当前位置:文档之家› 数控机床主轴振动或噪声太大的检查方法和诊断

数控机床主轴振动或噪声太大的检查方法和诊断

数控机床主轴振动或噪声太大的检查方法和诊断
数控机床主轴振动或噪声太大的检查方法和诊断

数控机床主轴振动或噪声太大的检查方法和诊断

首先要区别噪声及振动发生在主轴机械部分还是电气部分。

检查方法有:

1、在减速过程中发生,一般是由驱动装置造成的,如交流驱动中的再生回路故障。

2、在恒转速时,可通过观察主轴电动机自由停车过程中是否有噪声和振动来区别,如存在,则主轴机械部分有问题。

3、检查振动的周期是否与转速有关,如无关,一般是主轴驱动装置未调整好;如有关,应检查主轴机械部分是否良好,测速装置是否不良。

诊断方法有:

1、电气方面的原因:

(1)、电源缺相或电源电压不正常。

(2)、控制单元上的电源开关设定(50/60Hz切换)错误。

(3)、伺服单元上的增益电路和颤抖电路调整不好(或设置不当)。

(4)、电流反馈回路未调整好。

(5)、三相输入的相序不对。

2、机械方面的原因:

(1)、主轴箱与床身的连接螺钉松动。

(2)、轴承预紧力不够或预紧螺钉松动,游隙过大,使之产生轴向窜动,应重新调查。

(3)、轴承损坏,应更换轴承。

(4)、主轴部件动平衡不好,应重新调整动平衡。

(5)、齿轮有严重损伤,或齿轮啮合间隙过大,应更换齿轮或调整啮合间隙。

(6)、润滑不良,润滑油不足,应改善润滑条件,使润滑油充足。

(7)、主轴与主轴电机的连接皮带过紧,应移动电机座调整皮带使松紧度合适。(8)、连接主轴与电机的连轴器故障。

(9)、主轴负荷太大。

数控机床故障诊断复习题有答案

1、数控机床按控制运动轨迹可分为点位控制、(直线控制)和(轮廓控制)等几种。 2、数控机床的核心是(数控装置)其作用是处理输入信号并输出(指令)。 3、机床自运行考验的时间,国家标准9061-88中规定,数控车床为(16)小时,加工中心为(32)小时。都要求(连续)运转。 4、数控机床内部干扰源主要来自(电控系统的设计),(结构布局)及生产工艺缺陷。 5、数控机床的进给伺服系统由(伺服电路)(伺服驱动)(机械传动机构)及执行部件组成。 6、干扰是指有用信号与噪声信号两者之比小到一定程度时,(噪声信号)影响到数控系统正常工作这一物理现象。 7、滚珠丝杆螺母副间隙调整方式:(垫片式)(螺纹式)(齿差式)。 8、步进电机的驱动电路一般有(环形分配器)和(功率放大器)两部分。 9、机械磨损曲线包含(磨合阶段)、(稳定磨损阶段)、(急剧磨损阶段)三个阶段组成。 10、数控机床的自动换刀装置中,实现(刀库)和机床(主轴)之间传递和装卸刀具的装置称为刀具交换装置。 11、滚珠丝杠螺母副,按滚珠返回的方式不同可以分为(内循环式)和(外循环式)两种。 12、数控机床常用的刀架运动装置有:(四方转塔刀架)(机械手链式刀架)(转塔式刀架)。 13、数控机床故障分为(突发性故障)和(渐发性故障)两大类。 14、数控机床电路包括(主电路)、(控制电路)和信号电路。 15、导轨按其摩擦性质可以分为(滑动导轨)、(滚动导轨)和(静压导轨)三大类。 16、选择合理规范的(拆卸)和(装配)方法,能避免被拆卸件的损坏,并有效地保持机床原有精度。 17、数控功能的检验,除了用手动操作或自动运行来检验数控功能的有无以外,更重要的是检验其(稳定性)和(可靠性)。 18、提高开环进给伺服系统精度的补偿措施有(传动间隙)补偿和(螺距误差)补偿。 19、提高进给运动低速平稳性的措施有:降低(执行部件质量)减少(动静摩擦之差)提高(传动刚度) 20、滚动导轨的预紧有两种方法,即采用(过盈配合)采用(调整元件) 21、数控机床的可靠性指标有(平均无故障时间)、(平均故障排除时间)和(有效度)。 22、故障诊断基本过程是:(先内后外)、(先机械后电气)、(先静后动)、(先公用后专用)、先简单后复杂、先一般后特殊。 23、数控机床自动换刀装置的形式有(回转刀架换刀)、(更换主轴头换刀)和(带刀库的自动换刀)。 24、各类信号接地要求包括:系统信号、直流信号、(数字信号)和(模似信号)。 25、机械手夹持刀具的方法有(柄式)夹持和(法兰盘)夹持两种。 26、数控系统软件类故障发生的原因可能有:误操作、(供电电池电压不足)、(干扰信号)、软件死循环、操作不规范和(用户程序出错)等等。 27、导轨副的维护一般包括(导轨副的润滑)、(滚动导轨副的预紧)和(导轨副的防护)。 28、在加工中心等机床上,由于自动换刀、精密镗孔加工等需要,往往需要主轴系统具有(定向准停)控制功能,此时,在机床上需安装(磁接近开关)或(脉冲编码器)等检测元件。 29、数控机床的精度检验内容包括(几何精度)、(定位精度)和(切削精度)。 30、故障自诊断技术是当今数控系统的一项十分重要的技术,数控系统的自诊断技术分为(启动自诊断)、(在线诊断)和(离线诊断)。

