当前位置:文档之家› 机床主轴动平衡及其平衡精度标准选择

机床主轴动平衡及其平衡精度标准选择

机床主轴动平衡及其平衡精度标准选择
机床主轴动平衡及其平衡精度标准选择

【机械要点】主轴动平衡的方法

张小只智能机械工业网 张小只机械知识库主轴动平衡的方法 机床高速化的应用和发展,要求主轴转速提高。但机床主轴组零件在制造过程中,不可避免会因材质不均匀、形状不对称、加工装配误差而导致重心偏离旋转中心,使机床产生振动和振动力,引起机床噪声、轴承发热等。随着转速升高,不平衡引起的振动越加激烈。由于机床主轴组件转动时产生的变形很小,为了简化计算,故视其作为刚性转子的平衡方法来处理。将转子视作绝对刚体,且假定工作时,不平衡离心力作用下的转轴不会发生显著变形。为此在这些条件下刚性转子的许多复杂不平衡状态,可简化为力系不平衡来处理,即可在任意选定的两个平面上增加或减去两个等效于Ud1,和Ud2的动平衡力使其平衡。刚性转子动平衡一般为低速动平衡,一般选用第一临界转速的1/3以下。相关术语- 不平衡:由于离心力的作用而在轴承上产生振动或运动原因的转子质量分布状态。- 残留不平衡U:平衡处理后留下来的不平衡。- 相对不平衡e:不平衡除以转子质量得到的值,它等于离心力对于轴中心的位移。- 平衡程度G:是相对不平衡与指定角速度的乘积。- 平衡处理:为使作用在轴承上的与旋转速度同步的振动和力处在指定限定以内,而对转子质量分布进行调整的作业。- 满键:是对具有键槽的旋转轴和配合部件,进行最终装配时用的键或者等同的键。- 半键:是对具有键槽的旋转轴或者配合零件,各自单独进行动平衡处理时使用的键。这种不平衡与最终组装时用的键(埋在旋转轴或配合部件的键槽中的不平衡)相当。刚性转子不平衡且的表达和精度要求1. 转子平街程度G也称偏心速度,它不仅表示了转子不平衡程度,而且还表示了转子质量偏心距与工作转速间的关系。G=e乘以w mm/se相对不平衡,mm;w实际使用的最高角速度rad/s。如果用旋转速度n(r/min)来代替, 则:w=2pn/601.进行由不平衡引起的振动、力、噪声等现场试验或实验室试验,确定平衡程度。2.通过计算求得作用到轴承上的不平衡力,达到轴承的允许限度时的允许不平衡,从而确定不平衡程度。在JISBO905-1992标准中列出参考附表1,表中示出了对于

转子动平衡标准

平衡精度等级 考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世界公认的 ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为增量,从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000 具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600 刚性安装的大型二冲程发动机的曲轴驱动件 G630 刚性安装的大型四冲程发动机的曲轴驱动件弹性安装的船用柴油机的曲轴驱动件 G250 刚性安装的高速四缸柴油机的曲轴驱动件 G100 六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40 汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16 特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 G6.3 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 G2.5 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1 磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 G0.4 精密磨床的主轴;电机转子;陀螺仪 在您选择平衡机之前,应该先确定转子的平衡等级。 举例:允许不平衡量的计算 允许不平衡量的计算公式为: (与JPARC一样的计算 gys)式中m per为允许不平衡量,单位是g; M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为G6.3级,转子的重量为0.2kg,转子的转速为1000rpm,校正半径20mm,则该转子的允许不平衡量为:

1机床动平衡测试技术要求规范

机床动平衡测试技术规范 沈阳机床(集团)有限责任公司 “高速/复合数控机床及关键技术创新能力平台”课题组 2012年5月

1 简介 动平衡技术是在转子校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在动态时是在许用不平衡量的规定范围内,在理想的情况下回转体旋转时与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。 提高精度或精密化,减小振动噪音是制造技术的一个主要发展方向、是各种各类数控机床与基础制造装备在应用中所追求的目标。动平衡技术不但可以用于各类数控机床,而且可用于各类设备包括大型和重型设备,还可用于高档数控装置等等。因此,完成本课题的目标和任务对于国家“高档数控机床与基础制造装备”科技重大专项及其项目目标和任务来说,具有着重大作用和显著意义。 由于动平衡技术可用于各类数控机床、设备和高档数控装置。本课题成果将可以为各类数控机床、设备和高档数控装置的开发提供技术支持,同时为这些数控机床、设备及高档数控装置的设计、制造及安装提供理论依据与保证。 动平衡技术已越来越多地应用于航天航空、国防、飞机制造、汽车制造等行业,其工程意义是非常显著的,这项技术可用于各种各类的机床及装备,而且不但可应用于新机床以提高其技术含量和精度,还可应用于老机床以焕发其新春和加入现代制造行列,提高机床及装备的加工精度是此项技术的目的。 2 试验的目的 (1)对于回转零部件,由于零件结构不对称、材质不均匀、加工或装配误差等因素,不可避免地存在质量不均衡。根据平衡理论,我们把具有一定转速的回转件称为转子。如果转子的质量分布对其轴线而

