当前位置:文档之家› 自适应差分脉冲编码调制与解调设计

自适应差分脉冲编码调制与解调设计

自适应差分脉冲编码调制与解调设计
自适应差分脉冲编码调制与解调设计

信息综合训练

-------自适应差分脉冲编码调制与解调

班级:0802211

学号:22

姓名:徐晓琳

指导老师:郑文波

指导老师: 赵馨

指导老师: 刘泉

2011年12月18日

一、目录 (2)

二、摘要2

三、正文

1、绪论 (3)

2、硬件总体设计 (5)

3、器件结束 (9)

4、系统调试法 (13)

5、设计结论与心得会 (13)

6、参考文献13

二、摘要

ADPCM是自适应差分脉冲编码调制的简称,最早使用于数字通信系统中。该算法利用了语音信号样点间的相关性,并针对语音信号的非平稳特点,使用了自适应预测和自适应量化,在32kbps◎8khz速率上能够给出网络等级话音质量。现在我们使用的是IMA ADPCM算法,该算法中对量化步长的调整使用了简单的映射方法,对于一个输入的PCM值X(n),将其与前一时刻的X(n-1)预测值做差值得到d(n),然后根据当前的量化步长对d(n)进行编码,再用此sample点的编码值调整量化步长,同时还要得到当前sample 点的预测值供下一sample点编码使用。通过此算法可将样点编码成4bit 的码流,一个符号位和三个幅度位。该算法较简单,通过映射简化了运算。对于编码后的数据我们采用了wav文件格式,该格式对编码后的数据流进行了包装,由文件头和数据码流组成,文件头中指出了音频数据所采用格式、采样率、比特率、块长度、比特数及声道数等信息。数据码流以块为单位,块头指出了该块起始的预测值和index值,码流中每byte的高四位和低四位分别对应一个PCM。当前该算法以其简单实用的特点广泛应用到数字音乐盒和数字录音笔中。

1、绪论

●自适应脉冲编码调制(APCM)的概念

自适应脉冲编码调制(adaptive pulse code modulation,APCM)是根据输入信号幅度大小来改变量化阶大小的一种波形编码技术。这种自适应可以是瞬时自适应,即量化阶的大小每隔几个样本就改变,也可以是音节自适应,即量化阶的大小在较长时间周期里发生变化。改变量化阶大小的方法有两种:一种称为前向自适应(forward adaptation),另一种称为后向自适应(backward adaptation)。前者是根据未量化的样本值的均方根值来估算输入信号的电平,以此来确定量化阶

图1-1

的大小,并对其电平进行编码作为边信息(side information)传送到接收端。后者是从量化器刚输出的过去样本中来提取量化阶信息。由于后向自适应能在发收两端自动生成量化阶,所以它不需要传送边信息。前向自适应和后向自适应APC M的基本概念,如图所示。

图1-2

自适应差分脉冲编码调制(ADPCM)

ADPCM(adaptive difference pulse code modulation)综合了APCM的自适应特性和DPCM系统的差分特性,是一种性能比较好的波形编码。它的核心想法是:①利用自适应的思想改变量化阶的大小,即使用小的量化阶(step-size)去编码小的差值,使用大的量化阶去编码大的差值,②使用过去的样本值估算下一个输入样本的预测值,使实际样本值和预测值之间的差值总是最小。它的编码简化框图如图所示。接收端的译码器使用与发送端相同的算法,利用传送来的信号来确定量化器和逆量化器中的量化阶大小,并且用它来预测下一个接收信号的预测值。差分脉冲编码调制(DPCM)的概念

差分脉冲编码调制DPCM(differential pulse code modulation)是利用样本与

样本之间存在的信息冗余度来进行编码的一种数据压缩技术。差分脉冲编码调制的思想是,根据过去的样本去估算(estimate)下一个样本信号的幅度大小,这个值称为预测值,然后对实际信号值与预测值之差进行量化编码,从而就减少了表示每个样本信号的位数。它与脉冲编码调制(PCM)不同的是,PCM是直接对采样

信号进行量化编码,而DPCM是对实际信号值与预测值之差进行量化编码,存储或者传送的是差值而不是幅度绝对值,这就降低了传送或存储的数据量。此外,它还能适应大范围变化的输入信号。

图1-3

图1-4

●国内外发展

ADPCM在除了数字音乐盒和数字录音笔以外的其他领域都有应用,如蓝牙耳机。蓝牙耳机如今正面临着提高语音信号质量、降低功耗等压力,用户开始要求其语音信号的质量要与固定电话相当,这就需要在技术层面上解决传输质量的难题。语音信道采用连续可变斜率增量调制(CVSD)语音编码方案,并且SCO(同步语音信道)规定数据包不得重传。蓝牙技术中选用CVSD CODEC,是因为它在处理丢失或损坏的语音样本时非常可靠。背景噪音越高,干扰水平就越高,而CVSD

编码语音却可以接受误码率达4%的语音。

CSR公司开发的最领先的技术——AuriStream™,通过eSCO连接采用自适应差分脉冲编码调制(ADPCM)CODEC来实现更高的音频质量,与通过标准SCO连接的CVSD编码信号相比,功耗可节省40%。随着蓝牙耳机应用的持续

增长,更长的通话时间对于长途旅行的商务用户或重要的电话会议显得至关重要。

ADPCM 是一种众所周知并已被广泛接受的CODEC 技术,它是CVSD 的理想补充。后者能够处理误码,因此克服了蓝牙没有重传功能,只能依赖于SCO 数据包来传输语音的不足。但是,eSCO 能够探测误码并对数据包进行重传,所以没有必要再依赖CVSD 了。