数控机床故障诊断与维修考试模拟题及答案培训资料

模拟考试试卷A 2、数控机床机械故障诊断包括对机床运行状态的识别、预测和监视三个方面的内容。其实用诊断方法有看、问、听、嗅触等。 3、点检就是按有关文件的规定,对数控机床进行定点、定时 、的检查和维护。 1、数控机床最适用于复杂、高精、多种批量尤其是单件小批量的机械零件的加工。() 2.在工件或刀具自动松夹机构中,刀杆通常采用7:24的大锥度锥柄。() 3.凡是包含测量装置的数控机床都是闭环数控机床。() 4.数控机床中内置PLC的CPU与数控系统的CPU是同一CPU。() 5.数控机床电控系统包括交流主电路、机床辅助功能控制电路和电子控制电路,一般将前者称为“弱电”,后者称为“强电”。() 6.对数控机床的各项几何精度检测工作应在精调后一气呵成,不允许检测一项调整一项,分别进行。() 7.用户参数在调机或使用、维修时是不可以更改的,这些参数改好后,应将参数封锁住。() 8.数控机床中,所有的控制信号都是从数控系统发出的。() 9.数控机床是在普通机床的基础上将普通电气装置更换成CNC控制装置。() 10.常用的间接测量元件有光电编码器和旋转变压器。() 1.数控机床是在诞生的。 ( )。 A.日本 B. 美国 C. 英国 D. 中国 2.数控机床主轴驱动应满足: ( )。 A.高、低速恒转矩 B.高、低速恒功率 C.低速恒功率高速恒转矩 D.低速恒转矩高速恒功率 3.故障维修的一般原则是: ( )。 A.先动后静 B.先内部后外部 C.先机械后电气 D.先特殊后一般 4.数控机床工作时,当发生任何异常现象需要紧急处理时应启动:()。 A.程序停止功能 B.暂停功能 C. 紧停功能 D.应急功能 5.数控机床如长期不用时最重要的日常维护工作是:()。 A.清洁 B. 干燥 C. 通电 D. 维修模拟考试试卷B1、数控机床最适用于复杂、

数控机床的故障分析及消除措施

山东广播电视大学 毕业论文(设计)评审表题目___数控机床的故障分析及消除措施 姓名孙中波教育层次专科 学号省级电大山东广播电视大学专业市级电大泰安广播电视大学指导教师于婷教学点宁阳

目录 摘要与关键词 (3) 1、引言 (3) 2、数控机床故障诊断分析 (3) 2.1数控机床的故障规律 (3) 2.2数控机床故障诊断的一般步骤 (4) 2.3数控机床的常用检修方法 (5) 3、数控机床常见故障诊断与维修 (6) 3.1数控机床机械结构故障诊断与维修 (6) 3.2常见伺服系统故障及诊断 (11) 3.3数控机床P L C故障诊断方法 (13) 4、数控机床常见故障诊断及维修实例 (14) 结论 (16) 致谢 (16) 参考文献 (17)

题目:数控机床的故障分析及消除措施 【摘要】本文主要研究数控机床故障分析及消除措施的相关内容。从数控机床故障诊断的基础内容谈起,介绍数控机床故障规律,故障诊断的一般步骤及方法。接着讲述数控机床的常见故障,包括机械故障、伺服系统故障、PLC等电气故障。最后通过实例具体介绍数控机床故障产生后分析处理的过程。从而得知,数控机床维修是一门复杂的技术,要熟悉数控机床的各个部分,理论加实践,提高工作效率。 【关键词】数控机床、故障、诊断、维修 1 引言 数控技术是现代机械制造工业的重要技术装备,也是先进制造技术的基础技术装备。随着电子技术的不断发展,数控机床在我国的应用越来越广泛,但由于数控机床系统及其复杂,又因大部分具有技术专利,不提供关键的图样和资料,所以数控机床的维修成为了一个难题。论文将涉及数控机床简单介绍、故障现象描述或给出典型实例、故障的成因的分析和论证、故障诊断过程及消除故障的措施等内容。本论文将参考相关资料,根据自己的实际工作经验进行编写,力求为广大数控机床维修者提供可借鉴的经验。 2 数控机床故障诊断分析 数控机床是个复杂的系统,一台数控机床既有机械装置、液压系统,又有电气控制部分和软件程序等。组成数控机床的这些部分,由于种种原因,不可避免地会发生不同程度、不同类型的故障,导致数控机床不能正常工作。这些原因大致包括:机械锈蚀、磨损和失效;元器件老化、损坏和失效;电气元件、接插件接触不良;环境变化,如电流或电压波动、温度变化、液压压力和流量的波动以及油污等;随机干扰和噪声;软件程序丢失或被破坏等。此外,错误的操作也会引起数控机床不能正常工作。数控机床维修的关键是故障的诊断,即故障源的查找和故障定位。一般讲根据不同的故障类型,采用不同的故障诊断方法。 2.1数控机床的故障规律: 在整个使用寿命期,根据数控机床的故障频度大致分为 3 个阶段,即早期故障期、偶发故障期和耗损故障期。 1.早期故障期:早期故障期的特点是故障发生的频率高,但随着使用时间的增加