言不均匀、不对称,即其中心主惯性轴不能与旋转轴线重合,那么旋转时就会产生不平衡离心力,它会对支承架和基础产生作用力,而且还会引起机器振动,振动的大小主要取决于不平衡量大小及支承架和基础的刚度。如果振动严重,则会影响机器的性能和寿命。因此,在几乎所有的回转体零件中,平衡工艺是必不可少的工艺过程,它是减小转子振动的极为重要的手段,它能解决由于自由离心力造成的振动。经过平衡后的转子可以延长机器的寿命,减轻振动和降低噪声分贝值,从而改善机器的性能,使其得到平稳的运转。 (2)掌握系统动平衡的测量方法和计算方法。 (3)根据分析结果,提出机床改进意见,提高机床主轴动平衡品质。 3 主要内容与适用范围 本规范规定了数控车床、数控镗铣床及加工中心动平衡的前期准备、试验内容及程序。 本规范适用于数控车床、数控镗铣床及加工中心的动平衡测试,也可以指导其它普通机床的动平衡试验。 4 引用标准及参考文献 ISO 1940-2-1997 机械振动刚性转子的平衡质量要求第2部分平衡误差 5 基本要求 1)试验前,相关部门需提供机床的性能参数表,精度检验单及机床切削规范。 2)设计部门指定专人负责机床动平衡试验的组织和实施,明确

主轴动平衡的方法与应用2

主轴动平衡的方法与应用2 1 前言 机床高速化的应用和发展,要求主轴转速提高。但机床主轴组零件在制造过程中,不可避免会因材质不均匀、形状不对称、加工装配误差而导致重心偏离旋转中心,使机床产生振动和振动力,引起机床噪声、轴承发热等。随着转速升高,不平衡引起的振动越加激烈。 由于机床主轴组件转动时产生的变形很小,为了简化计算,故视其作为刚性转子的平衡方法来处理。将转子视作绝对刚体,且假定工作时,不平衡离心力作用下的转轴不会发生显著变形。为此在这些条件下刚性转子的许多复杂不平衡状态,可简化为力系不平衡来处理,即可在任意选定的两个平面上增加或减去两个等效于U d1,和U d2的动平衡力使其平衡。 刚性转子动平衡一般为低速动平衡,一般选用第一临界转速的1/3以下。 2 相关术语 ?不平衡:由于离心力的作用而在轴承上产生振动或运动原因的转子质量分布状态。 ?残留不平衡U:平衡处理后留下来的不平衡。 ?相对不平衡e:不平衡除以转子质量得到的值,它等于离心力对于轴中心的位移。 ?平衡程度G:是相对不平衡与指定角速度的乘积。 ?平衡处理:为使作用在轴承上的与旋转速度同步的振动和力处在指定限定以内,而对转子质量分布进行调整的作业。 ?满键:是对具有键槽的旋转轴和配合部件,进行最终装配时用的键或者等同的键。 ?半键:是对具有键槽的旋转轴或者配合零件,各自单独进行动平衡处理时使用的键。这种不平衡与最终组装时用的键(埋在旋转轴或配合部件的键槽中的不平衡)相当。 3 刚性转子不平衡且的表达和精度要求 1.转子平街程度G

也称偏心速度,它不仅表示了转子不平衡程度,而且还表示了转子质量偏心距与工作转速间 的关系。 G=e×ω mm/s e——相对不平衡,mm; ω——实际使用的最高角速度rad/s。如果用旋转速度n(r/min)来代替,则:ω=2πn/60 e×2πn en 60 9.55 2.平衡程度的等级 我国采纳了IS01940-1986刚性转子平衡质量要求标准,标准将平衡程度分为11个等级(见下 表)。 3.关于平衡程度等级的选择 应根据使用状况决定。 1.进行由不平衡引起的振动、力、噪声等现场试验或实验室试验,确定平衡程度。 2.通过计算求得作用到轴承上的不平衡力,达到轴承的允许限度时的允许不平衡,从 而确定不平衡程度。 在JISBO905-1992标准中列出参考附表1,表中示出了对于形式、大小以及旋转速度不同的 有代表性刚性转子,按经验得到动平衡程度等级的推荐值。 机床主轴平衡程度等级为G1、G2.5级机床主轴轴系的传动零件平衡程度等级为G6.3、G16。 高速旋转机械以及轴承刚性低的机械通常选用平衡程度值小的,相反选用大值。 另外,旋转部份的质量与机械整体质量之比较小时.通常选用的平衡程度值要大。 4.允许残留不平衡的求法

高速主轴动平衡及其在线控制技术

高速主轴动平衡及其在线控制技术 章云1,梅雪松1,2 (1.西安交通大学机械工程学院,西安710049;2.西安交通大学机械制造系统工程国家重点实验室,西安710049) [摘要]针对机床主轴在线自动平衡控制问题,阐述了高速主轴不平衡识别方法和在线自动平衡技术国内外现状,分析了喷液式在线自动平衡装置原理,设计了喷液式平衡系统,并通过高速主轴实验对该系统的有效性进行了验证。研究结果表明,主轴经过平衡后,不平衡量振动值由1.60mm/s降至0.34mm/s,主轴失衡振动得到了有效抑制。[关键词]高速主轴;在线动平衡;振动控制 [中图分类号]TH113.25[文献标识码]A[文章编号]1009-1742(2013)01-0087-06 1前言 现代化的高速数控加工中心具有主轴转速高、运行精度高、加工效率高的特点。转速和精度的提高是以高精度动平衡为前提的,但对于主轴而言,由于制造、安装误差以及材料的不均匀等因素,不平衡的存在是必然的。由于运转在高速下,主轴对不平衡控制的要求比通常转子更加严格,微小的不平衡都可能导致主轴回转精度的严重丧失乃至轴承支承系统的失稳。只有将主轴残余不平衡量控制在一定范围内,才能抑制主轴在高速运行过程中的失衡振动,保证零件的加工精度。 为减小主轴的不平衡,在设计之初应尽量避免不对称结构,在加工装配过程中尽量减小误差。即便如此,主轴不平衡也不可能被完全消除,因此,主轴出厂时会进行初始动平衡以减小主轴失衡量。然而,主轴刀具微小的不对中、磨损或粘刀仍会破坏原有的动平衡。另外,主轴刀具系统受切削力激励、热变形以及高速旋转离心力等复杂工况的干扰,也会破坏主轴的动平衡,从而使得高速机床主轴系统的稳定性被破坏。显然,若每次都采用传统离线停机动平衡的方式来消除微小失衡量,就意味着自动化环节的中断,破坏了高效加工的原则。因此,开展高速主轴动平衡与其在线控制技术的研究,能充分发挥高速主轴的效能,保障机床的长期稳定和高效运行,进而提高我国机床工业和机械制造业的整体水平。 2高速主轴动平衡及其在线控制技术现状及分析 2.1不平衡识别技术 经典的柔性转子动平衡方法可大致分为两种类型,即模态平衡法[1]和影响系数法[2]。这两种方法各有其局限性。对模态平衡法而言,其不平衡识别受支承特性的影响较大,用于轴系平衡时临界转速附近不易获得的单一振型。对影响系数法而言,在高速下平衡时启动次数多,高阶振型敏感性降低。因此,Parkison等[3]提出了综合平衡的概念,即在影响系数法的基础上利用模态平衡法中的振型分离的特点选择平衡参数。这种方法一定程度上结合了二者优点,但仍需多次试重。 为提高平衡效率和精度,国内外学者近年来在低速动平衡和无试重动平衡等方面展开研究。传统平衡方法平衡柔性转子时必须在高速下进行,否则只能进行刚性转子的动平衡。低速动平衡技术[4~6]正是在这种背景下发展起来的,其通过分析转子在临界转速前后振动特性的变化规律,通过信号处理等方式在低速下获取转子高阶振型信息,并根据一 [收稿日期]2012-10-10 [基金项目]“973”国家重点基础研究发展计划资助项目(2009CB724405);国家自然科学基金资助项目(51075321) [作者简介]梅雪松(1963—),男,湖北黄梅县人,教授,博士生导师,主要研究方向为数控技术;E-mail:xsmei@https://www.doczj.com/doc/b6487502.html,

