当前位置:文档之家› 高速机床主轴

高速机床主轴

高速机床主轴
高速机床主轴

高速机床主轴/刀具联结的设计

高速加工具有比普通加工大5~10倍的切削速度,其优点是能减少加工时间,达到普通加工需要几道工序才能达到的加工精度和表面质量。与高速切削有关的主要问题有:刀具材料及设计、高速机床主轴的动平衡、机床的热态动态性能及可靠性等。而刀具与主轴的联结问题会严重影响高速切削的可靠性及机床主轴的动平衡,已成为限制高速切削的薄弱环节之一。

一、高速切削对刀/轴联结要求

高速加工要求确保高速下主轴与刀具联结状态不能发生变化。但是,高速主轴的前端锥孔由于离心力的作用会膨胀,膨胀量的大小随着旋转半径与转速的增大而增大,标准的7/24实心刀柄膨胀量较小,因此标准锥度联结的刚度会下降,在拉杆拉力的作用下,刀具的轴向位置会发生改变(见图1)。主轴的膨胀还会引起刀具及夹紧机构质心的偏离,从而影响主轴的动平衡。要保证这种联结在高速下仍有可靠的接触,需有一个很大的过盈量来抵消高速旋转时主轴轴端的膨胀,如标准40号锥需初始过盈量为15~20μm,再加上消除锥度配合公差带的过盈量(at4级锥度公差带达13μm),因此这个过盈量很大。这样大的过盈量需拉杆产生很大的拉力,拉杆产生这样大的拉力一般很难实现,对换刀也非常不利,还会使主轴端部膨胀,对主轴前轴承有不良影响。

图 1 在高速离心力作用下主轴扩张图

高速加工对动平衡要求非常高,不仅要求主轴组件需精密动平衡(g0.4级以上),而且刀具及装夹机构也需精密动平衡。但是,传递转矩的键和键槽很容易破坏动平衡,而且,标准的7/24锥柄较长,很难实现全长无间隙配合,一般只要求配合面前段70%以上接触,因此配合面后段会有一定的间隙,该间隙会引起刀具径向跳动,影响结构的动平衡。键是用来传递转矩和进行角向定位的,为解决键及键槽引起的动平衡问题,可以尝试研究一种刀/轴联结实现在配合处产生很大的摩擦力以传递转矩,并用在刀柄上作标记的方法实现安装的角向定位,达到取消键的目的。

二、标准7/24锥联结的优缺点

标准的7/24锥联结有许多优点:因不自锁,可实现快速装卸刀具;刀柄的锥体在拉杆轴向拉力的作用下,紧紧地与主轴的内锥面接触,实心的锥体直接在主轴内锥孔内支承刀具,可以减小刀具的悬伸量;这种联结只有一个尺寸即锥角需加工到很高的精度,所以成本较低而且可靠,多年来应用非常广泛。

但是,7/24联结也有一些缺点;锥度较大,锥柄较长,锥体表面同时要起两个重要的作用,即刀具相对于主轴的精确定位及实现刀具夹紧并提供足够的联结刚度。由于它不能实现与主轴端面和内锥面同时定位,所以标准的7/24刀/轴锥联结在主轴端面和刀柄法兰端面间有较大的间隙。在iso标准规定7/24锥度配合中,主轴内锥孔的角度偏差为“-”,刀柄锥体的角度偏差为“+”,以保证配合的前段接触,所以它的径向定位精度往往不够,在配合的后段还会产生间隙,如典型的at4级(iso1947,gb11334-89)锥度规定角度的公差值为13″,这就意味着配合后段的最大径向间隙高达13μm,这个径向间隙会导致刀尖的跳动和破坏结构的动平衡,还会形成以接触前端为支点的条件,当刀具所受的弯矩超过拉杆轴向拉力产生的摩擦力矩时,刀具会以前段接触区为支点摆动。在切削力作用下,刀具在主轴内锥孔的这种摆动,会加速主轴锥孔前段的磨损,形成喇叭口,引起刀具轴向定位误差。

7/24锥度联结的刚度对锥角的变化和轴向拉力的变化很敏感。当拉力增大4~8倍时,联结的刚度可提高20%~50%,但是,过大的拉力在频繁的换刀过程中会加速主轴内孔的磨损,使主轴内孔膨胀,影响主轴前轴承的寿命。

另外,如前所述,这种实心刀柄的锥联结在高速旋转时,主轴端部扩张量大于锥柄的扩张量,高速性能差,不适合超高速主轴与刀具的联结。

三、典型高速主轴/刀具联结设计

在高速主轴设计中,目前对刀轴联结研究较成功的设计主要两大类型,一是摒弃原有的7/24标准锥度而采用新思路的替代性设计,如德国的hsk系列和美国的km系列刀具锥柄等。另一种是为降低成本,仍采用现有的7/24锥度而进行改进性设计,这种设计可实现现有主轴结构向高速化的过渡,如美国的wsu系列刀柄。

1.替代型的设计

“曲线耦合”的结构:这种结构由两部分组成,每一部分上面加工有数目相同的螺旋齿,并分别与主轴前端和刀柄固定。刀具与主轴联结精度较高,联结刚度也较好,装卸刀具需要的轴向移动量很小(5~10mm)。但对联结用的螺旋齿形精度要求较高,结构的两部分与主轴和刀柄的固定也有较高的要求,另外主轴端部和刀柄需重新设计,换刀时要使两部分齿形精确啮合需较长调整时间,影响换刀速度。

sandvik公司的三棱锥结构:这种刀柄不是圆锥形,而是三棱锥,其棱为圆弧形,锥度为1/20的空心短锥结构[4]。实现了锥面与端面同时接触定位,三棱结构可实现转矩传递,不再需要传动键,消除了因传动键和键槽引起的动平衡问题。但三棱锥特别是主轴三棱锥孔加工困难,加工成本高,与现有刀柄不兼容,配合会自锁。

km系列:采用1/10短锥配合,锥柄的长度仅为标准7/24锥柄长度的1/3,由于配合锥度较短,部分解决了端面与锥面同时定位而产生的干涉问题,刀柄设计成中空的结构,在拉杆轴向拉力作用下,短锥可径向收缩,实现端面与锥面同时接触定位。由于锥度配合部分有较大的过盈量(0.02~0.05mm),所需的加工精度比标准的7/24长锥配合所需的精度低。与其它类型的空心锥联结相比,相同法兰外径采用的锥柄直径较小,主轴锥孔在高速旋转时的扩张小,高速性能好。这种系统的主要缺点是,主轴端部需重新设计,与传统的7/24锥联结不兼容;短锥的自锁会使换刀困难;由于锥柄是空心的,所以不能用作刀具的夹紧,夹紧需由刀柄的法兰实现,这样增加了刀具的悬伸量,对于联结刚度有一定的削弱。由于端面接触定位是以空心短锥和主轴变形为前提实现的,主轴的膨胀会恶化主轴轴承的工作条件,影响轴承的寿命。hsk刀柄:这种结构是由德国阿亨大学机床研究室(wzl)专为高速机床主轴开发的一种刀轴联结结构,已被din标准化[5]。hsk短锥刀柄采用1∶10的锥度,它的设计近似于km系列,它的锥体比标准的7/24锥短,锥柄部分采用薄壁结构,锥度配合的过盈量较小,对刀柄和主轴端部关键尺寸的公差带特别严格,由于短锥严格的公差和具有弹性的薄壁,在拉杆轴向拉力的作用下,短锥有一定的收缩,所以刀柄的短锥和端面很容易与主轴相应结合面紧密接触,具有很高的联结精度和刚度。当主轴高速旋转时,尽管主轴端会产生扩张,短锥的收缩得到部分伸张,仍能与主轴锥孔保持良好的接触,主轴转速对联结刚度影响小。拉杆通过楔形结构对刀柄施加轴向力(见图2)。