数控机床机械故障诊断及处理

数控机床机械故障诊断及处理 梁毅陈功福孙继 (中国工程物理研究院机械制造工艺研究所,四川绵阳621900) MechanicalTroublesDiagnosisandMaintenanceMethodsofNCMachine LIANGYi,CHENGongfu,SUNji (InstituteofMachineryManufacturingTechnology,ChinaAcademyof EngineeringPhysics,Mianyang621900,CHN) 机床在运行过程中,机械零部件受到力、热、摩擦及磨损等多种因素的作用,使传动副之间的间隙加大,运动件间的联接松动,产生相互撞击、振动,直接影响机床的传动精度和工件的加工质量,严重时将会损坏零部件,或者产生机械结构变形,致使执行机构不能完成功能任务或达不到质量要求。其故障主要分为动作性故障、功能性故障、结构性故障和使用性故障。现结合在维修中遇到的实例分析前三类机械故障的表现形式及其故障诊断与处理方法。 1动作性故障 动作性故障主要指机床各执行部件动作故障,如刀具夹不紧或松不开,刀库刀盘不能定位或不能被松开,旋转工作台不转等,这类故障一般有报警提示。诊断这类故障,需要根据报警提示的内容和执行部件的动作原理及顺序进行相关的检查,找到故障点后对产生故障点的零部件进行修复或更换即可。 故障现象1:数控立车换刀,刀库选刀时出现机械撞击的声音,选刀未完成就停止了。 故障分析与处理:根据现场观察可能是选刀时刀杆的四方块在圆形的选刀槽中的位置偏差引起与选刀槽之间的摩擦撞击。如果x轴回参考点时位置发生变化,就可能使拉刀杆的四方块在选刀槽中的位置发生偏移而与选刀槽的边沿发生撞击。修改x轴参考点栅格偏移量,使刀杆的四方块在选刀槽中的位置居中。选刀时仍出现上述故障,并且有时选刀未完成就停止,手动旋转刀库都不能动弹。由于刀库罩的遮挡,不能观察选刀的动作,因此拆卸该罩,这时观察选刀动作发现选刀时液压拔销不到位,从而出现液压拔销与刀库盘发生摩擦撞击,有时被机械卡死。而液压拔销是通过液压缸的活塞推动连杆机构,液压缸的活塞与连杆之间是通过螺纹连接起来的,如图1所示。该螺纹由于长时间的运动及振动引起活塞上的销钉脱落而 ?146?发生移位,使得活塞与连杆之问的距离变长,而液压缸的移动距离是固定的,因此连杆的移动距离变短,这样销子不能完全从销钉孔中被拔出而出现上述故障。通过反复调整活塞与连杆机构的长度后选刀正常,并上好销钉,故障再也没出现。 刀盘拔镑螺母保持弹簧 图1刀盘液压拔镇示意图 叠 故障现象2:数控电子速焊机的旋转工作台旋转时出现30号报警(C轴驱动错误)。 故障分析及处理:该旋转工作台是由直流伺服电动机驱动的,由松下的驱动器驱动,规格为RTStri10A/60V。电动机速度经变速箱减速后带动旋转工作台,因此根据故障现象分析电气、机械故障均有可能。打开控制柜发现C轴的空开Q39跳闸,合上后再让C轴运转,瞬间测得电动机电流为12A,已超过驱动器的最大电流10A,致使Q39仍然跳闸。据此判断可能是驱动器故障,或电动机故障,或减速器故障。让电动机与减速器脱开空运转正常,测得电动机电流为0.7A,因此故障有可能是机械故障,也可能是驱动器或电动机带负荷的能力不够所致。由于x、y、C三个轴的驱动器完全一致,因此把l,轴的驱动器与c轴的驱动器互换,结果y轴运行正常,因此排除驱动器故障。该旋转工作台有高、低速两档,从减速器电动机侧手动盘两档对比发现高速档比低速档明显费劲。据此判断可能是高速档减速器故障。整体拆下该变速器,再次手动盘减速器很沉。由于没有该变速器的资料,不清楚内部结构,由CT机测出其内部结构知道该减速器 为行星齿轮的减速器。拆卸该减速器,没发现齿损,也 脚到200童8茎翁I磐 \~/’十■‘M 万方数据

数控机床故障诊断与维修现状和发展趋势

数控机床故障诊断与维修现状和发展趋势 数控机床故障诊断数控机床是个复杂的系统,组成数控机床的这些部分,由于种种原因,不可避免地会发生不同程度、不同类型的故障,导致数控机床不能正常工作。故障诊断是进行数控机床维修的第一步,它不仅可以迅速查明故障原因,排除故障,也可以起到预防故障发生与扩大的作用。 一、数控机床故障诊断的基本方法 数控设备是一种自动化程度较高,结构较复杂的先进加工设备,是企业的重点、关键设备。要发挥数控设备的高效益,就必须正确的操作和精心的维护,才能保证设备的利用率。正确的操作使用能够防止机床非正常磨损,避免突发故障;做好日常维护保养,可使设备保持良好的技术状态,延缓劣化进程,及时发现和消灭故障隐患,从而保证安全运行,故障诊断是进行数控机床维修的第一步,它不仅可以迅速查明故障原因,排除故障,也可以起到预防故障的发生与扩大的作用。一般来说,数控机床的故障诊断方法主要有以下几种: (一)常规诊断法 对数控机床的机、电、液等部分进行的常规检查,通常包括:(1) 检查电源的规格(包括电压、频率、相序、容量等)是否符合要 求;(2)CNC、伺服驱动、主轴驱动、电机、输入/输出信号的连接是否正确、可靠;(3)CNC、伺服驱动等装置内的印制电路板是否安装牢固,接插部位是否有松动;(4)CNC、伺服驱动、主轴驱动等部分的设定端、电位器的设定、调整是否正确;(5)液压、气动、润滑部件的油压、气压等是否符合机床要求;(6)电器元件、机械部件是否有明显的损坏。(二)状态诊断法 通过监测执行元件的工作状态判定故障原因。在现代数控系统中伺服进给系统、主轴驱动系统、电源模块等部件主要参数的动、静态检测,及数控系统全部输入输出信号包括内部继电器、定时器等的状态,也可以通过数控系统的诊断参数予以检查。(三)动作诊断法通过观察、监视机床的实际动作,判断动作不良部位,并由此来追溯故障源。 (四)系统自诊断法 这是利用系统内部自诊断程序或专用的诊断软件,对系统内部的关键硬件以及系统的控制软件进行自我诊断、测试的诊断方法。主

数控机床常见故障诊断及维修

数控机床常见故障诊断及维修 摘要:数控机床是集机、电、液、气、光高度一体化的现代技术设备,数控机床维修技术不仅是保障数控机床正常运行的前提,对数控机床的发展和完善也起到了巨大的推动作用。数控机床出现的故障多种多样,机械磨损、机械锈蚀、机械失效、加工误差大、工件表面粗糙度大、插件接触不良、电子元器件老化、电流电压波动、温度变化、干扰、滚珠丝杠副有噪声、软件丢失或本身有隐患、灰尘、操作失误等都可导致数控机床出故障。 关键词:数控机床故障诊断维修机械电子 数控机床是一种集自动控制、计算机、微电子、伺服驱动、精密机械等技术于一身的高技术产物。一旦系统的某些部分出现故障,就势必使机床停机,影响生产。所以,如何正确维护设备和出现故障时迅速诊断,确定故障部位,及时排除解决,保证正常使用,是保障生产正常进行的必不可少的工作。 1 数控机床故障诊断原则 1.1 先外部后内部 数控机床是集机械、液压、电气为一体的机床,故其故障的发生也会由这三者综合反映出来。维修人员应先由外向内逐一进行排查,尽量避免随意地启封、拆卸,否则会扩大故障,使机床大伤元气,丧失精度,降低性能。 1.2 先静后动