ADPCM 与CVSD 的不同之处在于:它的取样速度慢,并能够发现样本之间的不同。ADPCM 以32Kbps 的较低速率(CVSD 的速率为64Kbps )传输固定电话质量的信号,因此蓝牙传输器和接收器只需大约一半的运行时间。CSR 公司的试验证明,该方法与所有其它蓝牙系统采用的CVSD 编码技术相比,能够为蓝牙系统节省40%的功耗。

ADPCM 编码在质量方面还有其它的优点。在嘈杂的环境中,通过采用CSR 公司B lueCore6采用了AuriStream 技术的耳机与同样采用了AuriStream 的手机相连接,可以使语音拨号变得更为精确,操作也更简单。

因为CSR 公司BlueCore6上采用的AuriStream 可支持32Kbps 速率的ADPCM (为CVSD 的数据速率64Kbps 的一半),所以还有潜力支持更多的语音信道。CVSD 传统上支持三个同步SCO 语音信道。虽然现在的蓝牙技术规范规定仅支持三个信道,但采用蓝牙增强型数据速率(蓝牙技术规范v2.0或v2.1,数据速率高达3Mbps )的32Kbps 链路ADPCM ,将有可能支持多达七个更高质量的eSCO 信道。 2、硬件总体设计原理 (一)ADPCM 简介 由前面PCM 和M ?设计我们已经知道,在不考虑信道误码率的情况下,M ?的性能通常比PCM 的差。这主要是因为PCM 和M ?系统不管误差信号如何变化,传输的增量σ是固定不变的。如果使增量的数值随误差信号()d k 的变化量化成M 个电平之一,然后再进行编码,这样,系统的性能就会得到改善。在这样的系统中,由于对传输的增量还要经过脉冲编码调制,因而称它为增量脉冲编码调制或差分脉冲编码调制()DPCM 。下面先介绍DPCM 的基本原理。

图1-1给出了DPCM 系统原理框图。图中输入抽样值信号为()S k ,接收端输出重建信号为()r S k ,()d k 是输入信号与预测信号()e S k 的差值,()q d k 是经量化后的差值,()I k 是()q d k 信号经编码后输出的数字码。

编码器中的预测器与解码器的预测器完全相同,因此,在信道传输无误码的情况下,解码器输出的重建信号()r S k 与编码器的()r S k 完全相同。DPCM 的总量化误差()e k 定义为输入信号()S k 与解码器输出的重建信号()r S k 之差,即有

[]()()()()()()()()()r e e q q e k S k S k S k d k S k d k d k d k ??=-=+-+=-??

由上式可知,在这种DPCM 系统中,总量化误差只和差值信号的量化误差有关。

自适应差分脉码调制(ADPCM )是语音压缩编码中复杂度较低的一种方法,它能在32kb/s 数码率上达到符合64kb/s 数码率的语音质量要求,也就是符合长途电话的质量要求。ADPCM 是在差分脉冲调制DPCM 基础上逐步发展起来的,ADPCM 的主要改进是量化器与预测器均采用自适应方式,即量化器与预测器的参数能根据输入信号的统计特性自适应于最佳或接近最佳参数状态。

ADPCM 编解码系统的原理方框图如图1-2所示。下面着重介绍四个部分。

(a ) 编码器

(b ) 解码器

图1-5 ADPCM 编解码系统原理图

1、输入输出单元

输入输出信号为标准的A 律或μ律64kb/s ADPCM 主要应用于扩充现有PCM 信道传输容量,即把两个30路PCM 信号合并成一个2048kb/s 的60路ADPCM 信号,这是ITU-T G.761建议的国际标准。因此,采用标准的64kb/s PCM 作为ADPCM 系统的输入接口是合理的。由于标准64kb/s PCM 是经过对数压缩后的数

字信号,它不能直接进行一般算术运算,所以,在进入ADPCM 编码前,必须把A 律PCM 码变换成自然二进制码,即线性PCM 码。这一变换可以通过两者之间内在的对应关系来实现。在接收端,则需要进行一次反变换,把ADPCM 码解码得到用线性PCM 码表示的重建信号()r S k ,变换成A 律或μ律对数PCM 信号输出。

1、同步编码调整单元

同步编码调整单元的功能主要是为了防止在同步级联的情况下(也就是全数字转接ADPCM-PCM-ADPCM-PCM-ADPCM )可能发生的量化噪声的积累问题。同步编码调整的原理简述如下:在重建PCM 信号()p S k 输出到信道前,让()p S k 再进行一次ADPCM 编码,然后把这个码与输入ADPCM 原始码进行比较。若比较后两者不相同,就对()p S k PCM 码增加或减少一个PCM 量化电平;如相同,则不作调整。其具体过程如下:

① 建PCM 信号()p S k 变换成线性PCM 重建信号()r S k ';

② 计算差值信号()()()x r e d k S k S k '=-;

③ 根据定标因子()y k ,将()x d k 再编成ADPCM 码字()IM k ;

④ 把()IM k 与输入的ADPCM 原始码()I k 进行比较:

若()()k I k IM =,则()()d p S k S k =;

若()()IM k I k <,则增加一个量化电平;