图 2 hsk刀柄与主轴联结结构

hsk也有缺点:它与现在的主轴端面结构和刀柄不兼容;制造精度要求较高,结构复杂,成本较高(刀柄的价格是普通标准7/24刀柄的1.5~2倍);锥度配合过盈量较小(是km结构的1/5~1/2),极限转速比km结构低。

2.改进型的设计

该类型的联结是以开发出比普通7/24锥联结具有较好精度、刚度和高速性能,同时又能与现存的主轴端部和刀柄兼容为出发点设计出来的。

锥面与端面同时接触定位的wsu-1:这种设计利用了“虚拟锥度”的概念,即以离散的点或线形成一个锥面,与主轴内锥孔面接触(见图3)。实现这些点线接触的元件是弹性的,因此,当拉杆轴向拉力使刀柄与主轴端面定位接触时,只会使刀柄锥体的这些弹性元件变形,刀柄不变形。这种方法可使接触锥部获得较大的过盈量,而不需太大的拉力,也不会使主轴膨胀,对接触面的污染不敏感。

(完整版)数控车床主轴设计

绪论 随着市场上产品更新换代的加快和对零件精度提出更高的要求,传统机床已不能满足要求。数控机床由于众多的优点已成为现代机床发展的主流方向。它的发展代表了一个国家设计、制造的水平,在国内外都受到高度重视。 现代数控机床是信息集成和系统自动化的基础设备,它集高效率、高精度、高柔性于一身,具有加工精度高、生产效率高、自动化程度高、对加工对象的适应强等优点。实现加工机床及生产过程的数控化,已经成为当今制造业的发展方向。可以说,机械制造竞争的实质就是数控技术的竞争。 本课题的目的和意义在于通过设计中运用所学的基础课、技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固、加深和扩大所学知识的目的。通过设计分析比较机床的某些典型机构,进行选择和改进,学习构造设计,进行设计、计算和编写技术文件,达到学习设计步骤和方法的目的。通过设计学习查阅有关设计手册、设计标准和资料,达到积累设计知识和提高设计能力的目的。通过设计获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力,并为进行一般机械的设计创造一定的条件。

一、设计题目及参数 1.1 题目 本设计的题目是数控车床的主轴组件的设计。它主要由主轴箱,主轴,电动机,主轴脉冲发生器等组成。我主要设计的是主轴部分。 主轴是加工中心的关键部位,其结构优劣对加工中心的性能有很大的影响,因此,在设计的过程中要多加注意。主轴前后的受力不同,故要选用不同的轴承。 1.2参数 床身回转空间400mm 尾架顶尖与主轴端面距离1000mm 主轴卡盘外径Φ200mm 最大加工直径Φ600mm 棒料作业能力50~63mm 主轴前轴承内和110~130mm 最大扭矩480N·m 二、主轴的要求及结构 2.1主轴的要求 2.1.1旋转精度 主轴的旋转精度是指装配后,在无载荷,低转速的条件下,主轴前端工件或刀具部位的径向跳动和轴向跳动。 主轴组件的旋转精度主要取决于各主要件,如主轴、轴承、箱体孔的的制造,装配和调整精度。还决定于主轴转速,支撑的设计和性能,润滑剂及主轴组件的平衡。 通用(包括数控)机床的旋转精度已有标准规定可循。 2.1.2 静刚度 主轴组件的静刚度(简称刚度)反映组件抵抗静态外载荷变形的能力。影响主轴组件弯曲刚度的因素很多,如主轴的尺寸和形状,滚动轴承的型号,数量,配置形式和预紧,前后支撑的距离和主轴前端的悬伸量,传动件的布置方式,主轴组件的制造和装配质量等。 各类机床主轴组件的刚度目前尚无统一的标准。 2.1.3抗振性 主轴组件工作时产生震动会降低工件的表面质量和刀具耐用度,缩短主轴轴承寿命,还会产生噪声影响环境。 振动表现为强迫振动和自激振动两种形式。

机床主轴设计

设计题目机床主传动系统设计系别机电工程分院 专业机械制造及其自动化学生姓名 专业班级 班级学号 设计日期

车床设计任务书一、设计题目 工件最大回转直径D max=300mm, /r 轴最低转速=355min /r 轴最高转速=1800min 电机功率P=3KW,公比Ф=1.26= 二、运动设计,确定结构式 1. 查表得 250 500 1000 265 530 1060 280 560 1120 300 600 1180 315 630 1250 335 670 1320 355 710 1400 375 750 1500 400 800 1600 425 850 1700 450 900 1800

475 950 1900 355,450,560,710,900,1120,1400,1800(共8级) 或者 Z=8 2.结构式、传动组和传动副数的确定 ①传动组和传动副数可能的方案有: 8=4×2 8= 2×4 8 = 2×2×2 第一行方案有时可以省掉一根轴。缺点是有一个传动组内有四个传动副。如果用一个四联滑移齿轮,则会增加轴向尺寸;如果用两个双联滑移齿轮,则操纵机构必须互锁以防止两个滑移齿轮同时啮合。所以一般少用。 第二行的方案根据 “前多后少”的原则。取8 = 2×2×2 的方案。 ②结构式或结构网的各种方案的确定 由①知方案有 a.4212228??= b.4122228??= c.2142228??= d.2412228??= e.1422228??= f.1242228??=

选择原则: I)传动副的极限传动比和传动组的极限变速范围 降速传动中,主动齿轮的最少齿数受到限制m in u ≥41 ; 避免被动齿轮的直径过大升速传动比最大值max u ≤2(斜齿传动max u = 2.5)尽量减少振动和噪声; 各变速组的变速范围m ax R =max u /m in u ≤8-10 之间; 对于进给传动链,由于转速通常较低,零件尺寸也较小,上述限制可放宽些。 8.251 ≤≤进i 。故max 进R 14≤ 在检查传动组的变速范围时,只需检查最后一个扩大组。因为其它传动组的变 速范围都比它小。应为: max ) 1-(p n R R n x n ≤=? II)基本组与扩大组的排列顺序。 原则是选择中间传动轴变速范围最小的方案。 综上所述,方案4212228??= 较好 三、转速图与传动系统图 1.根据已知参数,取 4级电动机Y100L2-4,额定功率3KW ,满载转速1430min /r 本例所选定的结构式共有三个传动组,变速机构共需4轴。加上电动机轴