先在机床断电的静止状态,通过了解、观察测试、分析确认为非破坏性故障后,方可给机床通电。在运行工况下,进行动态的观察、检验和测试,查找故障。而对破坏性故障,必须先排除危险后,方可通电。 1.3 先简单后复杂 当出现多种故障互相交织掩盖,一时无从下手时,应先解决容易的问题,后解决难度较大的问题。往往简单问题解决后,难度大的问题也可能变得容易。 1.4 先机械后电气 一般来说,机械故障较易发觉,而数控系统故障的诊断则难度较大些。在故障检修之前,首先注意排除机械性的故障,往往可达到事半功倍的效果。 2 数控机床常见故障分析 根据数控机床的构成,工作原理和特点,将常见的故障部位及故障现象分析如下。 2.1 数控系统故障 2.1.1 位置环这是数控系统发出控制指令,并与位置检测系统的反馈值相比较,进一步完成控制任务的关键环节。它具有很高的工作频度,并与外部设备相联接,容易发生故障。 常见的故障有: ①位控环报警:可能是测量回路开路;测量系统损坏,位控单元

数控机床故障诊断及排除方法

数控机床故障诊断及排除方法 发表时间:2012-01-20T10:02:09.953Z 来源:《时代报告(学术版)》2011年10月供稿作者:高攀[导读] 例如:日本的FANUC系统的诊断指导专家系统是由知识库、推理计算机和人工控制器组成。 高攀 (重庆工贸职业技术学院邮编400800) 中图分类号:TP29 【摘要】数控机床是一种高效的自动化机床,涵盖了计算机技术、自动化技术、伺服驱动、精密测量和传感器技术等各个领域的新的技术成果,是一门新兴数字程序控制机床。 【关键词】数控机床;故障;排除方法; 不同的数控机床,其结构和性能有很大的区别,但在故障诊断上有它的共性。通过对这些共性的分析得出一些对数控机床故障诊断原则、方法及故障排除方法。以下逐一介绍: 一、数控机床故障诊断原则 1. 先外部后内部 数控机床是机械、液压、电气一体化的机床,所以故障的发生必然要从这三者之间综合反映出来。所以要求维修人员掌握先外部后内部的原则,即当数控机床发生故障后,维修人员应采用望、闻、听、问等方法,由外向里逐一进行检查。 例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。 外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。 例如:台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414#和410#报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。 2. 先机械后电气 由于数控机床是一种自动化程度高,技术复杂的先进机械加工设备。机械故障较易发现,而系统故障诊断难度要大一些。 3. 先静后动 维修人员要做到先静后动,不可盲目动手,应先询问操作人员故障发生的过程及状态,查看说明书、资料后方可动手查找故障原因,继而排除故障, 4. 先公用后专用 公用性问题会影响到全局,而专用性问题只影响局部。 5. 先简单后复杂 当出现多种故障相互交织掩盖、一时无从下手时,应先解决容易的问题,后解决较大的问题。常常在解决简单的故障的过程中,难度大的问题也可能变的容易,理清思路,将难度较大的变得容易一些。 6. 先一般后特殊 在排除某一故障时,要先考虑最常见的可能原因,然后再分析很少发生的特殊原因。 二、数控系统自诊断技术及故障排除方法 所谓系统诊断技术,就是利用数控装置中的计算机及相关运行诊断软件进行各种测试。 1. 自诊断技术 1) 开机自诊断:数控系统通电后,设备内部诊断软件会自动对系统中各种元件如CPU、RAM及各应用软件进行逐一检测并将检测结果显示出来,如检测发现问题,系统会显示报警信息或发出报警信号。开机自诊断通常会在开机一分钟之内完成。有时开机诊断会将故障原因定位到电路板或模块上,但也经常仅将故障原因定位在某一范围内,这时维修人员需查找相关维修手册根据提示找到真正故障原因并加以排除。 2) 运行自诊断:运行自诊断也称在线自诊断,是指数控系统正常工作时,运行内部诊断程序,对系统本身、PLC、位置伺服单元以及与数控装置相连的其它外部装置进行自动测试、检查,并显示有关信息,这种诊断一般会在系统工作时反复进行。 3) 脱机诊断:当系统出现故障时,首先停机,然后使用随机的专用诊断纸带对系统进行脱机诊断。诊断时先要将纸带上的程序读入RAM系统中,计算机运行程序进行诊断,从而判定故障部位,这种诊断在早期的数控系统中应用较多。 2. 人工诊断技术 数控系统的故障种类很多,而自诊断往往不能对系统的所有部件进行测试,也不能将故障原因定位到具体确定的元器件上,这时要迅速查明原因就需要采用人工诊断方法。人工诊断方法有很多种,最常用的有:功能程序测试法、参数检查法、备件置换法、直观法、原理分析法等,现简介如下: 1) 功能程序测试法:这种方法将数控系统中的G、M、S、T、功能的全部指令编成一个测试程序,穿成纸带或存储到软盘上在进行诊断时运行这个程序,可快速判定哪个功能出现问题,这种方法一般在机床出现随机性故障时使用,也可用于设备闲置时间较长重新投入使用时测试用。 2) 参数检查法:一般系统的参数是存放在RAM中的,一旦出现干扰或其它原因会造成参数丢失或混乱,从而使系统不能正常工作,这时应根据故障特征,检查和核对有关参数,在排除某些故障时,有时还需对某些参数进行调整。

数控机床故障诊断与维修基本概念(上)