若()()IM k I k >,则减小一个量化电平。

2、自适应量化

图1-6 双模式()y k 产生原理

ITU-T G.721建议采用L =16的双模式非均匀自适应量化器。由于差值信号

()d k 接近于高斯分布,

所以采用输入为高斯分布的最佳非均匀量化器。最佳非均匀自适应量化器对于不同输入统计特性应有不同的自适应调制因子[()]M I k 。ITU-T 要求32kb/s ADPCM 对语音与语音频带内数据信号都应具有最佳性能,故采用动态锁定DLQ 或双模式自适应量化器。量化器的定标因子()y k 由快速因子()u y k 与慢速因子()l y k 组合而成,即

[]()()(1)1()(1)l u l l y k a k y k a k y k =-+--

式中,()l a k 为自适应速度控制参数。对于语音信号,()l

a k 趋于1;对于Modem 数据信号,()l a k 趋于0,()l

a k 是通过比较差值信号的短时平均值与长时平均值的差异来确定的。双模式非均匀自适应量化器的定标因子()y k 产生的原理框图如图1-3所示。

3、自适应预测器

ITU-T G.721建议采用零极点后向序贯自适应预测器。它有6个零点(M=6)与2个极点(N=2),并采用次优化的梯度符号法来自适应修正预测系数。由于2>N 的多阶极点预测器的稳定条件较难确定,因此,在有误码存在时,可能出现不稳定现象。设计证明,8阶零点预测器能取得相当高的预测增益p G 。因而,采用6阶零点与2阶极点预测器的组合,可以取得良好的预测增益p G 。具体细节请参考其它相关资料。

(二)电路原理

本设计模块中实现自适应差分脉码调制ADPCM 采用的是大规模集成电路专用芯片MC145540。MC145540的量化器与预测器均为自适应方式。当以高于奈奎斯特速率对话音或视频信号抽样时,在前后样值间可以看到有明显的相关性,将这些相关样值按通常PCM 系统的方式加以编码时会使得编码信号含有多余信息。如果在编码前将这种多余信息去掉,则可得到效率较高的编码信号。为此,可先利用信号()s nT X 的相关性对未来样值进行预测,预测器通常为抽头延时滤波器(即FIR 滤波器)。线性预测器的预测值为:

∑-=-=1

0)()(n i s s i s iT nT x a nT X

其中i a 为预测系数,在DPCM 中为常数,在ADPCM 中为自适应变量。N 为预测

阶数。可以根据预测误差能量最小的准则求出预测系数i a 。这样,PCM 编码器就只是对差值信号()()()s s s nT X nT X nT e -=进行量化和编码,以达到DPCM 或ADPCM 编码的目的。

模拟信号从“S-IN ”点输入,经电容E609(10μF )、电阻R627(10K Ω)后到运放的反相输入TI -端,运放的输出端一方面送至增益调整电路和滤波器电路,

另一方面,经过TG 端至反馈电阻R628(10K Ω)到运放的反相输入TI -端,运放

的输出端一方面送至增益调整电路和滤波器电路 ,另一方面经过TG 端至反馈电阻R628后到TI -端构成负反馈,放大倍数=R628/R627=10K Ω/10K Ω=1,故为1:1,

没有放大作用。滤波器的输出信号一方面送至侧音增益调整电路,另一方面送至模/数转换电路,变成数字信号,进入PCM 编码电路,输出PCM 信号,再经过ADPCM 编码电路,输出到发送串行移位寄存器电路中,最后ADPCM 数据从第20引脚(DT 端)输出。ADPCM 数据信号从第25引脚(DR 端)进入,串行输入至接收串行移位寄存器电路中,经过ADPCM 译码器进行译码,输出PCM 数据码,再经过接收数字增益调整电路后从第5引脚(RO 端)输出模拟信号。特别强调的是,该芯片的工作是由外部CPU 对其内部16个字节的RAM 进行编程,由程序进行控制。

(三) MC145540介绍

1. ADPCM 专用芯片MC145540介绍

① C145540ADPCM 芯片特征

a .单一供电方式:2.7V ~5.25V

b .低功耗:5V 时,150mW ,功耗下降0.3mW ;3V 时,65 mW ,功耗下降0.2mW

c .低噪声:有差分模拟电路

d .μ律/A 律压扩PCM 编译码/滤波器电路

e .三种速率选择(32、24、16kbit/s)、四种算法ADPCM CODEC 完全满足G721、723、726和G714的PCM 性能。

f.用可编程双音频发生器。

g.编程控制,发送增益调整,接收增益调整与侧音增益调整。

h.可直接与话筒接口的低噪声、高增益的三端输入运算放大器电路。 i.可直接与扬声器接口的推挽300Ω负载阻抗。

j.提供振铃接口的推挽300Ω的驱动电路。

k.降功耗供电方式,3V 电源送入数字信号处理电路;5V 电源送入模拟信号处理电路。

l .收端具有噪声突发检测算法。

m . 有串行控制口和监控内存,可实现微计算机控制。

3、管脚功能简介

第1引脚(TG —Transmit Gain ):发送增量控制。由第2引脚(TI -)和第3

引脚(TI +)输入的音频模拟信号经输入运放后从该端输出。该端实质上是发送

滤波器的输入端。

这是设定运算放大器增益的输出和输入到发送带通滤波器。此运算放大器能驱动2K Ω负载到V AC 引脚。当TI -和TI +连到V DD 时,TG 运算放大器掉电,TG 引脚