车床主轴的选材 加工路线 热处理

选择车床主轴材料,设计合理的加工路线,热处理工艺方案 摘要:根据车床主轴的工作情况,对材料的选用、其加工路线及相应的热处理工艺进行了分析,并就其操作提出了自己观点。 关键词:车床主轴;加工路线;热处理工艺;材料 一、材料的选择 主轴是车床上传递动力的零件,传递着动力和各种负荷,它的合理选材直接影响整台车床的精度和使用寿命。其主要实效形式如下:1、受横向力并传递扭矩,承受交变弯曲应力和扭应力,常常发生疲劳断裂。 2、轴颈和花键等部位发生相对运动,承受较大的摩擦,轴颈表面产生过量的磨损。 3、承受一定的过载和冲击和载荷,产生过量弯曲变形,甚至发生折断或扭断。 所以所选的材料应满足:良好的综合力学性能,即具有较高的强度刚度、足够的韧性、疲劳强度、变形小及对应力集中的敏感性低等性能以防止过载和冲击断裂,还要有良好的切削加工性,高的表面硬度和良好的耐磨性,以防止轴颈摩损。在设计时要充分考虑: 1、主轴的工作特性和技术要求。主轴的摩檫和磨损情况;主轴的载荷大小和载荷性质。

2、主轴热处理的要求。主轴的工作状况;主轴精密度和光洁度;主轴弯曲载荷和扭转力矩;主轴转速;主轴有无冲击载荷。 3、主轴热处理加工工艺实行的可能性以及经济性。 轴的常用材料为碳素钢和合金钢。 合金钢比碳素钢具有更高的机械性能和更好的热处理性能。含不同合金的钢可获得各种特殊性能。因此,对于载荷大并要求尺寸小,重量轻、耐高温或耐磨性、抗腐蚀性能要求高的轴可采用合金钢。合金钢对应力集中的敏感性高,因此设计时应从结构上避免或减小应力集中,并降低其表面粗糙度的数值。由于在常温下合金钢的弹性模量与一般碳素钢差不多,故选合金钢对提高轴的刚度没有实效。 而对形状复杂的轴可采用球墨铸铁。球墨铸铁具有良好的吸振性和耐磨性,对应力集中的敏感性低,且价格低廉,加工性好。但球墨铸铁的强度较低。 我们一般主轴承受交变弯曲应力和扭应力,在轻度或中等载荷、转速不太高,精度不很高,冲击、交变载荷不大的情况下,具有普通力学性能就能满足要求,一般采用45钢制造。这类材料强度和塑形、韧性等综合机械性能较好,一般经正火、调质处理,而且材料来源方便,加工性、经济性好。 在主轴大端的内锥孔和外锥体,因常与卡盘、顶尖有相对摩擦;花键部位与齿轮有相对滑动,故这些部位要求较高的硬度与耐磨性;主轴在滚动轴承中运转,工作时因轴颈与轴承不发生摩擦,故轴颈无耐磨性要求。钢轴的毛坯多数用轧制的圆钢和锻件。锻件的内部组织

浅析数控铣床的主轴结构设计

浅析数控铣床的主轴结构设计 摘要自从我国改革开放之后,我国的工业领域发展就十分迅速,工业化水平不断提高,促进了国民经济的迅速发展,尤其是近几年自动化技术在工业领域中的普遍应用,极大提高了工业生产的质量和效率,其中各种工业生产设备的应用,极大的便利了工业生产活动,数控铣床作为工业生产中的常见设备,在工业生产中的高速度,高精度以及高效率等优势,使其在工业领域中发挥的作用越来越大。在数控铣床结构中,主轴结构无疑是十分关键的,直接影响着数控铣床的应用,所以本文就针对数控铣床的主轴结构设计进行分析,促进数控铣床在工业领域中的应用。 关键词数控铣床;主轴;结构设计 在我国的工业生产领域中,数控铣床作为高速切削技术的主要应用设备,在我国应用十分广泛,有效提高了切削工作的效率和质量,提高了工业生产中的产品加工精度,在高速切削的过程中主轴是极为核心的部件,主轴的结构和质量会直接影响工业生产的质量和效率,所以在现代数控铣床的应用过程中,需要加强对主轴结构的设计,提高主轴的质量,从而促进数控铣床的广泛应用。 1 數控铣床主轴结构特点 主轴是数控铣床结构中最为关键和核心的部件,其主要作用是带动刀具高速旋转,从而实现高速切削,完成加工任务,而在切削工作中,主轴的作用也就具体表现为切削力的承受和为机床提供驱动力。由于主轴在数控铣床的工作中发挥着重要的作用,承受了巨大的压力,所以数控铣床的工作过程中,主轴想要实现高速旋转,保证加工的质量和效率就必须对自身的结构进行优化,保证自身的可靠性,也就是说,需要有良好的静动态特性。 数控铣床的主轴具有一定的结构特点,主要包括: (1)主轴的中心为空心,在其中会装弹簧等装置来固定和使用铣刀,方便铣刀的使用; (2)在主轴的前端会设置一个7:24比例的锥形空洞,在断面上会设置用于将主轴转矩数据传输给铣刀的主轴转矩检测装置; (3)在主轴的后部会设置用于铣刀放松的液压缸,在日常为铣刀进行保护; (4)主轴的运转主要依靠齿轮进行,用齿轮进行变速传动; 2 数控铣床主轴结构的设计优化 2.1 进行设计控制

数控机床主传动系统及主轴设计.

新疆工程学院机械工程系毕业设计(论文)任务书 学生姓名专业班级机电一体化09-11(1)班设计(论文)题目数控机床主传动系统及主轴设计 接受任务日期2012年2月29日完成任务日期2012年4月9日指导教师指导教师单位机械工程系 设 计(论文)内容目标 培养学生综合应用所学的基本理论,基础知识和基本技能进行科学研究能力的初步训练;培养和提高学生分析问题,解决问题能力。通过毕业设计,使学生对学过的基础理论和专业知识进行一次全面地系统地回顾和总结。通过对具体题目的分析和设计,使理论与实践结合,巩固和发展所学理论知识,掌握正确的思维方法和基本技能。 设计(论文)要求 1.论文格式要正确。 2.题目要求:设计题目尽可能选择与生产、实验室建设等任务相结合的实际题目,完成一个真实的小型课题或大课题中的一个完整的部分。 3.设计要求学生整个课题由学生独立完成。 4.学生在写论文期间至少要和指导老师见面5次以上并且和指导教师随时联系,以便掌握最新论文的书写情况。 论文指导记录 2012年3月1号早上9:30-12:00在教室和XX老师确定题目。2012年3月6日早上10:00-12:00在教室确定论文大纲与大纲审核。2012年3月13日早上10:00-12:00在教室确定论文格式。 2012年3月20日早上9:30-12:00在教室对论文一次修改。 2012年3月27日早上9:30-12:00在教室对论文二次修改。 2012年4月6日早上9:30-12:30在教室对论文三次修改。 2012年4月9日早上9:30-12:00在教室老师对论文进行总评。 参考资料[1]成大先.机械设计手册-轴承[M].化学工业出版社 2004.1 [2]濮良贵纪名刚.机械设计[M].高等教育出版社 2006.5 [3]李晓沛张琳娜赵凤霞. 简明公差标准应用手册[M].上海科学技术出版社 2005.5 [4]文怀兴夏田.数控机床设计实践指南[M].化学工业出版社 2008.1 [5][日]刚野修一(著). 杨晓辉白彦华(译) .机械公式应用手册[M].科学出版社 2004