数控机床故障诊断与维修第1章数控机床故障诊断与维修的基本概念 1.1 数控机床故障诊断与维修的意义 一、数控机床的组成 数控机床由数控装置、伺服驱动装置、检测反馈装置和机床本体四大部分组成,再加上程序的输入/输出设备、可编程控制器、电源等辅助部分。 1. 数控装置(数控系统的核心)由硬件和软件部分组成,接受输入代码经缓存、译码、运算插补)等转变成控制指令,实现直接或通过PLC对伺服驱动装置的控制。 2. 伺服驱动装置是数控装置和机床主机之间的联接环节,接受数控装置的生成的进给信号,经放大驱动主机的执行机构,实现机床运动。 3. 检测反馈装置是通过检测元件将执行元件(电机、刀架)或工作台的速度和位移检测出来,反馈给数控装置构成闭环或半闭环系统。 4. 机床本体是数控机床的机械结构件(床身箱体、立柱、导轨、工作台、主轴和进给机构等。 二、数控机床故障诊断 1.故障的基本概念 故障——数控机床全部或部分丧失原有的功能。 故障诊断——在数控机床运行中,根据设备的故障现象,在掌握数控系统各部分工作原理的前提下,对现行的状态进行分析,并辅以必要检测手段,查明故障的部位和原因。提出有效的维修对策。 2.故障的分类 1)从故障的起因分类 关联性故障——和系统的设计、结构或性能等缺陷有关而造成(分固有性和随机性)。 非关联性故障——和系统本身结构与制造无关的故障。 2)从故障发生的状态分类 突然故障——发生前无故障征兆,使用不当。 渐变故障——发生前有故障征兆,逐渐严重。 3)按故障发生的性质分类 软件故障——程序编制错误、参数设置不正确、机床操作失误等引起。 硬件故障——电子元器件、润滑系统、限位机构、换刀系统、机床本体等硬件损坏造成。 干扰故障——由于系统工艺、线路设计、电源地线配置不当等以及工作环境的恶劣变化而产生。 4)按故障的严重程度分类

机床主轴回转误差运动测试(精)

综合实验一机床主轴的回转误差运动测试 1、实验目的 加工高精度的机械零件,对机床主轴的回转精度有非常高的要求。测量机床主轴的误差运动可以了解机床主轴的回转状态,分析误差产生的原因。通过机床主轴回转误差运动测试,要求学生: (1) 了解机床的主轴回转误差运动的测试方法。 (2) 熟悉传感器的基本工作原理。 (3) 掌握传感器的选用原则及测试系统的基本组成。 (4) 熟悉并掌握仪器的基本操作方法。 (5) 基本掌握数据处理与图像分析方法。 2、实验原理 本实验使用两种方法进行误差运动测试: (1) 带机械消偏的单向法直角座标显示的误差运动测试,见本实验的背景材料中的图 1-9。 (2) 电气消偏单向法圆图像显示的回转轴误差运动测试,见本实验的背景材料中的图 1-13。 3、实验对象 以C6140普通车床的回转主轴为研究对象,测试其在回转情况下的误差运动。 根据测试数据,用图像分析方法表示误差运动,分析误差运动产生的原因。 4、主要实验仪器和设备 (1) C6140普通车床 (2) 回转精度测试仪 (3) 涡流测振仪 (4) 信号发生器 (5) 双踪示波器 (6) 数字式万用表 (7) 可调偏心的测量装置 5、实验步骤 5.1 带机械消偏的单向法直角座标显示的回转轴误差运动测试 (1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作用及操 作方法; (2) 按照原理框图正确地将系统中各仪器的信号线连通;

(3) 调整标准盘1(作为补偿信号)和标准盘2(作为误差的测量信号)的偏心量,标准盘2 的偏心量e2应尽可能小,仅稍大于被测量轴回转误差值,以保证得到信号即可,偏心量一般调整到0.03mm~0.05mm;标准盘1的偏心量e1应尽可能调大,大到使被测量轴回转误差值相对于偏心量可以忽略不计,及得到一个接近于纯偏心信号的光滑曲线,但因受涡流传感器工作间隙的限制,偏心量无法无限制地加大,一般调到0.40mm~0.60mm即可,并使e1和e2相差180o; (4) 经指导老师检查系统连接正确后,接通电源预热仪器; (5) 按测振仪使用要求调整好涡流传感器的工作间隙; (6) 调整好机床转速,启动机床; (7) 调整测振仪灵敏度,使之满足下面的关系式:e1.k1传感.k1测振仪= e2.k2传感.k2测振仪 (8) 将满足以上关系式的两路输出信号经加法器(借用回转精度测试仪后面板上的加 法器,此时应将总接口插板抽出)相加,在示波器上得到误差曲线,曲线上最高点与最低点的高度差即为圆度误差的相对值,曲线最大的垂直度即为粗糙度的相对值; (9) 标定,方法为:用正弦信号发生器输出一标准正弦信号,使其幅值为测振仪当前 档位(如30um档)的满量程输出的电压值,将该正弦信号送入加法器输入端,在示波器上得到一幅值为A mm的正弦信号,则该测量系统的标定系数为30um/A mm; (10) 求出绝对误差=相对误差(mm)×30um/A mm; (11) 停机床、关仪器,并拆除仪器的所有连接线,整理现场。 5.2 电气消偏单向法圆图像显示的回转轴误差运动测试 (1) 按照仪器的操作说明,熟悉系统所用各仪器控制面板上的旋钮、按键的作用及操 作方法; (2) 按原理框图正确连接好系统,仅用误差测量信号(即标准盘2的信号),并将回转 精度测试仪的总接口板插入插座中; (3) 经指导老师检查连线无误后,接通电源预热仪器; (4) 调整好机床转速,启动机床; (5) 调整基圆: (6) 回转精度测试仪产生基圆的原理:将测振仪的输出信号接入回转精度测试仪的S 输入端,由带通III从该信号选出与主轴同频的一次谐波,为了消除机床振动所引起的一次谐波的幅值变化对基圆的影响,用限幅放大器对一次谐波进行限幅,再用带通I选出稳定的一次谐波,然后将一次谐波分为两路,一路经移相器B移相90o,另一路不移相,将两路信号送示波器垂直输入端(Y端)和水平输入端(X端)叠加而产生基圆。 (7) 基圆的调整:首先根据机床转速n确定带通III和带通I所要通过的一次谐波的频 率。 (8) 调节带通III的频率粗调开关,使一次谐波的频率包括在开关所指的频率范围内, 如机床n=900转/分,则频率f=900/60=15Hz,粗调开关置在30位置。调整频率微调电位器,直到示波器上出现的正弦信号的幅值为最大(将带通III的输出端与示波器的Y端相连)。带通I的调整与带通III相同。 (9) 将示波器的X、Y端分别接回转精度测试仪的X、Y输出端,调节移相器B的移 相旋钮,使输出输入端相差90o(在示波器上得到一正椭圆图形),再调整增益电位器改变其幅值,在示波器上得到一个真圆,这个圆就是基圆。 (注意:调整基圆时一定将移相器A的增益关断)