变成高阻抗,输入到发送放大器。此引脚上的所有信号以V AC 引脚为基准。当器

件是在模拟掉电方式下时,此引脚是高阻抗。此运算放大器由V DD 引脚加电。

第2引脚(TI

-

—Transmit Analog Inverting Input):模拟运算放大器反相输入端。音频模拟信号通过该端进入模拟运放。

这是发送增益设定运算放大器的反相输入。增益设定电阻通常从此引脚连到

TG和从此引脚到模拟信号源。TI

+和TI

-

引脚的共模范围从1.0V到2.0V。连接此

引脚和TI

+到V

DD

将置此放大器的输出(TG)于高阻抗状态,这样,允许TG引脚

作为发送滤波器的高阻抗输入。

第3引脚(TI

+

—Transmit Analog Input):模拟运算放大器正相输入端。该端一般与第4脚相接,由第4引脚提供一个2.4V电平输入。

这是发送增益设定运算放大器的同相输入。对于输入增益设定运算放大器,

此引脚调节差分到单端电路。允许输入信号以V

SS 引脚为基准,使电平移向V

AG

脚。TI

+和TI

-

引脚的共模范围是1.0V到-2V。连接此引脚和TI

-

(引脚2)到V

DD

将置此放大器的输出(TG)于高阻抗状态,这样,允许TG引脚作为高阻抗输入到发送滤波器。

第4引脚(VAG—Analog Ground Output):模拟对地输出端,该端能提供一个输出2.4V电压,输送给第3引脚。该端必须和地之间接入一个去耦电容,电容量在0.01μf-0.1μf之间。器件内部所有模拟信号都以此引脚为基准。此引脚应使用0.01-0.1μf陶瓷电容器去耦到V

SS

。如果音频信号处理基准为VSS,则

要特别小心,防止V

SS 和V

AG

引脚之间的噪声。当在模拟掉电方式下V

AG

引脚变为

高阻抗。

第5引脚(RO-Receive Analog Output):接收模拟信号输出端。ADPCM信号经过变换处理后的模拟音频信号从该端输出。这来自数/模变换器的接收平滑滤波器的同相输出。此输出能驱动2KΩ负载到1.575V峰值,基准为V

AG

引脚。

第6引脚(AXO

-

—Auxiliary Audio Power Inverting Output):音频信号反相输出端。该端与第7引脚一起可把音频信号平衡输出。这是辅助功率输出驱动器的反相输出。此辅助功率驱动器能差动地驱动300Ω负载。此功率放大器从

V EXT 得电,其输出能摆动到V

SS

和V

EXT

的0.5V以内。此引脚可以是以V

AG

引脚或经

BR2(b7)的V

EXT

的一半电压两者之一为直流基准。此引脚在掉电下为高阻抗。

除了当它为模拟信号输出而启动外,此引脚是高阻抗。

第7引脚(AXO

+

—Auxiliary Audio Power Output):音频信号同相输出端,

功能同AXO

-

。这是辅助功率输出驱动器的同相输出。辅助功率驱动器能差动地驱

动300Ω负载。此功率放大器从V

EXT 得电,其输出能摆动到V

SS

和V

EXT

的0.5V以内。

此引脚可以是以V

AG 引脚或BR2(b7)的V

EXT

的一半电压两者之一为直流基准。此

脚在掉电下为高阻抗。除了当它为模拟信号输出而启动外,此引脚为高阻抗。

第8引脚(V

DSP

—Digital Signal Processor Supply Output):数字信号处理单元电压输出端。该端是指向该芯片内的数字信号处理单元电路提供稳定的输出电压。电压为3V。但是它不能向外部负载电路供电。该引脚与地之间应接上

一个去耦电容。电容值在0.1μf。此引脚连到在片V

DSP

电压调整器的输出,供给DSP电路和ADPCM编码解码器的其它数字单元的正电压。此引脚应该用0.1μf

陶瓷电容器去耦到V

SS

。此引脚不能用来对外部负载加电,当掉电以维持存储时

此引脚内部连到V

EXT

第9引脚(V

EXT

—External Power Supply Input):外加电源输入端。该端由外加一电源电压输入,电压在2.70V-5.25V之间,同时该端必须接一去耦电容到地,电容值在0.1μf。此电源输入引脚必须在2.70和5.25V之间,在内部它

连到V

DSP

电压调整器的输入,5V调整充电泵、全部数字I/O,包括串行控制端口

通信原理实验报告--脉冲编码调制与解调实验

本科实验报告 课程名称:通信原理 实验项目:脉冲编码调制与解调实验实验地点:通信原理实验室 专业班级:学号: 学生姓名: 指导教师: 2012年6 月16 日

一、实验目的和要求: 1.掌握脉冲编码调制与解调的原理。 2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3.了解脉冲编码调制信号的频谱特性。 二、实验内容: 1.观察脉冲编码调制与解调的结果,观察调制信号与基带信号之间的关系。 2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。 3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。 4.观察脉冲编码调制信号的频谱。 三、主要仪器设备: 信号源模块、PAM、AM模块、终端模块、频谱分析模块 四、实验原理: 模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。 脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信

号变换成数字信号的编码方式。脉码调制的过程如图4-1所示。 PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM码组(电话语音)是八位码组代表一个抽样值。编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300-3400Hz左右,所以预滤波会引入一定的频带失真。 图4-1 PCM 调制原理框图 在整个PCM系统中,重建信号的失真主要来源于量化以及信道传输误码,通常,用信号与量化噪声的功率比,即信噪比S/N来表示,国际电报电话咨询委员会(ITU-T)详细规定了它的指标,还规定比