电主轴综述

高速电主轴技术 乔志敏 S1203027 摘要:通过阐述了高速电主轴的发展历程、高速电主轴的结构以及高速电主轴设计制造过程中的关键技术,分析了高精度、高转速电主轴对数控机床性能的影响。实践证明,采用高速加工技术可以解决机械产品制造中的诸多难题,能够获得特殊的加工精度和表面质量,高精度高转速电主轴功能部件,对提高数控机床的性能具有极大的影响。 关键词:高速电主轴;高精度;数控机床 Abstract: Based on the development of high-speed motorized spindle and the main str ucture of the motorized and the key technologies in the manufacturing process of high -speed motorized spindle, it analyzes the high precision, high speed electric spindle of influence on the performance of the numerical control machine. Practice has proved t hat high-speed processing technology can solve many problems in the manufacturing of mechanical products, and it can obtain special machining accuracy and surface qual ity. High precision and high speed motorized spindle features have a great impact on t he performance of CNC machine tools . Keywords: high-speed motorized spindle, high precision, CNC machine

轴类零件的材料与热处理

轴类零件的材料与热处理 一般轴类零件常用中碳钢,如45钢,经正火、调质及部分表面淬火等热处理,得到所要求的强度、韧性和硬度。 对中等精度而转速较高的轴类零件,一般选用合金钢(如40Cr等),经过调质和表面淬火处理,使其具有较高的综合力学性能。对在高转速、重载荷等条件下工作的轴类零件,可选用20CrMnTi、20Mn2B、20Cr等低碳合金钢,经渗碳淬火处理后,具有很高的表面硬度,心部则获得较高的强度和韧性。对高精度和高转速的轴,可选用38CrMoAl 钢,其热处理变形较小,经调质和表面渗氮处理,达到很高的心部强度和表面硬度,从而获得优良的耐磨性和耐疲劳性。 附:钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序。淬火能显著提高2钢的强度和硬度。如果再配以不同温度的回火,即可消除(或减轻)淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求。所以,淬火和回火是密不可分的两道热处理工艺。

车床主轴加工工艺过程分析 ⑴ 主轴毛坯的制造方法 锻件,还可获得较高的抗拉、抗弯和抗扭强度。 ⑵ 主轴的材料和热处理 45钢,普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差,要求较高的主轴则采用合金钢材料为宜。 ①毛坯热处理 采用正火,消除锻造应力,细化晶粒,并使金属组织均匀。 ②预备热处理 粗加工之后半精加工之前,安排调质处理,提高其综合力学性能 ③最终热处理 主轴的某些重要表面需经高频淬火。 最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。 加工阶段的划分 ①粗加工阶段

用大的切削用量切除大部分余量,及时发现锻件裂纹等缺陷。 ②半精加工阶段 为精加工作好准备 ③精加工阶段 把各表面都加工到图样规定的要求。 粗加工、半精加工、精加工阶段的划分大体以热处理为界。 工序顺序的安排 毛坯制造——正火——车端面钻中心孔——粗车——调质——半精车表面淬火——粗、精磨外圆——粗、精磨圆锥面——磨锥孔。 在安排工序顺序时,还应注意下面几点:①外圆加工顺序安排要照顾主轴本身的刚度,应先加工大直径后加工小直径,以免一开始就降低主轴钢度。 ②就基准统一而言,希望始终以顶尖孔定位,避免使用锥堵,则深孔加工应安排在最后。但深孔加工是粗加工工序,要切除大量金属,加工过程中会引起主轴变形,所以最

数控机床主轴部件结构

数控机床主轴部件结构 主轴部件是数控机床的核心部件,其运转精确度、耐磨性能、防震性能、机械强度等都会影响到工件加工的质量,再加上操作过程中还会有环境的影响以及人为因素的影响,工件加工的质量就更难得到保证。所以要从可控的方面着手,将一切可控因素都调整到位,比如数控机床的主轴结构设计以及主轴结构的日常维护等。 目前所使用的数控机床类型主要包括数控车床、数控铣床以及工件加工中心。 1.数控车床主轴部件结构特点 (1)主轴的主体结构是一个空心阶梯轴。 (2)主轴的前面部分主要由法兰盘和专门的卡盘结构组成。 (3)主轴的后面部分放置回转油缸。 (4)主轴空心部分用于设置油缸的活塞杆。 (5)车床的传动装置主要有齿轮传动、传送带传送以及齿轮-传送带组合传动等方式。 (6)驱动器主要作用是连接电动机,驱动数控车床的运转。 (7)光电脉冲编码器,用于测量主轴的转动速度,并

及时反馈信息至数控系统。 (8)回转油缸的主要作用是通过调整液压来控制卡盘装置与法兰盘的结合与分离。 2.数控铣床主轴部件结构特点 (1)同数控车床一样,主轴的中心是空心的。 (2)主轴的前面部分是一个比例为7:24的锥型孔洞,并且在端面上设有一对专门的主轴转矩检测装置将主轴转矩数据传输给铣刀。 (3)主轴的后面部分设有液压缸装置用于放松铣刀。 (4)主轴中间的空心部分用于弹簧的安装、以及铣刀固定刀爪的安装等。 (5)主轴的传动装置主要是齿轮传动,而且是变速传动。 (6)电气结构与数控车床相似,驱动器用于连接电动机,驱动数控铣床的运转;光电脉冲编码器,用于测量主轴的转动速度,并及时反馈信息至数控系统;液压缸的主要作用是通过调整液压来控制回路。 3.工件加工中心主轴部件结构特点 工件加工中心主轴部件的大致结构与数控铣床相类似,唯一不同的地方在于工件加工中心自带刀库和自动换刀的装置,自动化程度相对较高,在控制结构上与数控铣刀会有所不同,具体表现在:

高速电主轴及其结构

高速电主轴及其结构报告 姓名:周李念 学号: 班级:机自实验04班 重庆大学机械工程学院

高速电主轴及其结构 周李念 (重庆大学机械工程学院机自实验04班) 摘要:高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。 关键词:高速加工;电主轴;结构设计 1 高速电主轴概述 高速电主轴最早是用于磨削机床加工,逐步发展到加工中心电主轴及其他各行业机床主轴.典型的磨削电主轴的结构如图1 所示,传统的主轴一般是通过传动带、齿轮来进行传动驱动,而电主轴的驱动是将异步电机直接装入主轴内部,通过驱动电源直接驱动主轴进行工作,以实现机床主轴系统的零传动,形成“直接传动主轴”.从而减少中间皮带或者齿轮机械传动等环节,实现了机械与电机一体的主轴单元.电主轴不但减少了中间环节存在的打滑、振动和噪音的因素,也加速了主轴在高速领域的快速发展,成为满足高速切削,实现高速加工的最佳方案,其高转速、高精度、高刚性、低噪音、低温升、结构紧凑、易于平衡、安装方便、传动效率高等优点,使它在超高速切削机床上得到广泛的应用[1]. . 1 转轴;2 前轴承组;3 定子部件;4 转子部件;5 后轴承组;6 进-出水孔;7 进油孔;8 接线座;9 出油孔 图1 电主轴结构简图 高速电主轴的优点: 高速电主轴取消了由电机驱动主轴旋转工作的中间变速和传动装置(如齿轮、皮带、联轴节等),因此高速电主轴具有如下优点: (1)主轴由内装式电机直接驱动,省去了中间传动环节,机械结构简单、紧凑, 噪声低,主轴振动小,回转精度高,快速响应性好,机械效率高; (2)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差,运行时更加平稳; (3)采用交流变频调速和矢量控制技术,输出功率大,调速范围宽,功率—扭矩特性好,可在额定转速范围实现无级调速,以适应各种负载和工况变化的需要; (4)可实现精确的主轴定位,并实现很高的速度、加速度及定角度快速准停,动态精度和稳定性好,可满足高速切削和精密加工的需要; (5)大幅度缩短了加工时间,只有原来的约 1/4; (6)加工表面质量高,无需再进行打磨等表面处理工序;

数控车床主轴箱设计

数控车床主轴箱设计 一、设计题目 Φ400 毫米数控车床主轴箱设计。主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw 。采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。 二、主轴箱的结构及作用 主轴箱是机床的重要的部件,是用于布置机床工作主轴及其传动零件和相应的附加机构的。 主轴箱采用多级齿轮传动,通过一定的传动系统,经主轴箱内各个位置上的传动齿轮和传动轴,最后把运动传到主轴上,使主轴获得规定的转速和方向。 主轴箱为数控机床的主要传动系统它包括电动机、传动系统和主轴部件它与普通车床的主轴箱比较,相对来说比较简单只有两极或三级齿轮变速系统,它主要是用以扩大电动机无级调速的范围,以满足一定恒功率、和转速的问题。 三、主传动系设计 机床主传动系因机床的类型,性能,规格尺寸等基本因素的不同,应满足的要求也不一样。再设计时结合具体机床进行具体分析,一般应满足下属基本要求: 1)满足机床使用性能要求。首先应满足机床的运动性能能,如机床的主轴有足够的转速范围和转速级数。传动系设计合理,操纵方便灵活、迅速、安全可靠等。 2)满足机床传递动力要求。主电动机和传动机构能提供和传递足够的功率和转矩,具有较高的传动效率。 3)满足机床工作性能要求。主传动中所有零部件要有足够的刚度、精度、和抗振性,热变形特性稳定。 4)满足产品设计经济性的要求。传动链尽可能简短,零件数目要少,以节省材料,降低成本。 5)调整维修方便,结构简单、合理、便于加工和装配。防护性能好,使用寿命长。 四、主传动系传动方式 由题目知,我们设计的主轴箱传动方式为交流电动机驱动、机械传动装置的无级变速传动。再者,本题目中对精度要求一般,因此选用集中传动方式。另外主轴箱结构设计只需达到结构紧凑,便于集中操作,安装调整方便即可。 五、电动机的选择 按驱动主传动的电动机类型可分为交流电动机驱动和直流电动机驱动。交流电动机驱动中又可分单速交流电动机或调速交流电动机驱动。调速交流电动机又有多速交流电动机和无级调速交流电动机驱动。无级调速交流电动机通常采用变频调速的原理。 根据设计要求采用交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min 。选用FANUC-S 系列8s 型交流主轴电动机。 六、 计算过程 主轴最高转速4000r/min ,最低转速30r/min ,计算转速150r/min ,最大切削功率5.5kw ; 交流调频主轴电机,其额定转速1500r/min ,最高转速4500r/min ; 主轴要求的恒功率调速范围max 400026.7150 nN i n R n === 电动机的调速范围450031500dN R == 在设计数控机床主传动时,必须要考虑电动机与机床主轴功率特性匹配问题。由于主轴要求的恒功率变速范围远大于电动机恒功率变速范围,所以在电动机与主轴之间串联一个分级变速箱,以扩大其功率变速范围,满足低速大功率切削时对电动机的输出功率的要求。 根据以上分析,选择交流电动机的型号为: 若取3f dN R ?==,则可得到变速箱的变速级数 99 .2lg /lg ==f nN R Z ψ 所以,Z 可近似取为3,此处我们分别对Z=2、3、4三种情况进行研究,比较。 1) Z=3 根据f nN R Z ψlg /lg =可以得出99.2=f ψ,查表2-5取f ψ的标准值为3.0,dN f R =ψ,即主传动系功率特

机床主轴轴承正确安装方法

机床主轴轴承正确安装方法 主轴轴承是精密机床及类似设备的主轴轴承,它对保证精密机床的工作精度和使用性能有着重要的意义。 很多用户都对机床主轴轴承的安装存在烦恼,针对这一问题,今天众悦小编就到大家认识一下机床主轴轴承安装方法: a、压入配合 高速机床主轴轴承内圈与轴使紧配合,外圈与轴承座孔是较松配合时,可用压力机将轴承先压装在轴上,然后将轴连同轴承一起装入轴承座孔内,压装时在轴承内圈端面上,垫一软金属材料做的装配套管(铜或软钢),装配套管的内径应比轴颈直径略大,外径直径应比轴承内圈挡边略小,以免压在保持架上。 轴承外圈与轴承座孔紧配合,内圈与轴为较松配合时,可将轴承先压入轴承座孔内,这时装配套管的外径应略小于座孔的直径。如果轴承套圈与轴及座孔都是紧配合时,安装室内圈和外圈要同时压入轴和座孔,装配套管的结构应能同时押紧轴承内圈和外圈的端面。 b、加热配合 通过加热轴承或轴承座,利用热膨胀将紧配合转变为松配合的安装方法。是一种常用和省力的安装方法。此法适于过盈量较大的高速机床主轴轴承的安装,热装前把轴承或可分离型轴承的套圈放入油箱中均匀加热80-100℃,然后从油中取出尽快装到轴上,为防止冷却后内圈端面和轴肩贴合不紧,轴承冷却后可以