数控机床机械结构的故障诊断及其维修(doc 11页)

数控机床机械结构的故障诊断及其维修(doc 11页)

第4章数控机床机械结构的故障诊断与维修4.1 数控机床机械结构概述 数控在GB中的定义是“用数字化信号对机床运动及其加工过程进行控制的一种方法”。现代数控机床是集高新技术于一体的典型机电一体化加工设备。数控加工设备主要分切削加工、压力加工和特种加工(如数控电火花加工机床等)3类。切削加工类数控机床的加工过程能按预定的程序自动进行,消除了人为的操作误差和实现了手工操作难以达到的控制精度,加工精度还可以用软件来校正和补偿。因此,可以获得比机床精度还要高的加工精度及重复定位精度;工件在一次装夹后,能先后进行粗、精加工,配置自动换刀装置后,还能缩短辅助加工时间、提高生产率;由于机床的运动轨迹受可编程的数字信号控制,因而可以加工单件和小批量且形式复杂的零件,生产准备周期大为缩短。综上所述,数控机床具有精度高、效率高、自动化程度高和柔性好的特点。 从数控机床的生产现状和发展趋势看,由于微电子技术、信息处理技术等新技术、新工艺在机床行业的渗透和应用,它与普通机床相比不仅在机械结构性能方面发生了“质”和“形”的变化,且其外观造型也形成了自身独特的风格和特点。 数控机床机械结构设计的特点 数控机床虽然也有普通机床所具有的床身和立柱、导轨、工作台、刀架等部件。但为了与控制系统的高精度、高速度控制相匹配,对机床主机部分的结构设计还提出了高精度、高刚度、低惯量、低摩擦、无间隙、高谐振频率、适当的阻尼比等要求。由于机械结构形式是体现其性能的具体手段,是实现性能的核心因素(当然结构也受材料和工艺的影响),因此,数控机床的关键部件在结构设计中也有了重大变化。

主轴回转精度的测定

实验主轴回转精度的测定 一、 概述 随着机械制造业的发展,对零件的加工精度要求越来越高,由此对机床精度要求也越来越高。作为机床核心——主轴部件的回转误差运动,直接影响机床的加工精度,它是反映机床动态性能的主要指标之一,在《金属切削机床样机试验规范》中已列为机床性能试验的一个项目。多年来,国内外一直在广泛开展对主轴回转误差运动测量方法的研究,并取得一定的成果。 研究主轴误差运动的目的,一是找出误差产生的原因,另一是找出误差对加工质量影响的大小。为此,不仅对主轴回转误差运动要能够进行定性分析,而且还要能够给出误差的具体数值。 过去流行的测试与数据处理方法,是传统的捷克VUOSO双向测量法和美国LRL单向测量法。前者适用于测试刀具回转型主轴径向误差运动,后者适用于测试工件回转型主轴径向误差运动。两种方法都是在机床空载或模拟加工的条件下,通过对基准球(环)的测量,在示波器屏幕上显示出主轴回转而产生的圆图象。将圆图象拍摄下来便可用圆度样板读取主轴径向误差运动数值。这种测试方法虽然能够在试验现场显示图形,直观性强,便于监视机床的安装调试,但也存在一些不足,如基准钢球的形状误差会复映进去,不能反映切削受载状态,存在一定的原理误差等。所以测量精度难以提高,实际应用受到一定限制。 经过多年的研究,目前主轴误差运动主轴误差运动的测试与数据处理方法有了很大的改进,引入频镨分析理论和FFT变换技术,通过用计算机来进行测量数据处理,使整个测量过程更方便、数据处理更科学、测量结果更正确。 二、 实验目的 1.了解机床主轴回转误差运动的表现形式、定义、评判原则、产生原因及对机床加工精度的影响。 2.懂得主轴回转误差的测量方法及实验原理。 三、 主轴径向误差运动的测试原理及方法 1.主轴回转误差运动 主轴回转时,在某一瞬时,旋转的线速度为零的端点联线为主轴在该瞬时的回转中心线。理想情况下,主铀回转中心线的空间位置,相对于某一固定参考系统应该是不随时间变化的。实际人由于主轴轴颈不圆、轴承存在缺陷、主轴挠曲、轴支承的两端对轴颈中心线不垂直以及振动等原因,使得主轴回转中心线在每一瞬 时都是变动的。因而,在进行测试数据处理时, 往往只能以回转主轴各瞬时回转中心线的空间 平均位置作为回转主轴的“理想”中心线。主 轴瞬时回转中心线的空间位置相对理想中心线 空间位置的偏差,也就是回转主轴的瞬时误差。 瞬时误差的变化轨迹也就称为回转误差运动。 如图2-l所元,若o1o1,……,o i o i为主轴各瞬 图2-1主轴瞬时回转误差 时的回转中心线,oo为它们在空间的平均位置, 即理想回转中心线,那么,δ0,……,δi便是主轴的瞬时回转误差,误差的范围也可大致看成是主铀的回转精度。 可以想象,主轴瞬时回转中心线对其理想中心线的偏移有五种可能,即沿x,y,z三个坐标方向的移动和绕x和y铀的转动。为了完全描述主轴回转中心线的误差,理论上要采