使用自适应差分脉冲编码调制(ADPCM)

中华人民共和国通信行业标准 使用自适应差分脉冲编码调制(ADPCM) 和数字话音插空(DSI)的数字电路信增设备 Digital circuit multiplication equipment using ADPCM and DSI YD/T 1018—1999 前言 本标准是根据国际电信联盟电信标准化部门(ITU-T)建议G.763(1998),并结合我国具体情况制订的,在技术内容上与G.763一致。 本标准的附录A是标准的附录。 本标准由邮电部电信科学研究规划院提出并归口。 本标准由邮电部第五研究所负责起草。 本标准主要起草人:戚家和 1 范围 本标准规定数字电路信增设备(DCME)和数字电路信增系统(DCMS)的技术要求。 本标准适用于设备的设计参考,而不限制具体功能如何实现。 2 引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 7611—87 脉冲编码调制通信系统网路数字接口参数 ITU—T建议 G.763(1998)使用ADPCM(建议G.726)和数字话音插空的电路倍增设备 ITU—T建议 G.703(1O/98)系列数字接口的物理/电气特性 ITU—T建议 G.7704(10/98)用于1544kbit/s、6312kbit/s、2048kbit/s、8488kbit/s 和44736kbit/s速 率系列级的同步帧结构 ITU—T建议 G.726(12/90)40、32、24、16kbit/s自适应差分脉冲编码调制(ADPCM) ITU—T建议 G.766(11/96)数字电路倍增设备的传真解调/再调制 ITU—T建议 Q.50(03/93)电路倍增设备(CME)和国际交换中心(ISC)之间的信令 ITU—T建议 Q.764(03/93)ISDN用户部分信令程序 ITU—T建议 G.711(11/88)话音频率的脉冲编码调制(PCM) ITU—T建议 G.763的附件A(10/98);DCME发送/接收单元结构的例子和SDL图 ITU—T建议 G.763的附录I(10/98):附加要求 ITU—T建议 G.763的补充1(10/98):DCME的应用指导和系统能力的估算 3 定义 3.1 数字电路倍增设备(DCME)

《通信原理》课程教学大纲.

《通信原理》课程教学大纲 课程编号: 课程名称:《通信原理》 参考学时:60 实验学时:18 先修课及后续课:先修课:电路原理、模拟电子技术基础、数字电子技术基础 后续课:现代DSP技术 (一)说明部分 1.课程性质 本课程是通信工程、电子信息工程本科专业的一门重要的专业基础课,授课对象为在校本、专科学生。该课程设置的目的是使学生学习和掌握通信原理的基本知识,为后续专业课程的学习打下良好的基础。 2.教学目标及意义 通过本课程的学习使学生掌握通信系统基础理论知识,使学生掌握典型通信系统的组成、工作原理、性能特点、基本分析方法、工程计算方法和实验技能等。了解通信技术当前发展状况及未来发展方向。为学生学习后续专业课程提供必要的基础知识和理论背景,为学生形成良好的专业素质打好基础。 3.教学内容和要求 通信系统是通信、电子信息及相关专使学生学习和掌握通信原理的基本知识,它运用了高等数学、概率论、线性代数等专业数学知识,以及信号与线性系统分析方法,进一步为学生在确知信号的谱分析、随机信号(随机过程)和噪声的统计分析方面打下坚实的数理基础。在此基础上要求学生掌握模拟通信系统的基本知识、分析方法和噪声性能。掌握模拟信号数字化技术的基础理论。重点分析数字通信系统的数学模型、误码特性、差错控制编码。并从最佳接收观点提出统计通信理论的基础知识,使学生能够掌握当前通信系统建模和优化的思维方法。 本课程配有通信原理实验,主要涉及的内容有对模拟信号的数字化部分如:脉冲幅度调制PAM、脉冲编码调制PCM、增量调制△M等;有数字信号的调制部分如:二相PSK(DPSK)、FSK等。 4.教学重点、难点 教学的重点在于模拟信号的编码、数字信号的传输及差错控制部分。其中基带传输部分介绍的无码间串扰系统及频带传输部分介绍的最佳接收是难点。 5.教学方法和手段 本课程需要运用先修的高等数学、概率论、线性代数等专业数学知识,信号与系统分析方法,又涉及到后续专业课程的各个领域,本课的理论性和应用性均较强。因此教学上采用课内和课外教学相结合。课内以课堂教学为主,课后学生自学部分内容的形式,课外教学则

实验四 脉冲编码调制解调实验

实验四脉冲编码调制解调实验 一、实验目的 1、掌握脉冲编码调制与解调的原理; 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法; 3、了解脉冲编码调制信号的频谱特性; 4、了解大规模集成电路W681512的使用方法。 二、实验内容 1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系; 2、改变基带信号幅度,观察脉冲编码调制与解调信号的信噪比的变化情况; 3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况; 4、改变位同步时钟,观测脉冲编码调制波形。 三、实验仪器 1、信号源模块一块 2、模块2 一块 3、20M 双踪示波器一台 4、立体声耳机一副 5、连接线若干 四、实验原理 (一)基本原理 脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图4-1所示。 PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始