JISB0905-1992动平衡精度等级

JIS B0905-1992 動平衡等級 動平衡良好的等級 單位 mm/s 動平衡等級 G0.4G1 G2.5G6.3G16G40G100G250G630 G1600 G4000動平衡的上限值 0.4 1 2.5 6.3 16 40 100 250 630 1600 4000 (備考) 各自動平衡的良好等級G 是包含從良好動平衡上限數值到零的良好動平衡範圍。 ISO 1940 是世界公認的平衡等級將平衡等級分為11等級以2.5倍為增量。 其所表示的單位是(g-mm/kg),代表不平衡的質量位於轉子半徑上相對於轉子總重量的值, 也代表不平衡量對於轉子中心的偏心距離。 動平衡的級數設定是根據ISO1940的標準, 其關係如下: 不平衡量 u : g-mm M= 轉子質量(kg) 9549= 常數 N= 轉速 r.p.m. G= (Nxu)/(9549xM) 不平衡量是讓不平衡發生的重量m 和回轉中心到此不平衡重量的距離e 相乘的結果來做表示。 因此,其單位是重量和距離相乘的積所以變為是【g ?cm 】或是【g ?mm 】。在下圖m 是不平衡的質量,e 是從回轉中心到m 距離, M 是轉子的質量。 時的不平衡量U 是為 U=m x e 例如,m=0.2g 、e=1.0cm 的話 U=0.2gx1.0cm =0.2g ?cm =2.0g ?mm 注意:此時的不平衡量和回轉數無關係,是以物理量所做的定義。 不平衡量的定義 u= 不平衡量 g-mm M= 轉子質量(kg) 9549= 常數 N= 轉速 r.p.m.

何謂「不平衡」 A、靜不平衡(Static unbalance):轉子的重心偏離於軸心線(中心線)的位置。 在固定不動的轉子上,這是很容易就可以被測得出來的。原因是在這位置上面,離心力是垂直到軸線上的。在一個穩定可靠的環境中,我們可以選擇任何一個平面輕易地來做為消除這一個不平衡的平面。但是這個靜平衡力有可能變成其他的動不平衡力(couple unbalance)。 B、力偶不平衡(Couple unbalance):轉子的重心線延著軸線的位置產生。 這種力只能在旋轉中的轉子中測得。因為它產生於旋轉期間傾斜的一瞬間,在無側向力時, 這兩個不平衡質量所產生的離心力能相互抵消。 C、動不平衡(Dynamic unbalance):是靜不平衡與力偶不平衡的結合。 參考附表 動平衡良好的等級 動平衡良好的 上限值mm/s (e per*ω)(1)?(2) 轉子的種類一例 G 4000 4 000 剛支持的汽缸數奇數的船舶用低速柴油 傳動(3)的曲軸軸系(4) G 1600 1 600 剛支持大型2衝程傳動曲軸軸系(4) G 630 630 剛支持大型4衝程傳動的曲軸軸系(4) 彈性支持的船舶用柴油傳動的曲軸軸系(4) G 250 250 剛支持的高速4汽缸柴油傳動軸系(3)的 曲軸軸系(4) G 100 100 6汽缸以上的高速柴油傳動(4)的曲軸軸系 汽車,卡車及鐵路車輛用傳動(汽油或柴油)的完成品(5) G 40 40 汽車輪胎,輪緣,車輪組及驅動軸,彈性支撐的6汽缸以上的高速4行程傳動(4)(汽油還是柴油)的曲軸系 汽車,卡車,火車車輛用傳動的曲軸系 G 16 16 特別有做要求的驅動軸(螺旋槳軸.萬向軸) 壓碎機部品 農業機械部品 汽車,卡車及鐵路車輛用傳動(汽油或柴油)的傳動部品 特別是有做要求的6汽缸以上的曲軸軸系 G 6.3 6.3 製煉廠用機器 船舶用主機輪機齒輪(商船用) 離心分離機滾桶 製紙輥輪.印刷輥輪 風扇,扇葉 組立後的飛機用渦輪噴射引擎-燃氣輪機 飛輪-FLYWHEEL 泵浦葉片 工作機械及一般機械的部品 無特別要求的中型及大型(有最少80mm以上軸中心高馬達的)電機子 對振動不敏感所使用的或有振動絕緣 (主要是量產形的)小型電機子 有特別要求的傳動部品