再进行轴向紧固。 轴承外圈与轻金属制的轴承座紧配合时,采用加热轴承座的热装方法,可以避免配合面受到擦伤。用油箱加热轴承时,在距箱底一定距离处应有一网栅,或者用钩子吊着轴承,高速机床主轴轴承不能放到箱底上,以防沉杂质进入轴承内或不均匀的加热,油箱中必须有温度计,严格控制油温不得超过100℃,以防止发生回火效应,使套圈的硬度降低。 此外,在安装过程中也要注意: (1)保持高速机床主轴轴承及其周转清洁即使是眼睛看不到的小尘埃,也会给轴承带来坏影响。所以,要保持周围清洁,使尘埃不致侵入轴承。 (2)小心谨慎地使用在使用中给与轴承强烈冲击,会产生伤痕及压痕,成为事故的原因。严重的情况下,会裂缝、断裂,所以必须注意。 (3)使用恰当的操作工具避免以现有的工轴承具代替,必须使用恰当的工具。我们经常强调工具的重要性,是因为有太多的客户在安装中使用了错误的工具造成了轴承的损伤。要注意轴承的锈蚀。 (4)操作高速机床主轴轴承时,手上的汗会成为生锈的原因。要注意用干净的手操作,最好尽量带手套。

轴的常用材料及其机械性能

轴的常用材料及其机械性能 轴的材料种类很多,选用时主要根据对轴的强度、刚度、耐磨性等要求,以及为实现这些要求而采用的热处理方式,同时考虑制造工艺问题加以选用,力求经济合理。 轴的常用材料是优质碳素钢35、45、50,最常用的是45和40Cr钢。对于受载较小或不太重要的钢,也常用Q235或Q275等普通碳素钢。对于受力较大,轴的尺寸和重量受到限制,以及有某些特殊要求的轴,可采用合金钢,常用的有40Cr、40MnB、40CrNi 等。 球墨铸铁和一些高强度铸铁,由于铸造性能好,容易铸成复杂形状,且减振性能好,应力集中敏感性低,支点位移的影响小,故常用于制造外形复杂的轴。 特别是我国研制成功的稀土-镁球墨铸铁,冲击韧性好,同时具有减摩、吸振和对应力集中敏感性小等优点,已用于制造汽车、拖拉机、机床上的重要轴类零件,如曲轴等。 根据工作条件要求,轴都要整体热处理,一般是调质,对不重要的轴采用正火处理。对要求高或要求耐磨的轴或轴段要进行表面处理,以及表面强化处理(如喷丸、辐压等)和化学处理(如渗碳、渗氮、氮化等),以提高其强度(尤其疲劳强度)和耐磨、耐腐蚀等性能。 在一般工作温度下,合金钢的弹性模量与碳素钢相近,所以只为了提高轴的刚度而选用合金钢是不合适的。 轴一般由轧制圆钢或锻件经切削加工制造。轴的直径较小时,可用圆钢棒制造;对于重要的,大直径或阶梯直径变化较大的轴,多采用锻件。为节约金属和提高工艺性,直径大的轴还可以制成空心的,并且带有焊接的或者锻造的凸缘。 对于形状复杂的轴(如凸轮轴、曲轴)可采用铸造。 轴的常用材料及其机械性能(MPa)

各种发动机曲轴材料及热处理

组合机床及其主轴箱设计

摘要 组合机床,是由大量的通用部件和少量专用部件组成的工序集中的高效率机床。其特点有:结构紧凑、工作质量可靠、设计和制造周期短、投资少、经济效果好、生产率高等。 本次设计的题目是铣削组合机床及主轴组件。首先针对所要加工的零件入手,对机床进行总体方案设计,进而确定机床的总体布局,随后,对主轴组件进行设计。在设计主轴组件时,以主轴为线索,在满足刚度、精度等要求下,完成其它(如轴承、轴向调节机构、锁紧机构等)所有零件的设计。 设计机械加工工艺规程遵循如下原则: 1)保证零件图样上所有技术要求的实现。 2)必须能满足生产纲领的要求。 3)在满足技术要求和生产纲领要求的前提下,要求工艺成本最低,低耗节能。4)尽量减轻工人的劳动强度,保障生产安全。维护环境卫生。 本产品是按用户要求而设计的,用户讨论合格后,投入生产,希望指导、鉴定。 关键词:组合机床,主轴组件,主轴,轴承,轴向调节机构

Abstract Modular Machine, by the large number of common parts and a small number of specialized components of the process focused efficient machine. Its features include compact, reliable quality, design and manufacturing cycle shorter, less investment and economic effects, and higher productivity. The design is the subject of combined milling machine spindle components. First of all, for the processing of parts to start with a general program of machine design, machine tool and then determine the overall layout, then the design of the main components. Components in the design of the spindle to spindle for clues, to meet the stiffness and precision required to complete the other (such as bearings, axial adjustment agencies, locking, etc.) the design of all parts. Design mechanical processing order to follow the following principles 1) To ensure that all parts drawings on the realization of the technical requirements. 2) Program must be able to meet production requirements. 3) To meet the technical requirements and requirements of the production program, under the premise of the minimum requirements of cost, low energy. 4) Minimize the labor intensity of workers, protection of production safety. This product is based on user requirements and design, the user discussion after passing the production, hope the guide, identified. Keywords:Modular Machine, spindle components, spindle, bearings, axial adjustment

机床主轴箱设计12级转速

1. 机床主要技术参数: (1) 尺寸参数: 床身上最大回转直径: 400mm 刀架上的最大回转直径: 200mm 主轴通孔直径: 40mm 主轴前锥孔: 莫式6号 最大加工工件长度: 1000mm (2) 运动参数: 根据工况,确定主轴最高转速有采用YT15硬质合金刀车削碳钢工件获得,主轴最低转速有采用W 16Cr 4V 高速钢刀车削铸铁件获得。 n max = min 1000max d v π= 23.8r/min n min = max min 1000d v π =1214r/min 根据标准数列数值表,选择机床的最高转速为1180r/min ,最低转速为26.5/min 公比?取1.41,转速级数Z=12。 (3) 动力参数: 电动机功率4KW 选用Y112M-4型电动机 2. 确定结构方案: (1) 主轴传动系统采用V 带、齿轮传动; (2) 传动形式采用集中式传动; (3) 主轴换向制动采用双向片式摩擦离合器和带式制动器; (4) 变速系统采用多联滑移齿轮变速。 3. 主传动系统运动设计: (1) 拟订结构式: 1) 确定变速组传动副数目: 实现12级主轴转速变化的传动系统可以写成多种传动副组合: A .12=3*4 B. 12=4*3 C 。12=3*2*2 D .12=2*3*2 E 。12=2*2*3 方案A 、B 可节省一根传动轴。但是,其中一个传动组内有四个变速传动副,增大了该轴的轴向尺寸。这种方案不宜采用。 根据传动副数目分配应“前多后少”的原则,方案C 是可取的。但是,由