语音信号的频带限制在300Hz ~3400Hz 左右,所以预滤波会引入一定的频带失真。 在整个PCM 系统中,重建信号的失真主要来源于量化以及信道传输误码。通常,用信号与量化噪声的功率比,即信噪比S/N 来表示。国际电报电话咨询委员会(ITU-T )详细规定了它的指标,还规定比特率为64kbps ,使用A 律或 μ律编码律。下面将详细介绍PCM 编码的整个过程,由于抽样原理已在前面实 验中详细讨论过,故在此只讲述量化及编码的原理。 图4-1 PCM 调制原理框图 1、量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图4-2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电平或量化电平。当量化器输入信号幅度x 落在k x 与 1+k x 之间时,量化器输出电平为k y 。这个量化过程可以表达为: {}1(), 1,2,3,,k k k y Q x Q x x x y k L +==<≤== 这里k x 称为分层电平或判决阈值。通常k k k x x -=?+1称为量化间隔。

基础实验cm调制与解调实验

基础实验c m调制与解 调实验 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基础实验6 PCM调制与解调实验 一、实验目的 1.掌握PCM编译码原理与系统性能测试; 2.熟悉PCM编译码专用集成芯片的功能和使用方法; 3.学习PCM编译码器的硬件实现电路,掌握它的调整测试方法。 二、实验仪器 1.PCM/ADPCM编译码模块,位号:H 2.时钟与基带数据产生器模块,位号:G 3.20M双踪示波器1台 4.低频信号源1台(选用) 5.频率计1台(选用) 6.信号连接线3根 7.小平口螺丝刀1只 三、实验原理 脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。 PCM通信系统的实验方框图如图6-1所示。

在PCM脉冲编码调制中,话音信号经防混叠低通滤波器后进行脉冲抽样,变成时间上离散的PAM脉冲序列,然后将幅度连续的PAM脉冲序列用类似于“四舍五入”办法划归为有限种幅度,每一种幅度对应一组代码,因此PAM脉冲序列将转换成二进制编码序列。对于电话,CCITT规定抽样率为8KHz,每一抽样值编8位码(即为28=256个量化级),因而每话路PCM编码后的标准数码率是64kB。本实验应用的单路PCM编、译码电路是 TP3057 芯片(见图6-1中的虚线框)。此芯片采用a律十三折线编码,它设计应用于PCM 30/32系统中。它每一帧分32个时隙,采用时分复用方式,最多允许接入30个用户,每个用户

各占据一个时隙,另外两个时隙分别用于同步和标志信号传送,系统码元速率为。各用户PCM编码数据的发送和接收,受发送时序与接收时序控制,它仅在某一个特定的时隙中被发送和接收,而不同用户占据不同的时隙。若仅有一个用户,在一个PCM 帧里只能在某一个特定的时隙发送和接收该用户的PCM编码数据,在其它时隙没有数据输入或输出。 本实验模块中,为了降低对测试示波器的要求,将PCM 帧的传输速率设置为64Kbit/s或128Kbit/s两种,这样增加了编码数据码元的宽度,便于用低端示波器观测。此时一个PCM 帧里,可容纳的PCM编码分别为1路或2路。另外,发送时序FSX与接收时序FSR使用相同的时序,测试点为34TP01。实验结构框图已在模块上画出了,实验时需用信号连接线连接34P02和34P03两铆孔,即将编码数据直接送到译码端,传输信道可视为理想信道。 另外, TP3057芯片内部模拟信号的输入端有一个语音带通滤波器,其通带为200HZ~4000HZ,所以输入的模拟信号频率只能在这个范围内有效。 四、各测量点的作用 34TP01:发送时序FSX和接收时序FSR输入测试点,频率为8KHz的矩形窄脉冲; 34TP02:PCM线路编译时钟信号的输入测试点; 34P01:模拟信号的输入铆孔; 34P02:PCM编码的输出铆孔; 34P03:PCM译码的输入铆孔; 34P04:译码输出的模拟信号铆孔,波形应与34P01相同。 注:一路数字编码输出波形为8比特编码(一般为7个半码元波形,最后半个码元波形被芯片内部移位寄存器在装载下一路数据前复位时丢失掉),数据的速率由编译时钟决定,其中第一位为语音信号编码后的符号位,后七位为语音信号编码后的电平值。

脉冲编码调制(PCM)系统.

脉冲编码调制(PCM)系统 摘要: 脉冲编码调制(PulseCodeModulation),简称PCM。是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。PCM的优点就是音质好,缺点就是体积大。PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。 关键字: 脉冲编码调制、取样、量化、编码、解码 Abstract: Pulse Code Modulation (PulseCodeModulation), referred to as PCM. Digital signal is a continuous change in analog signal sampling, quantization and coding production. PCM sound quality is good advantages and disadvantages are bulky. PCM can provide users from 2M to 155M line speed of digital data services, can also provide voice, video transmission, remote learning, and other businesses. Keywords: Pulse code modulation, modulation, demodulation

目录 一、工作原理 (4) 1.1 取样 (5) 1.2 量化 (5) 1.3 编码 (7) 1.4 再生 (10) 1.5 解码 (10) 二、芯片选择 (11) 2.1 TP3067管脚定义 (13) 三、电路设计 (14) 四、心得体会 (16)

通信原理实验脉冲编码调制解调实验

《通信原理》实验报告 实验四:脉冲编码调制解调实验实验五:两路PCM时分复用实验 系别:信息科学与技术系 专业班级:电信0902 学生姓名: 同组学生: 成绩: 指导教师:惠龙飞 (实验时间:2011年11月24日) 华中科技大学武昌分校