祺迈CNC主轴动平衡检测校正

祺迈CNC主轴动平衡检测校正 普什模具一台CNC机床主轴在4000-12000RPM时,加工精度不高,使得被加工零件粗糙度不好。此次通过祺迈技术人员利用高精度的振动分析及现场动平衡仪KMbalancer II对该主轴进行了动平衡测试与校正之后还发现了在10000RPM与15000RPM时均存在设备共振点的情况,在校正主轴的同时又使得现场的工作人员对主轴的运转情况有了进一步的了解,对此效果现场工作人员十分满意。

普什模具有限公司于2000年开始筹建,隶属于五粮液旗下的普什集团有限公司。公司主要从事多型腔、高精密塑料模具,注塑系统的开发、设计和制造;占地面积约15000平方米,固定资产投入达3亿元人民币。公司定位于世界一流,经过10余年的发展,现已形成以研发、设计和制造注塑模具为核心,为客户提供全套注塑系统解决方案的能力。 现场动平衡校正服务 对于旋转设备而言,良好的平 衡校正,可以使旋转设备的组 件寿命延长数倍,甚至数十、 数百倍,KM提供的现场在线 动平衡校正的定义即是在不必

拆卸叶轮、转子等转动件的情况下,就能直接实施现场动平衡校正。实施现场动平衡校正的优点有: 1.不必拆卸转动件,减少停机时间,现场在线平衡校正一般只需一小时左右。 2.可以在实际工作转速下实施校正,通常转动件拆卸后,在平衡机下校正时,都无法在高速位进行校正,而现场在线动平衡校正则可以校正转速最高达60000转的高转速。 3.影响平衡的因素很多,包括所有的转动组件(叶轮、转轴、联轴器、键座等)的平衡及转动件安装间隙、偏角等因素,因此直接在线平衡得到较佳的平衡效果。 4.转动设备振动的问题有时与平衡无关,利用现场动平衡仪就可以立刻测知是否有平衡不良的问题,避免不必要的平衡校正。 5.双面动平衡校正不同于单平面校正,当转动件直径与宽度比例不到2倍时,可能就需要实施双平面校正。 应用范围:风机叶轮、泵浦叶轮、转轴、转鼓、电机转子、加工机主轴等旋转部件

平衡机精度等级计算

平衡机精度等级计算 一平衡词汇 1、不平衡量。转子某平面上不平衡的量值大小,不涉及不平衡 的角位置。它等于不平衡质量和其质心至转子轴线距离的乘 积,不平衡量单位为或,俗称“重径积”。 2、不平衡相位。转子某平面上的不平衡质量相对于给定极坐标的 角度值 3、不平衡度。转子单位质量的不平衡量,单位为kg,在静不 平衡时相当于转子的质量偏心距,单位为微米。 4、初始不平衡量。平衡前转子上存在的不平衡量。 5、许用不平衡量。为保证旋转机械正常工作所允许的转子剩余不 平衡量,该指标用不平衡度表示时,称为许用不平衡度(亦有称许用不平衡率)。 6、剩余不平衡量。平衡后转子上剩余的不平衡量。 7、校正半径。校正平面上校正质量的质心到转子轴线的距离,一 般用mm表示。 8、校正平面干扰(相互影响)。在给定转子某一校正面上不平衡量 的变化所引起另一校正平面上平衡机指标值的改变(有时称平面分离影响). 9、转子平衡品质。衡量转子平衡优劣程度的指标。 G=eperω/1000 式中G为转子平衡品质,mm/s,从G0 4-G4000分11级,eper

为转子允许的不平衡率kg或转子质量偏心距μmω相应于转子最高工作转速的角速度=2∏n/60≈n/10 10、转子单位质量的允许残余不平衡度(率) eper=(G×1000)/(n/10)单位kg或mm/s 11、最小可达剩余不平衡量(Umar)。单位,平衡机能使转子达到 的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能 指标,当该指标用不平衡度表示时,称为最小可达剩余不平衡 度(单位kg)。 12、不平衡量减少率(URR)。经过一次平衡校正所减少的不平衡量 与初始不平衡量之比值,它是衡量平衡机效率的性能指标,以 百分数表示: URR(%)=(U1-U2)/U1=(1-U2/U1)×100 式中:U1为初始不平衡量;U2 为一次平衡校正后的剩余不平 衡量。 13、不平衡力偶干扰比。单面平衡机抑制不平衡力偶影响的性能指 标。 14、校验转子。为校验平衡机性能而设计的刚性转子,其质量、大 小、尺寸均有规定,分立式与卧式二种,立式转子质量为、、 11、35、110kg,卧式转子质量为、、5、16、50、160、500kg。 二.平衡精度及精度计算

