数之间,可有3~11倍之差。即使在双生子之间亦不例外。这对于药效、毒副反应都会产生明显影响;那些出现异乎常人反应的人被认为对毒作用有敏感性(susceptibility),又

毒作用机制word版

第四章毒作用机制 外源化学物对生物机体的毒作用主要取决于机体暴露的程度与途径。 *毒物作用过程涉及多个步骤: 接触?吸收?转运?靶部位?分子结构变化,功能紊乱?修复?修复失调?毒性效应 *多数毒物发挥毒性作用至少经历4个过程: 1、经吸收进入机体的毒物通过多种屏障转运至一个或多个靶部位; 2、进入靶部位的终毒物与内源靶分子发生交互作用; 3、毒物引起机体分子、细胞、组织水平功能和结构的紊乱; 4、机体启动不同水平的修复机制应对毒物对机体的作用,当机体修复功能低下或毒物引起的功能和结构紊乱超过机体的修复能力时,机体出现组织坏死、癌症和纤维化等毒性作用。 *阐明毒作用机制具有重要意义: 1、为更清楚地解释描述性毒理学资料、评估特定外源化学物引起有害效应的概率、制定预防策略、设计危害程度较小的药物和工业化学物以及开发对靶生物具有良好选择毒性的杀虫剂等提供理论依据; 2、有利于人们对机体基本生理和生化过程以及人类某些重要疾病病理过程的进一步认识。 大多数毒物的毒作用机制尚未完全阐明。 由于有毒化学物种类和数量较多,不同种类毒物作用机制不同。 *研究毒性机制应明确以下几点: 1、毒性效应是由毒物引起正常细胞发生生理和生化改变的结果. 2、毒性效应的程度除毒物本身外,还与剂量及靶部位有关. 3、靶组织和靶器官具有代偿能力,可超常发挥解毒功能. 4、毒效应包括一般毒性效应和特殊毒性效应研究 *研究中毒机制步骤: 1、整体动物有无毒性 2、找出靶器官、靶组织 3、进一步找出受损的细胞、亚细胞 4、分子水平:DNA、RNA或蛋白质 复杂的毒性机制可涉及多个层次和步骤,毒物被转运到一个或多个靶部位,毒物或代谢产物与内源性靶分子相互作用。毒物引起的靶分子结构改变或功能紊乱超过修复能力或修复本身障碍时,即产生毒性效应机制毒理学(Mechanistic toxicology) 第一节毒物ADME过程和靶器官 毒效应强度取决于:终毒物在其作用靶器官的浓度和持续时间。 靶位点学说:毒物产生毒性作用的位点,称为靶位点。 靶位点:接触污染物的部位;污染物转化、累积部位。 终毒物:是指与内源靶分子(如受体、酶、DNA、微丝蛋白、脂质)反应或严重地改变生物学(微)环境、启动结构和(或)功能改变而表现出毒性的物质。可以是机体接触的化学物原型或其代谢产物,也可以是毒物在体内生物转化过程中生成的活性氧、活性氮或内源性分子。 终毒物在靶分子上的浓度取决于:毒物在靶部位浓度的增减过程的相对有效性,图4-1。 一、从接触部位进入血液循环 (一)毒物的吸收 毒物的吸收:毒物从接触部位进入血液循环的过程。多数毒物透过细胞扩散穿越上皮屏障到达毛细血管。 影响毒物吸收率的因素:与在其吸收表面的浓度有关,主要取决于1)暴露速率2)化学物的溶解度3)暴露部位的面积4)发生吸收过程的上皮特征(如角质厚度)5)上皮下微循环6)毒物理化特性(脂溶性是最重要的理化特性,脂溶性化学物比水溶性的更容易吸收) (二)毒物进入体循环前的消除

相关主题
文本预览
相关文档 最新文档