实验四:脉冲编码调制解调实验 一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 4、了解大规模集成电路W681512的使用方法。 二、实验内容 1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。 2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。 3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。 4、改变位同步时钟,观测脉冲编码调制波形。 三、实验器材 1、信号源模块一块 2、②号模块一块 3、60M双踪示波器一台 4、连接线若干 四、实验原理 模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。 脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图5-1所示。 PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信

通信原理脉冲编码调制与解调实验

实验三脉冲编码调制与解调实验 一、实验目的 1.掌握脉冲编码调制与解调的原理。 2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义和测量方 法。 3.了解脉冲编码调制信号的频谱特性。 4.了解大规模集成电路TP3067的使用方法。 二、实验步骤 1.将信号源模块、模拟信号数字化模块、终端模块小心地固定在主机箱中, 确保电源接触良好。 2.接上电源线,打开主机箱右侧的交流开关,再分别按下四个模块中的开 关POWER1、POWER2、S2、S3,对应的发光二极管LED001、LED002、LED600发光,按一下信号源模块的复位键,三个模块均开始工作。 3.将信号源模块的拨码开关SW101、SW102设置为00000000 00000001。 4.将信号源模块产生的正弦波信号(频率2.5KH Z,峰-峰值为3V)从点 “S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”、“BS” 分别与模拟信号数字化模块的信号输入点“CLBK-IN”、“FRAMB-IN”、“2048K-IN” 连接,观察信号输出点“PCMB-OUT”的波形。 PCMB-OUT波形 5.连接“CLKB-IN”和“CLK2-IN”,“FRAMB-IN”和FRAM2-IN”,连接 信号输出点“PCMB-OUT”和信号输入点“PCM2-IN”,观察信号输出点“OUT” 的波形。

OUT波,出现严重失真 6.改变输入正弦信号的幅度,使其峰-峰值分别等于和大于5V(若幅度无 法达到5V,可将输入正弦信号先通过信号源模块的模拟信号放大通道,再送入模拟信号数字化模块),将示波器探头分别接在信号输出点“OUT”、“PCMB-OUT”上,观察满载和过载时的脉冲幅度调制和解调波形,记录下来(应可观察到,当输入正弦波信号幅度大于5V时,PCM解码信号中带有明显的噪声)。 5V OUT波形输出 5.8V OUT波形输出 5V PCMB OUT

差分编码OQPSK 调制解调器设计

差分编码OQPSK 调制解调器设计 前 言 频谱效率和功率效率是影响地面无线通信系统和卫星通信系统调制体制选择的两个重要因素。QPSK 调制方式具有较高的频谱利用率,但是由于它存在180°相位突变的情况,因而在带限信道中会出现包络起伏。此时,必须采用线性功放,否则会出现频谱扩展现象,引起邻道干扰。另外,它的线性功放功率效率低,并且造价高,因此,在便携设备应用中大大受到限制。与QPSK 调制相比,π/ 4-DQPSK 和OQPSK 都消除了180°相位突变的情况。但是,P/ 4-DQPSK 仍然存在135°相位突变,而OQPSK 只有90°相位突变,更好地消除了相位突变带来的问题。但OQPSK 调制必须采用相干解调,因而存在载波恢复的相位模糊问题。目前,解决相干载波恢复相位模糊度问题通用的两种方法是利用帧头辅助或采用差分编码。由于OQPSK 调制的特殊性,其差分编解码相应比较特殊。本文对DOQPSK 调制方案进行了分析,并给出了一种简单、高效的DOQPSK 解码方法。在此基础上,给出了基于中频采样的全数字DOQPSK 调制解调器设计方案。 1 差分编码OQPSK 调制解调 1. 1 OQPSK 信号的CPM 调制表示 OQPSK 调制可以采用CPM 调制来表示,即 ))(2cos()(0,??πα++=t ct t f S b b T n t nT )1(+≤≤ (1) 式中,f c 为载波频率,T b 为比特周期,U( t ,A) 为包含调制信息的载波相位,可以表示为 ∑=-∞ == n i i t απ α?2 ,)( (2) 其中,},...,,,{...n 01-2-ααααα= ,并且满足 2 ) ()1(211 --+--=i i i i d d d α (3) 式中,di 为需要传输的信息数据并且d i= ±1。 1. 2 二次差分的OQPSK 差分编码调制方案 采用差分编码的主要目的是在接收端能够通过差分解码来消除正交解调端载波恢复时存在的相位模糊度问题。一般,多比特相位调制信号其载波相位表示的是码元符号,因此,差分编码时往往是先将比特数据影射为码元符号,再对码元进行差分编码。反之,在接收端则是先通过差分解码判断出正确的码元,然后再恢复出相应的比特数据。针对OQPSK 调制的特殊性,给出了下列双差分OQPSK 的调制方案。 假设αi = ±1 为独立等概率分布的二进制序列,其差分编码序列为di= Ai di- 1,di 亦为独立等概分布的二进制序列。该差分编码关系亦可表示为αi= di di- 1。根据式( 3) 可以得出差分编码后OQPSK 信号码元与原始数据比特关系: 2 )1(1 1 -+--=i i i ααα (4) 在接收端恢复出αi 后,根据式( 4)对应关系进行解码可以恢复出原始发送数据αi 。