主轴动平衡的方法与应用

主轴动平衡的方法与应用 2007年12月11日星期二 21:55 主轴动平衡的方法与应用 1 前言 机床高速化的应用和发展,要求主轴转速提高。但机床主轴组零件在制造过程中,不可避免会因材质不均匀、形状不对称、加工装配误差而导致重心偏离旋转中心,使机床产生振动和振动力,引起机床噪声、轴承发热等。随着转速升高,不平衡引起的振动越加激烈。 由于机床主轴组件转动时产生的变形很小,为了简化计算,故视其作为刚性转子的平衡方法来处理。将转子视作绝对刚体,且假定工作时,不平衡离心力作用下的转轴不会发生显著变形。为此在这些条件下刚性转子的许多复杂不平衡状态,可简化为力系不平衡来处理,即可在任意选定的两个平面上增加或减去两个等效于Ud1,和Ud2的动平衡力使其平衡。 刚性转子动平衡一般为低速动平衡,一般选用第一临界转速的1/3以下。 2 相关术语 1) 不平衡:由于离心力的作用而在轴承上产生振动或运动原因的转子质量分布状态。 2) 残留不平衡U:平衡处理后留下来的不平衡。 3) 相对不平衡e:不平衡除以转子质量得到的值,它等于离心力对于轴中心的位移。 4) 平衡程度G:是相对不平衡与指定角速度的乘积。 5) 平衡处理:为使作用在轴承上的与旋转速度同步的振动和力处在指定限定以内,而对转子质量分布进行调整的作业。 6) 满键:是对具有键槽的旋转轴和配合部件,进行最终装配时用的键或者等同的键。 7) 半键:是对具有键槽的旋转轴或者配合零件,各自单独进行动平衡处理时使用的键。这种不平衡与最终组装时用的键(埋在旋转轴或配合部件的键槽中的不平衡)相当。 3 刚性转子不平衡且的表达和精度要求 1) 转子平街程度G 也称偏心速度,它不仅表示了转子不平衡程度,而且还表示了转子质量偏心距与工作转速间的关系。 G=e×ω mm/s

机床主轴[1]

工具機系統設計與分析
主軸系統(一)
系統簡介
紀華偉 大葉大學機械與自動化工程學系 林肇遠 友嘉實業股份有限公司工具機事業部 2008.03.11

課程內容
?概述 ?主軸架構 ?主軸設計要求
大葉大學機械與自動化工程學系
2/57

概述
?工具機市場需求
3C 3C 模具 模具 航太輕合金 航太輕合金 汽機車 汽機車 一般加工 一般加工
大葉大學機械與自動化工程學系
高速鑽孔攻牙,輕切削面銑 1mm以下小孔徑鑽孔
高速
硬鋼材加工,曲面加工
高速銑削,曲面加工 高速銑削,鑽孔,攻牙 精密搪孔
高精度
高效率
鑽孔,攻牙,面銑,搪孔
3/57

概述
? 主軸為工具機進行加工時,直接帶動刀具 或工件旋轉,進行切削、研磨..等加工程序 之重要單元。
– 帶動工件旋轉,如車床。 – 帶動刀具旋轉,如銑床。
? 依驅動方式分為:
– 齒輪式 – 皮帶式 – 馬達內藏式 – 直結式
大葉大學機械與自動化工程學系
4/57

概述
? 依驅動方式分為:
– 齒輪式
motor
優點: ? 傳動系統扭轉剛性大,能 承受低速高扭力負載 ? 適合低速大切深加工,但 主軸剛性須加大 缺點: ? 效率差,傳輸功率損耗大, 噪音大,油污染 ? 高速受限制 ? 齒輪及箱體製造成本高
Gear Spindle 8k~20k rpm
大葉大學機械與自動化工程學系
5/57

数控机床主轴常见的故障以及解决方法

数控机床主轴常见的故障以及解决方法 机床主轴指的是机床上带动工件或刀具旋转的轴。机床主轴通常由主轴、轴承和传动件(齿轮或带轮)等组成。 实际应用中主要有两类高速主轴: 一类是具有零传动的高速电主轴,这类主轴因采用电机和机床主轴一体化的结构,并经过精确的动平衡校正,因此具有良好的回转精度和稳定性,但对输出的扭矩和功率有所限制。 另一类是以变频主轴电机与机械变速机构相结合的主轴。这类主轴输出的扭矩和功率要大得多,但相对来说回转精度和平稳性要差一点,因此对于这类主轴来说,如何正确地设计机床主轴及其组件对机床加工精度的影响是至关重要的,也是一般情况下最需要检查的设备。 一、不带变频的主轴不转 故障原因以及处理方法: ①机械传动故障引起:检查皮带传动有无断裂或机床是否挂了空挡。 ②供给主轴的三相电源缺相或反相:检查电源,调换任两条电源线。 ③电路连接错误:认真参阅电路连接手册,确保连线正确。 ④系统无相应的主轴控制信号输出:用万用表测量系统信号输出端,若无主轴控制信号输出,则需更换相关IC元器件或送厂维修。

⑤系统有相应的主轴控制信号输出,但电源供给线路及控制信号输出线路存在断路或是元器件损坏: 用万用表检查系统与主轴电机之间的电源供给回路,信号控制回路是否存在断路;是否存在断路;各连线间的触点是否接触不良;交流接触器,直流继电器是否有损坏;检查热继电器是否过流;检查保险管是否烧毁等。 二、带变频器的主轴不转 故障原因以及处理方法: ①机械传动故障引起:检查皮带传动有无断裂或机床是否挂了空挡。 ②供给主轴的三相电源缺相:检查电源,调换任两条电源线。 ③数控系统的变频器控制参数未打开:查阅系统说明书,了解变频参数并更改。 ④系统与变频器的线路连接错误:查阅系统与变频器的连线说明书,确保连线正确。 ⑤模拟电压输出不正常:用万用表检查系统输出的模拟电压是否正常;检查模拟电压信号线连接是否正确或接触不良,变频器接收的模拟电压是否匹配。 ⑥强电控制部分断路或元器件损坏:检查主轴供电这一线路各触点连接是否可靠,线路有否断路,直流继电器是否损坏,保险管是否烧坏。 ⑦变频器参数未调好:变频器内含有控制方式选择,分为变频器面板控制主轴方式,NC系统控制主轴方式等,若不选择NC系统控制方式,则无法用系统控制主轴,修改这一参数;检查相关参数设置是否合理。 三、换挡主轴转速不受控 故障原因处理方法: ①系统无S01- S04的控制信号输出:检查系统有无换档控制信号输出。若无,则为系统故障,更换IC或送厂维修。 ②连接线路故障:若系统有换档控制信号输出,则检查各连接线路是否存在断路或接触不良,检查直流继电器或交流接触器是否损坏。 ③主轴电机损坏或短路:检查主轴电机。 ④机械未挂档:挂好档位。