于主轴换向采用双向离合器结构,致使Ⅰ轴尺寸加大,此方案也不宜采用,而应选用方案D 2)确定变速组扩大顺序: 12=2*3*2的传动副组合,其传动组的扩大顺序又可以有以下6种形式:A.12=21*32*26B。12=21*34*22 C.12 =23*31*26D。12=26*31*23 E.22*34*21F。12=26*32*21 根据级比指数非陪要“前疏后密”的原则,应选用第一种方案。然而,对于所设计的机构,将会出现两个问题: ①第一变速组采用降速传动(图1a)时,由于摩擦离合器径向结构尺寸限制, 使得Ⅰ轴上的齿轮直径不能太小,Ⅱ轴上的齿轮则会成倍增大。这样,不仅使Ⅰ-Ⅱ轴间中心距加大,而且Ⅱ-Ⅲ轴间的中心距也会加大,从而使整个传动系统结构尺寸增大。这种传动不宜采用。 ②如果第一变速组采用升速传动(图1b),则Ⅰ轴至主轴间的降速传动只能由 后两个变速组承担。为了避免出现降速比小于允许的极限值,常常需要增加一个定比降速传动组,使系统结构复杂。这种传动也不是理想的。 如果采用方案C,即12 =23*31*26,则可解决上述存在的问题(见图1c)。其结构网如图2所示。

车床主轴

专业综合实验 --常用机床主轴的热处理及组织与性能分析 一、实验目的 1. 对于车床主轴的选材 2. 掌握车床主轴热处理工艺的制定及操作方法 3. 分析热处理工艺与材料性能的关系 二、实验原理 2.1热处理工艺 热处理主要是通过对钢材在固定范围内施以不同的加热、保温、冷却的过程,来改变其内部组织,从而获得所需性能的工艺方法。 热处理可以是工件加工过程中一个中间环节,也可以是使工件性能达到要求的最终工序,普通热处理基本工艺包括退火、正火、淬火和回火等。 图1 碳钢退火加热温度与铁碳平衡图的关系(1)钢的退火

钢的退火是将钢件加热到适当温度,保温一定时间,然后缓慢冷却的热处理工艺。 根据钢件的成分及退火目的不同和工件退火时加热温度的不同,退火工艺一般为:①低温回火;②再结晶退火;③不完全退火;④完全退火;⑤等温退火; ⑥扩散退火等。各种退火工艺的加热温度与铁碳平衡图的关系见图11。 (2)钢的正火 钢的正火是将工件加热到A C1或Acm以上30-50℃,保温后在空气中冷却的一种热处理工艺。碳素钢退火、正火温度如表1所示。 表1 碳素钢退火、正火温度

(3)钢的淬火 钢的淬火是将钢加热到A C3或A C1以上30-50℃,保温后在不同的冷却介质中快速冷却,从而获得马氏体和(或)贝氏体组织的一种热处理工艺。 制定淬火工艺需要根据工件的化学成分、形状、尺寸选择适当的加热温度、保温时间和淬火冷却介质。常用的淬火剂的冷却能力如表2所示,常用淬火碱浴、盐浴剂的成分如表3所示。制定淬火工艺还需要选择适当的淬火方法,常用的淬火方法有单液淬火、双液淬火、分级淬火、等温淬火等。 (4)钢的回火 钢的回火是指把经过淬火后的钢在加热到A C1以下某一温度,保温一段时间,然后在空气中或油中冷却的热处理工艺。根据回火目的不同,回火又可以分为低温回火(〈250℃),中温回火(250~500℃),高温回火(500~650℃)。 2.2 钢在热处理状态下的显微组织及性能 碳素钢经过完全退火处理后的显微组织基本上与铁碳相图中的各种平衡组织相似。但在快速冷却条件下的显微组织就不能用铁碳相图来加以分析,而应由过冷奥氏体等温或连续转变曲线(C曲线)来确定。 随着碳素钢化学成分及冷却条件的不同,过冷奥氏体将发生不同类型的转变。共析钢过冷奥氏体在不同温度条件下转变的组织特征及其性能如表4所示。 (1)钢的退火和正火组织

机床主轴传动的设计过程

机床主传动的设计过程: 第一,分析所有设计机床的需要什么样的成型运动,以及分析其主运动的形式,进给运动的形式。 第二,根据的运动形式画出其最为合理的传动原理图。 第三,根据所加工的工件的材质范围,以及工件的加工精度,根据切削用量手册,确定其主轴的转速(或者直线速度)范围,并求出其输出的最大功率。第四,根据你要设计的机床类型和输出要求,初选电机系列。 第五,根据所选的电机系列和主运动的速度范围,初步确定传动系统图。并估算出电机所有提供的最大功率,然后查所选电机系列的使用参数,选出需要 的电机。 第六,根据所要的电机,以及机床的输出范围,确定传动系统图。 第七,根据确定的传动系统图,初步设计计算传动件(主要是齿轮和轴):1)首先估算齿轮的最小模数,传动轴的最小直径; 2)然后根据上述的计算,合理布置传动件的位置和确定各传动件的基本参数。 3)然后根据所确定的基本参数校核各传动件; 4)然后初选其支撑件,并校核其刚度; 5)确定润滑类型,并大致设计器润滑方案; 6)选择密封件以及连接件; 机床设计中应注意的问题: 第一,选择电机功率时,应根据机床的计算转速来选择电机的功率;(计算转速是机床恒功率输出时的最小转速。 第二,机床所有传动件的设计是按刚度原则设计的;(因为机床的精度要求很高,所以对零件的刚度很高的要求,总之,机床传动件的主要失效形式是变形,变形会对机床精度产生很大的影响。) 第三,在机床设计中,齿轮传动的传动比范围为0.25—2,在齿轮传动设计中,尽可能的选择降速传动,因为升速传动会产生噪音和振动,所以了为了防止产生过大的噪音和振动,其传动比必须小于2,但是传动比太小会是主轴箱的尺寸增大,所以传动比需大于0.25;但是在最后一级传动时,即一般传动轴到主轴传动时,其传动比可以适当的减小,因为主轴直径一般相对较大,小的传动比不会引起尺寸的增加。 第四,在设计铣床时,由于铣削加工是断续加工,为了防止断续切削时产生振动,往往在主轴的接近轴头的大齿轮上加配重盘,以增加主轴旋转的惯性,减 小振动。 第五,在精密机床的设计过程中,尽可能的把原动件、传动件,与加工部分分开,可以减少原动件和传动件的振动,以增加机床的加工精度。、 第六,在设计传动链时,在满足要求的前提下,根据误差复映规律,应尽可能使最后一级的传动比小,这样可以减少传动件和原动件的误差对加工精度的影响。 第七,主轴上的支撑件均采用过定位,以增加主轴的精度,进而保证机床的加工精度。 第八,主轴的设计时,是根据输出功率,用类比法,按照经验初步确定其轴颈直