数控机床故障诊断及排除方法

龙源期刊网 https://www.doczj.com/doc/347544241.html, 数控机床故障诊断及排除方法 作者:郭茂滨 来源:《中国新技术新产品》2013年第05期 摘要:作为当今效率非常优秀的自动化机床设备,数控机床包括了多项优秀的技术要 素,文章简要的论述了其问题分析以及处理相关的内容。 关键词:数控机床;故障;排除方法 中图分类号:TG659 文献标识码:A 1 分析问题时要遵循的原则内容 1.1 首先是外在然后是里面 数控机床是机械、液压、电气一体化的机床,因此问题的出现肯定是上述的三项内容的全面体现。因此规定维修者要按照先外在然后里面的规定来开展分析活动,也就是说如果机床出现不利现象的话,工作者要从外面开始逐渐的进行到里面。 外在的硬件活动导致的问题是所有的问题中出现几率较高的。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。该种问题中的一些能够经由报警体系分析。针对常见的数控体系来说,都具备问题诊断以及预警之类的特征。工作者能够结合此类措施减少诊断的领域。虽说个别问题有报警装置,不过不能够体现出全面的的要素。此时就要结合报警内容以及问题状态来研究。 1.2 先分析机械然后分析电气 因为其是一项具有高度的自动化水平的装置。机械的问题比较的易于察觉,但是体系中的问题就相对来讲要困难多了。 1.3 首先是分析静止的然后动态的 工作者应该先进行静止的,进而分析动态的,不能没有目标的胡乱进行,要询问有关人员问题出现的详细情况,查阅相关材料,才能够分析问题的所在,继而研究应对方法。 1.4 先分析共同用途的然后分析专项的 主要是由于前者是关系到整个体系的,而后者只是一个单独的部分的。 1.5 首先分析简单的然后是繁琐的

数控机床机械结构的故障诊断与维修(上)

第4章数控机床机械结构的故障诊断与维修4.1 数控机床机械结构概述 数控在GB中的定义是“用数字化信号对机床运动及其加工过程进行控制的一种方法”。现代数控机床是集高新技术于一体的典型机电一体化加工设备。数控加工设备主要分切削加工、压力加工和特种加工(如数控电火花加工机床等)3类。切削加工类数控机床的加工过程能按预定的程序自动进行,消除了人为的操作误差和实现了手工操作难以达到的控制精度,加工精度还可以用软件来校正和补偿。因此,可以获得比机床精度还要高的加工精度及重复定位精度;工件在一次装夹后,能先后进行粗、精加工,配置自动换刀装置后,还能缩短辅助加工时间、提高生产率;由于机床的运动轨迹受可编程的数字信号控制,因而可以加工单件和小批量且形式复杂的零件,生产准备周期大为缩短。综上所述,数控机床具有精度高、效率高、自动化程度高和柔性好的特点。 从数控机床的生产现状和发展趋势看,由于微电子技术、信息处理技术等新技术、新工艺在机床行业的渗透和应用,它与普通机床相比不仅在机械结构性能方面发生了“质”和“形”的变化,且其外观造型也形成了自身独特的风格和特点。 数控机床机械结构设计的特点 数控机床虽然也有普通机床所具有的床身和立柱、导轨、工作台、刀架等部件。但为了与控制系统的高精度、高速度控制相匹配,对机床主机部分的结构设计还提出了高精度、高刚度、低惯量、低摩擦、无间隙、高谐振频率、适当的阻尼比等要求。由于机械结构形式是体现其性能的具体手段,是实现性能的核心因素(当然结构也受材料和工艺的影响),因此,数控机床的关键部件在结构设计中也有了重大变化。 1.基础部件的结构特点 数控机床的基础件主要包括床身、立柱、工作台等支承件,它们的基本功能是支承承载和保持各执行器官的相对位置。数控机床集粗精加工于一体,既要能够承受粗加工时大吃刀、大走刀的最大切削力、又要能够保证精加工时的高精度。因此,对基础件的结构设计在强度、刚度、抗振性、热变形和内应力等都提出了很高的要求。现行生产的数控机床采用的主要措施有:铸件采用全封闭截面,合理布置内部隔板和肋条,含砂造型或填充混凝土等材料,导轨面加宽,车床采用倾斜的床身和导轨还利于排屑,床身、立柱采用钢质焊接结构,可以明显提高其刚度,根据热对称原则布局还能增加散热隔热效果。 2.主传动系统的结构特点 主传动系统实现各种刀具和工件所需的切削功率,且在尽可能大的转速范围内保证恒功率输出,同时为使数控机床能获得最佳的切削速度,主传动须在较宽的范围内实现无级变速。现行数控机床采用高性能的直流或交流无级调速主轴电机,较普通机床的机械分级变速传动链大为简化。对加工精度有直接影响的主轴组件的精度、刚度、抗振性和热变形性能要求,可以通过主轴组件的结构设计和合理的轴承组合及选用高精度专用轴承加以保证。为提高生产率和自动化程度,主轴应有刀具或工件的自动夹紧、放松、切屑清理及主轴准停机构。最近日本又开发研制了新型的陶瓷主轴,重量轻,热膨胀率低,用在加工中心上,具有高的刚性和精度。

答案 数控机床故障诊断与维修试题

数控机床故障诊断与维修试题 一、填空题(每空1分,共20分) 1、滚珠丝杠螺母副,按滚珠返回的方式不同可以分为(内循环式)和(外循环式)两种。 2、导轨副的维护一般包括(导轨副的润滑)、(滚动导轨副的预紧)和(导轨副的防护)。 3、数控机床自动换刀装置的形式有(回转刀架换刀)、(更换主轴头换刀)和(带刀库的自动换刀)。 4、数控机床上常用的刀库形式有(直线式刀库)、(盘式刀库)、(链式刀库)和(密集形格子式刀库)。 5、刀具常用交换方式有(顺序选刀)和(任意选刀)两类。 6、滚珠丝杠螺母副的润滑油为(一般机油或90~180#透平油、140#或N15主轴油),而润滑油一般采用(锂基润滑脂)。 7、数控机床按控制运动轨迹可分为点位控制、(直线控制)和(轮廓控制)等几种。 8、数控机床的自动换刀装置中,实现(刀库)和机床(主轴)之间传递和装卸刀具的装置称为刀具交换装置。 二、选择题(每小题2分,共20分) 1、数控车床床身中,排屑性能最差的是(A)。 A、平床身 B、斜床身 C、立床身 2、一般数控铣床是指规格(B)的升降台数控铣床,其工作台宽度多在400mm以下。