高速机床主轴

高速机床主轴/刀具联结的设计 高速加工具有比普通加工大5~10倍的切削速度,其优点是能减少加工时间,达到普通加工需要几道工序才能达到的加工精度和表面质量。与高速切削有关的主要问题有:刀具材料及设计、高速机床主轴的动平衡、机床的热态动态性能及可靠性等。而刀具与主轴的联结问题会严重影响高速切削的可靠性及机床主轴的动平衡,已成为限制高速切削的薄弱环节之一。 一、高速切削对刀/轴联结要求 高速加工要求确保高速下主轴与刀具联结状态不能发生变化。但是,高速主轴的前端锥孔由于离心力的作用会膨胀,膨胀量的大小随着旋转半径与转速的增大而增大,标准的7/24实心刀柄膨胀量较小,因此标准锥度联结的刚度会下降,在拉杆拉力的作用下,刀具的轴向位置会发生改变(见图1)。主轴的膨胀还会引起刀具及夹紧机构质心的偏离,从而影响主轴的动平衡。要保证这种联结在高速下仍有可靠的接触,需有一个很大的过盈量来抵消高速旋转时主轴轴端的膨胀,如标准40号锥需初始过盈量为15~20μm,再加上消除锥度配合公差带的过盈量(at4级锥度公差带达13μm),因此这个过盈量很大。这样大的过盈量需拉杆产生很大的拉力,拉杆产生这样大的拉力一般很难实现,对换刀也非常不利,还会使主轴端部膨胀,对主轴前轴承有不良影响。 图 1 在高速离心力作用下主轴扩张图 高速加工对动平衡要求非常高,不仅要求主轴组件需精密动平衡(g0.4级以上),而且刀具及装夹机构也需精密动平衡。但是,传递转矩的键和键槽很容易破坏动平衡,而且,标准的7/24锥柄较长,很难实现全长无间隙配合,一般只要求配合面前段70%以上接触,因此配合面后段会有一定的间隙,该间隙会引起刀具径向跳动,影响结构的动平衡。键是用来传递转矩和进行角向定位的,为解决键及键槽引起的动平衡问题,可以尝试研究一种刀/轴联结实现在配合处产生很大的摩擦力以传递转矩,并用在刀柄上作标记的方法实现安装的角向定位,达到取消键的目的。 二、标准7/24锥联结的优缺点 标准的7/24锥联结有许多优点:因不自锁,可实现快速装卸刀具;刀柄的锥体在拉杆轴向拉力的作用下,紧紧地与主轴的内锥面接触,实心的锥体直接在主轴内锥孔内支承刀具,可以减小刀具的悬伸量;这种联结只有一个尺寸即锥角需加工到很高的精度,所以成本较低而且可靠,多年来应用非常广泛。 但是,7/24联结也有一些缺点;锥度较大,锥柄较长,锥体表面同时要起两个重要的作用,即刀具相对于主轴的精确定位及实现刀具夹紧并提供足够的联结刚度。由于它不能实现与主轴端面和内锥面同时定位,所以标准的7/24刀/轴锥联结在主轴端面和刀柄法兰端面间有较大的间隙。在iso标准规定7/24锥度配合中,主轴内锥孔的角度偏差为“-”,刀柄锥体的角度偏差为“+”,以保证配合的前段接触,所以它的径向定位精度往往不够,在配合的后段还会产生间隙,如典型的at4级(iso1947,gb11334-89)锥度规定角度的公差值为13″,这就意味着配合后段的最大径向间隙高达13μm,这个径向间隙会导致刀尖的跳动和破坏结构的动平衡,还会形成以接触前端为支点的条件,当刀具所受的弯矩超过拉杆轴向拉力产生的摩擦力矩时,刀具会以前段接触区为支点摆动。在切削力作用下,刀具在主轴内锥孔的这种摆动,会加速主轴锥孔前段的磨损,形成喇叭口,引起刀具轴向定位误差。 7/24锥度联结的刚度对锥角的变化和轴向拉力的变化很敏感。当拉力增大4~8倍时,联结的刚度可提高20%~50%,但是,过大的拉力在频繁的换刀过程中会加速主轴内孔的磨损,使主轴内孔膨胀,影响主轴前轴承的寿命。 另外,如前所述,这种实心刀柄的锥联结在高速旋转时,主轴端部扩张量大于锥柄的扩张量,高速性能差,不适合超高速主轴与刀具的联结。

各国齿轮精度等级对应关系表

各国齿轮精度等级对应关系表 类符号标准精度等级IS0;GB/T0DIN456,FrJIS--AGMA,IS0; GB/T0DIN345,678910--fptJIS--单AGMA15,14IS0;GB/T0项DIN,10FaJIS--012334--公AGMA09,87,10差〃IS0;GB/TFiDIN--5,678910--11AGMA--14, IS0;GB/T0F〃DIN--iAGMA--注: ISO 1328.1— 1997、ISO 1328.2--1997——国际标准;DIN 3961-8~3967-8---1978——德国标准;JIS B1702~1703(85)——日本标准;ANSI/AGMA 2000---A88——美国标准;GB/T 10095.1— 2001、GB/T 10095.2--2001——中国标准。 在直齿轮零件图上应标注齿轮的精度等级和齿厚极限偏差的字母代号。 例: 7-6-6 G M GB100095-88含义: 齿轮的第一组公差精度为7,第二组公差的精度等级为6,第三组公差的精度等级为6,齿厚上偏差为G级,齿厚下偏差为M级。 例: 7FL GB100095-88含义: 齿轮的三个公差组精度同为7级,其齿厚上偏差精度等级为F,齿厚下偏差精度等级为L。 所以,7-Dc对于零件直齿轮来说,其含义是:

齿轮的三个公差组精度同为7级,齿厚上偏差精度等级为D,齿厚下偏差精度等级为c。 如果是锥齿轮,图样标注上应注明精度等级、最小法向侧隙种类、法向侧隙公差种类。 例: 8-7-7 c B GB 11365-89含义: 齿轮的第一组公差精度为8级, 第二、三组公差的精度等级为7级,最小法向侧隙种类为c,法向侧隙公差种类为B。 所以,7-DC在锥齿轮中代表的含义是: 齿轮的三组公差精度等级都为7级,最小法向侧隙种类为D,发向侧隙公差种类为C。

各种数控机床主轴常见的故障以及解决方法

各种数控机床主轴常见的故障以及解决方法 机床主轴指的是机床上带动工件或刀具旋转的轴。机床主轴通常由主轴、轴承和传动件(齿轮或带轮)等组成。实际应用中主要有两类高速主轴: 一类是具有零传动的高速电主轴,这类主轴因采用电机和机床主轴一体化的结构,并经过精确的动平衡校正,因此具有良好的回转精度和稳定性,但对输出的扭矩和功率有所限制。另一类是以变频主轴电机与机械变速机构相结合的主轴。这类主轴输出的扭矩和功率要大得多,但相对来说回转精度和平稳性要差一点,因此对于这类主轴来说,如何正确地设计机床主轴及其组件对机床加工精度的影响是至关重要的。 数控机床主轴常见的故障以及解决方法 一、不带变频的主轴不转故障原因以及处理方法: ①机械传动故障引起:检查皮带传动有无断裂或机床是否挂了空挡。 ②供给主轴的三相电源缺相或反相:检查电源,调换任两条电源线。 ③电路连接错误:认真参阅电路连接手册,确保连线正确。 ④系统无相应的主轴控制信号输出:用万用表测量系统信号输出端,若无主轴控制信号输出,则需更换相关IC元器件或送厂维修。 ⑤系统有相应的主轴控制信号输出,但电源供给线路及控制信号输出线路存在断路或是元器件损坏:用万用表检查系统与主轴电机之间的电源供给回路,信号控制回路是否存在断路;是否存在断路;各连线间的触点是否接触不良;交流接触器,直流继电器是否有损坏;检查热继电器是否过流;检查保险管是否烧毁等。 二、带变频器的主轴不转故障原因以及处理方法: ①机械传动故障引起:检查皮带传动有无断裂或机床是否挂了空挡。 ②供给主轴的三相电源缺相:检查电源,调换任两条电源线。 ③数控系统的变频器控制参数未打开:查阅系统说明书,了解变频参数并更改。 ④系统与变频器的线路连接错误:查阅系统与变频器的连线说明书,确保连线正确。 ⑤模拟电压输出不正常:用万用表检查系统输出的模拟电压是否正常;检查模拟电压信号

机床主轴故障的原因和处理方法【干货】

机床主轴故障的原因和处理方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 机床主轴指的是机床上带动工件或刀具旋转的轴。通常由主轴、轴承和传动件(齿轮或带轮)等组成主轴部件。在机器中主要用来支撑传动零件如齿轮、带轮,传递运动及扭矩,如机床主轴;有的用来装夹工件,如心轴。 在实际应用中,主要有两类高速主轴:一类是具有零传动的高速电主轴,这类主轴因采用电机和机床主轴一体化的结构,并经过精确的动平衡校正,因此具有良好的回转精度和稳定性,但对输出的扭矩和功率有所限制。另一类是以变频主轴电机与机械变速机构相结合的主轴。这类主轴输出的扭矩和功率要大得多,但相对来说回转精度和平稳性要差一点,因此对于这类主轴来说,如何正确地设计机床主轴及其组件对机床加工精度的影响是至关重要的。 主轴需要经常保养,这样才能保证机床加工的稳定性和精度。主轴在加工过程中,会产生高温,降低轴承的工作温度,经常采用的办法是润滑油。润滑方式有,油气润滑方式、油液循环润滑两种。在使用这两种方式时要注意以下几点: 1、在采用油液循环润滑时,要保证主轴恒温油箱的油量足够充分。 2、油气润滑方式刚好和油液循环润滑相反,它只要填充轴承空间容量的百分之十即可。循环式润滑的优点是,在满足润滑的情况下,能够减少摩擦发热,而且能够把主轴组件的一部分热量给以吸收。对于主轴的润滑同样有两种放式:油雾润滑方式和喷注润滑方式。一、不带变频的主轴不转,故障原因以及处理方法:

动平衡等级

ISO 1940 是世界公認的平衡等級將平衡等級分為11等級以2.5倍為增量。其所表示的單位是(g-mm/kg),代表不平衡的質量位於轉子半徑上相對於轉子總重量的值, 也代表不平衡量對於轉子中心的偏心距離。 JIS B0905-1992 動平衡良好的 單位mm/s 等級 (備考)各自動平衡的良好等級G是包含從良好動平衡上限數值到零的良好動平衡範圍。 -------------------------------------------------------------------------------- 動平衡的級數設定是根據ISO1940的標準, 其關係如下: 不平衡量u : g-mm M= 轉子質量(kg) 9549= 常數N= 轉速r.p.m. G= (Nxu)/(9549xM) u= 不平衡量g-mm M= 轉子質量(kg) 9549= 常數 N= 轉速r.p.m. 不平衡量是讓不平衡發生的重量m和回轉中心到此不平衡重量的距離e相乘的結果來做表示。 因此,其單位是重量和距離相乘的積所以變為是【g?cm】或是【g?mm】。在下圖m是不平衡的質量,e是從回轉中心到m距離, M是轉子的質量。 此時的不平衡量U是為 U=m x e 例如,m=0.2g、e=1.0cm的話