高速加工中的机床主轴轴承技术

高速加工中的机床主轴轴承技术 发表时间:2019-02-26T09:44:11.650Z 来源:《防护工程》2018年第32期作者:刘梦伟1 黄娟2 [导读] 电主轴内部的支承核心———主轴轴承,承受较大的径向和轴向载荷,需具有较高的回转精度和较低的温升,尽可能高的径向和轴向刚度,较长的、保持精度的使用寿命。因此,主轴轴承的性能对电主轴的使用功能极为重要。目前在高速主轴单元中采用较多的支承轴承主要有滚动轴承、磁悬浮轴承、空气轴承和动静压轴承。基于此,本文主要对高速加工中的机床主轴轴承技术进行分析探讨。 刘梦伟1 黄娟2 山东博特精工股份有限公司山东济宁 272000 摘要:电主轴内部的支承核心———主轴轴承,承受较大的径向和轴向载荷,需具有较高的回转精度和较低的温升,尽可能高的径向和轴向刚度,较长的、保持精度的使用寿命。因此,主轴轴承的性能对电主轴的使用功能极为重要。目前在高速主轴单元中采用较多的支承轴承主要有滚动轴承、磁悬浮轴承、空气轴承和动静压轴承。基于此,本文主要对高速加工中的机床主轴轴承技术进行分析探讨。 关键词:高速加工;机床主轴;轴承技术 1、高速加工技术的应用优势及其对机床主轴的要求 1.1高速加工技术的优势 高速加工技术采用精良的制造设备和材料刀具,可以加快切削毛坯余量的速度,加工出高质量、高精度的复杂零件,同时还可以降低加工成本,提高加工效率。高速加工的应用优势主要体现在以下几个方面:大幅度缩短加工时间,1台高速机床可替代4台普通数控机床;发热小,切削速度快,零件变形小,可对薄壁零件进行加工;表面加工质量高,且加工完毕后无需再用磨削机床加工;加工的零件具有较好重复性,能够应用于模具制造行业电极加工;机床占地面积小,仅需要少数工人;有利于缩短交货期,加快投资成本回收。 1.2高速加工技术对机床主轴的要求 在高速加工的过程中,要求机床主轴应具备足够高的刚度和回转精度,基于这一前提,机床的电主轴,需要采用内径较大、精度较高且高速性能良好的轴承,并且还要配备先进的润滑系统。同时,电主轴除了要具备较高转速之外,其低速段还应具备较大的输出转矩,只有这样才能够满足精加工和低速重切削的要求。此外,数控加工中心要求主轴能够精度定位,以满足自动换刀等操作要求,故此,电主轴应当具备精确的切向准停功能,而为了大幅度缩短辅助加工时间,并进一步提高生产效率,要求机床的电主轴应当具备快速启停功能。为了满足高速加工技术对机床主轴的要求,应当不断加大对主轴轴承关键技术的研究力度,这也是本文研究的重点。 2、高速加工中的机床主轴轴承关键技术 机床主轴轴承的种类比较繁多,常见的有滚动轴承、磁悬浮轴承、空气轴承、动静压轴承等等。其中滚动轴承具有结构简单、高速性能良好、成本低廉、刚度大、便于维护等特点,从而使其成为高速加工的机床主轴轴承首选。滚动轴承的关键技术主要包括以下内容:结构优化技术、材料技术以及润滑技术等。下面本文就这三个方面展开详细论述。 2.1主轴轴承结构优化技术 对机床主轴轴承进行结构优化的首要目的是提高轴承的高速性能,在具体优化设计的过程中,目标函数的确定是关键环节,主要包括球的滚动比、接触应力、刚度、额定动荷载等等,可供优化的变化有球径、沟曲率系数、球数等。在优先排序的基础上,对内外套圈和保持架的结构进行优化设计,不但可使轴承的极限转速大幅提高,而且还能使温升显著降低,由此便可以实现轴承的高速性能。对于主轴轴承而言,极限转速的大小是决定其高速性能的关键性因素之一,所谓的极限转速具体是指轴承在运动的过程中能够承受最高热平衡温度时的转速极限值。相关研究结果表明,轴承的极限转速主要与以下因素有关:公差等级、润滑方式、预载荷、接触角、轴承的工作状态以及组配形式等。此外,轴承运行环境中的热载荷也会对极限转速有所影响。因轴承转速受内部摩擦发热引起的温升限制,所以当轴承运行过程中的转速达到某个界限值时,轴承便会由于内部温升过高出现热粘着效应,这样一来,轴承便无法继续工作。 2.2轴承润滑技术 油气润滑是高速加工机床电主轴较为理想的润滑技术,该技术可根据实际润滑的需要,在不经过雾化处理的情况下,直接将少量润滑油用压缩空气不断地输送到需要润滑的部位。油气润滑技术在输送润滑油时具备实时、定量、均匀的优势,这种供油方式能够确保需润滑的部位始终不缺润滑油,并且有效防止因润滑油量过大而产生较大阻力,避免温度上升。油气在润滑的过程中处于相互分离的状态,压缩空气不仅能够为油气输送提供动能,还能够对轴承进行冷却,清除轴承内部杂质。与油雾润滑相比,在相同工况、转速的主轴轴承条件下,油气润滑能够降低轴承外圈温度9-16℃,提高轴承速度因素25%以上。为保证油气润滑装置正常工作,一般情况下油气润滑装置由专业的电主轴公司制造,并且规定润滑油达到IS04406的13/10级清洁度标准。 2.3轴承材料技术 钢制主轴轴承材料既要降低钢中氧含量和夹杂物的数量,满足长寿命和超高洁净的要求,又要改进原有钢种的化学成分,使其满足不同使用场合对轴承高性能的要求。近年来,随着轴承钢冶炼技术的发展,真空脱气GCrl5和GCrl5SiMo等材料已经成为高速加工机床主轴轴承的主要材料。同时,由氮化硅陶瓷做滚动体的混合陶瓷球轴承也正广泛应用于高速机床领域。与轴承钢相比,陶瓷材料的密度是其40%,线膨胀系数不足钢的25%。所以,在混合陶瓷球轴承高速旋转时,能够减小离心力和摩擦力矩,缓和球与套圈的热膨胀差所引起的轴承载荷,进而降低轴承摩擦发热量、减轻磨损程度、提高旋转性能。陶瓷材料的纵向弹性模量是轴承钢的1.5倍,因此陶瓷球轴承的刚性也会明显大于钢制轴承。此外,在相同结构的前提下,陶瓷球轴承的极限转速是钢制轴承的1.2-1.3倍,如果进一步优化陶瓷球轴承的结构,还能够给予陶瓷球轴承极限转速更大的提升空间。 3、主轴用空气轴承 高速内圆磨床主轴轴承一般采用空气轴承。空气轴承采用空气冷却和气膜支承,运转平滑,由于气体的黏度小,能够在摩擦损耗不大、润滑剂和支承的温升不高的情况下实现高速旋转,特别适合做高速回转副的支承元件。空气轴承具有精度高、结构紧凑、摩擦功耗低等优点,但由于受到能承受的切削载荷及过载能力较小的限制,其功率一般不是很大。

相关主题
文本预览
相关文档 最新文档