A、较大 B、较小 C、齐全 D、系列化 3、采用数控机床加工的零件应该是(B)。 A、单一零件 B、中小批量、形状复杂、型号多变的零件 C、大批量零件 4、数控机床四轴三联动的含义是(B)。 A、四轴中只有三个轴可以运动 B、有四个控制轴,其中任意三个轴可以联动 C、数控系统能控制机床四轴运动,其中三个轴能联动 5、数控机床主轴锥孔的锥度通常为7:24,之所以采用这种锥度是为了(C)。 A、靠摩擦力传递扭矩 B、自锁 C、定位和便于装卸刀柄 D、以上几种情况都是 6、目前,在我国数控机床的自动换刀装置中,机械手夹持刀具的方法多采用(A) A、轴向夹持 B、径向夹持 C、法兰盘式夹持 7、数控机床导轨按接触面的摩擦性质可分为滑动导轨、滚动导轨和(B)导轨三种。 A、贴塑B、静压C、动摩擦D、静摩擦 8、数控机床自动选择刀具中任选刀具的方法是采用(A)来选刀换刀。 A、刀具编码 B、刀座编码 C、计算机跟踪 9、数控机床的回转运动通常是由(B)实现的。 A、分度工作台 B、数控回转工作台 C、主轴的摆动

数控机床机械振动故障的监测

数控机床机械振动故障的监测 摘要:现代数控机床的控制系统虽然都具有丰富的自诊断功能,但是对于机械内部结构的某些故障,系统一般不能呈现相应的报警信息。为了解决数控机床机械方面一些既没有报警,又不能直接观测到的故障,可以采取监测及分析运动部位振动信号的方法,以便能及时准确地掌握运行状态,为设备的安全运行提供可靠的技术保障。 关键词:故障预测振动传感器监测系统安全生产 1 概述 数控机床在长期运行过程中,机械零部件受到冲击、磨损、高温、腐蚀等多种工作应力的作用,性能和状态会不断发生变化,当出现降低或丧失其规定功能的事件时即是发生故障,故障往往会导致不良后果。因此,在机床运行过程中或基本不拆卸的情况下,能够对机床的运行状态进行定量测定,及时判断机床某部位的异常及故障原因,并预测、预报机床未来的状态,对于做好预防性维修工作是很必要的。 现代数控机床的控制系统都已经具备了丰富的自诊断功能,但多是基于电物理量信号,因此在监测数控系统内部软、硬件,伺服驱动与电机,反馈测量和电气等方面的故障卓有成效,并能及时以报警信息形式呈现,以保证故障在未达到恶果前采取相应措施,从而大大提高机床运行的可靠性,提高机床的利用率。 但是对于数控机床机械内部结构的某些故障,系统一般不能呈现相应的报警信息。这种故障的监视、识别和预测,可通过对振动、温度、噪声等物理量进行测定,并将测定结果与先前测定值或规定值进行比较分析,以判断机械系统的工作状态是否正常。当然,要做到这一点,需要具备必要的测试设备和丰富的经验。如数控机床的主传动、进给传动等运动控制系统,运行过程中会产生振动,因此在现场可通过安放在主轴箱、工作台某些特征点上的传感器,测量其振级,位移、速度、加速度及幅频特征等,达到对故障进行预测和监测的目的,从而解决数控机床机械系统某些既没有报警,又不能直接观测到的故障。这个过程如同医生对病人号脉、用听诊器检查或对患部使用X光、CT、B超等诊断仪器进行诊断。 振动测量仪器有多种,购置需要一定的资金投入。为达到经济实用的目的,我们利用现有的资源和条件,选定一种方便、快捷、省钱的问题解决方案,在试验应用过程中已经取得初步效果。 2振动信号的拾取 2.1 基本原理 数控机床的功能部件、传动部件、甚至直流与交流驱动电机,在异常运行中都会产生振动,在不同的异常状态下其振幅与频率是不同的,因此检测振动并对其规律进行摸索、研究,便能直接反映出机械系统的运行状态。为了抓住振动这一关键物理量,先后试验了几种不同方法,其中一种用参量式传感器变换成电信号既简捷又便利。该传感器基于检测运动加速度的原理,即利用悬臂梁弹性敏感元件。当末端附有重物的悬臂梁受到附近的振源作用时,即会产生弹性应变,而且应变与振源的强度、加速度成正比。如果在适当位置粘贴电阻应变片并组成电路,就能检测出所要的动态信号。然后经放大处理后,再用仪器或计算机进行实时显示或数据处理,做定量分析,确认异常状态,以获得诊断信息。 2.2 传感器结构 传感器结构如图1所示,它装在磁力表座上,然后借助于磁力表座的强吸力吸在测点上。 图中1是悬臂梁,规格48×16×0.6mm,为等截面悬臂梁,材质30Cr。2是箔式电阻应变片,4只应变片分别贴在悬臂梁上下面中部,引出线接成全桥工作方式,这种方式的测量灵敏度最高。3是末端重物,质量与受到振动时促使悬臂梁发生弹性应变量成正比,过轻信号幅值低,过重会影响动态灵敏度。4是印制电路板,主要为运算放大器信号放大电路,把应变片输出的检测信号放大到后级仪器的输入量程范围(如2.5V/5V/10V),并向应变片桥路提供12VDC电源。5是电缆插座。6是磁力表座。 2.3 传感器的输出信号,可以接至示波器(用超低频双线慢扫描示波器),如图2所示,直接观测波形。也可以接波形记录仪或瞬态记录仪记录波形。还可以用A/D变换电路及数据采集卡通过微机的总线送入微机系统。 3用示波器配合监测数控机床几例

相关主题
文本预览
相关文档 最新文档