U=0.2gx1.0cm =0.2g?cm =2.0g?mm 注意:此時的不平衡量和回轉數無關係 是以物理量所做的定義 何謂「不平衡」 A、靜不平衡(Static unbalance):轉子的重心偏離於軸心線(中心線)的位置。 在固定不動的轉子上,這是很容易就可以被測得出來的。原因是在這位置上面,離心力是垂直到軸線上的。在一個穩定可靠的環境中,我們可以選擇任何一個平面輕易地來做為消除這一個不平衡的平面。但是這個靜平衡力有可能變成其他的動不平衡力(couple unbalance)。 B、力偶不平衡(Couple unbalance):轉子的重心線延著軸線的位置產生。 這種力只能在旋轉中的轉子中測得。因為它產生於旋轉期間傾斜的一瞬間,在無側向力時, 這兩個不平衡質量所產生的離心力能相互抵消。 C、動不平衡(Dynamic unbalance):是靜不平衡與力偶不平衡的結合。 參考附表

机床主轴双平面在线动平衡系统的设计

万方数据

万方数据

2009年第10期?工艺与装备? 位置时,重新与主轴啮合,进入系统正常监控状态。 4在线动平衡系统软件设计 在线动平衡系统软件部分主要包含3个模块,分别为:控制参数输入模块、初始状态测试模块、在线监控模块,系统界面如图3所示。 图3在线动平衡控制系统界面 控制参数输入模块需要输入的参数主要有:四个平衡盘固有不平衡量的大小(单位为:g?mm,为计算和调整方便,设计四个平衡盘固有不平衡量大小相等)、平衡精度等级(作为控制系统监控标准)、平衡盘啮合齿的齿距(决定了平衡盘角度调整精度)、各传感器的灵敏度及放大系数(用于实际振动量的计算)等。这些参数作为基本控制参数被设定后存入系统。并作为参数用于后续计算与控制。 初始状态测试模块主要用于试重实验、影响系数的计算与优化。其主要功能有: 原始振动量的测量,调整平衡盘1、2相对主轴基准相位分别为0。和180o,它们在平面A内合成向量为0;调整平衡盘3、4相对主轴基准相位分别为00和1800,它们在平面曰内合成向量为0。然后测量测点1、2的振动量,经多次测量与幅值取平均后作为两测点的原始振动量存储于系统并显示。 第一次试重与影响系数的计算。保持调整平衡盘1、3、4位置不变,调整平衡盘2相对主轴基准点的相位为120。(可根据需要设定)。此时平衡盘1、2在平面A内合成向量大小为平衡盘固有不平衡量,相位为60。。平衡盘3、4在平面B内合成向量为0。然后测取测点1、2振动的平均幅值,根据影响系数法原理计算平面A相对与测点1、2的影响系数。并存储于系统和显示。 第二次试重与影响系数的计算,保持调整平衡盘l、3位置不变,调整平衡盘2相对主轴基准点的相位为1800,平衡盘4相对主轴基准点的相位为1200(可根据需要设定)。此时平衡盘3、4在平面B内合成向量大小为平衡盘固有不平衡量,相位为600。平衡盘1、2在平面A内合成向量为0。然后测取测点l、2振动的平均幅值,根据影响系数法原理计算平面B相对与测点1、2的影响系数。并存储于系统和显示。 在线监控模块,系统实时监测测点1、2在某时间段内的振动幅值,当监测值超过设定精度标准要求时,系统发出报警并显示当前幅值,同时控制系统根据双平面影响系数法自动计算出在平面A、曰上需要施加的平衡量大小和相位的理想值并显示。根据该理想值计算平衡盘1、2、3、4的最佳实际调整角度,并显示它们在A、B面上的合成向量大小和相位。然后系统发出各调整信号,由驱动系统对各平衡盘位置进行调整,当调整位置与测点1、2的残余振动符合要求时,系统重新进入在线监控状态,并显示残余振动大小、相位、平衡效率等信息。否则,系统继续对平衡盘位置进行调整。5结束语 机床主轴在线动平衡技术具有避免频繁开关机试重,提高平衡效率和精度,同时可根据机床加工工况的改变等因素的影响,对不平衡量实施自动平衡的优点。本文在分析国内外在线动平衡技术的基础上,提出了一种气动摩擦式在线动平衡装置的设计,该装置具有结构简单、轴向尺寸小,在现有机床上较容易实现。并可用于单、双平面在线动平衡系统等特点。同时,基于双平面影响系数法,文中提出了一种机床主轴双平面在线动平衡系统的构成与控制策略。 [参考文献] [1]叶能安,余汝生.动平衡原理与动平衡机[M].武汉:华中工学院出版社。1985. [2】周保堂,贺世正,王宇,等.在线自动平衡的平衡头研究[J].石油化工设备技术,1994,15(3):42—45. [3】汪希萱。曾胜.电磁式在线自动平衡系统及其动平衡方法研究[J].热能动力工程,2003,18(1):53—59. [4]陶利民.转子高精度动平衡测试与自动平衡技术研究[D】.北京:国防科技大学,2006. [5]伍良生,贺江波,张云禧,等.高速主轴在线动平衡机构驱动器设计[J].北京工业大学学报,2007,33(12):1233—1238.[6]伍良生,张云禧,周大帅,等.以DSP为核心的高速主轴在线动平衡控制器的设计[J].现代制造工程,2008(8):12—15.(编辑赵蓉) ?8l? 万方数据

相关主题
文本预览
相关文档 最新文档