脉冲编码调制(PCM)实验报告

脉冲编码调制(PCM)实验 一、实验目的 1.了解语音信号编译码的工作原理; 2. 验证PCM 编码原理; 3. 初步了解PCM 专用大规模集成电路的工作原理和应用; 4. 了解语音信号数字化技术的主要指标及测试方法。 二、实验仪器 双踪同步示波器1台;直流稳压电源l 台;低频信号发生器l 台;失真 度测试仪l 台;PCM 实验箱l 台。 三、实验原理 PCM数字终端机的结构示意图如下: PCM 原理图如下:

PCM 编译码原理为: 1.PCM主要包括抽样、量化与编码三个过程。 2.抽样:把连续时间模拟信号转换成离散时间连续幅度的抽样信号; 3.量化:把离散时间连续幅度的抽样信号转换成离散时间离散幅度的数字 信号; 4.编码:将量化后的信号编码形成一个二进制码组输出。 5.国际标准化的PCM 码组(电话语音)是八位码组代表一个抽样值。 https://www.doczj.com/doc/b618759667.html,ITT G.712 详细规定了它的S/N指标,还规定比特率为64Kb/s. 使用 A 律或u 律编码律。 内为均匀分层量化,即等问隔16 个分层。 系统性能测试有三项指标,即动态范围、信噪比特性和频率特性。在满足一定信噪比(SIN)条件下,编译码系统所对应的音频信号的幅度范围定义为动态范围。

PCM 编译码系统动态范围样板值图: 动态范围测试框图: (一)时钟部分: 1.主振频率为4096KHz;用示波器在测试点(1)观察主振波形,用 示波器测量其频率。同样在(2) 、(3)和(4)观察并测量其它时钟信 号,并记录各点波形的频率和幅度。 (二)PCM编译码器: 1.音频信号(f=1KHz,Vpp=2V) 从(5)、(5’)输入;在(6)观察到PCM 编 码输出的码流; 2.连接(6)-(7),在测试点(8)可观察到经译码和接收低通滤波器恢复 出的输出音频信号,记录测试此点的波形参数。 (三)系统性能测试: 1.动态范围:取输入信号的最大幅度为5Vpp,信号由小至大调节, 测出此时的S/N值,记录于表。 2. 信噪比特性:在上一项测试中选择出最佳编码电平(S/N最高), 在此电平下测试不同频率下的信噪比值。频率选择在500Hz、 1000Hz、1500Hz、2000Hz、3000Hz;记录对应的信噪比。 3.频率特性:选一合适的输入电平(Vin=2Vpp) ,改变输入信号的 频率,在(8)处逐频率点测出译码输出信号的电压值,频率特性 测试数据记录于表。

ASK,PSK,FSK调制与解调实验

实验十四 2ASK调制与解调实验 实验目的: 1.了解数字调制与解调的概念。 2.掌握2ASK调制的原理与实现方法。 3.掌握2ASK解调的原理与实现方法。 实验内容: 1.采用数字键控法2ASK调制,观测2ASK调制信号的波形。示波器双踪观察NRZ输入 与调制输出测试点波形。 其中NRZ输入码型为000011111101100011110101,调制输出符合2ASK调制波形。 由频谱图可知,2ASK调制带宽为190KHz,满足分析结果192KHz。 实验现象记录 8-1 方波频率8KHz,占空比50% 8-2 方波频率16KHz,占空比50%

8-3 方波频率为4KHz时的还原信号8-4 方波频率为16KHz时的还原信号 8-5 方波频率8KHz,占空比10% 8-6 方波频率8KHz,占空比20% 8-7 方波频率8KHz,占空比50% 8-8 方波占空比为10%时的还原波形 8-9 方波占空比为20%时的还原波形 实验分析 1、由于采样信号的频谱以Sample函数为包络,并以采样频率为周期进行延拓,因此,对于图8-1,当方波频率为8KHz,占空比为50%时,Sample函数的第一个

过零点在16KHz处;而当方波频率为16KHz,占空比为50%时,Sample函数的第一个过零点在32KHz处。且两种情况下原信号的频谱均以采样频率8KHz为周期进行延拓。 2、由图8-3和8-4可知,当抽样频率大于奈奎斯特频率时,PAM信号通过低通滤波器后能很好地还原出原信号,且随着抽样频率的升高,恢复得到的波形越接近原波形,但当抽样频率高过一定值时,再提高抽样频率也不会使信号得到更好的恢复,而此时对抽样脉冲的要求则大大提高了,因此过高的采样频率是没有必要的。 3、由图8-5,8-6和8-7可看出,随着抽样占空比的增加,采样信号频谱包络的第一个过零点逐渐减小,且两个过零点之间包含的延拓信号的周期数也随之减小。 4、由图8-8和8-9可以看出,在抽样频率满足抽样定理的前提下,随着抽样信号占空比的增大,恢复出来的信号越接近于原波形。 实验思考: 1.简述抽样定理。 答:一个频带限制在(0,H f)的连续时间信号,若用大于2H f的频率对其进行等间隔采样,则可以不失真地利用这些采样值恢复出原信号。 2.在抽样之后,调制波形中包不包含直流分量,为什么? 答:包含。这是因为采样后的信号频谱为原信号频谱以采样频率为间隔的周期延拓,故包含直流分量,该分量也是我们最终用低通滤波器来恢复原信号的关键。 3.改变抽样频率对“PAM输出信号”有何影响?改变抽样脉冲占空比对“PAM 输出信号”有何影响,试比较分析之。 答:(1)当抽样频率小于奈奎斯特频率时,“PAM输出信号”的频谱产生混叠;而当采样频率大于奈奎斯特频率时,该信号的频谱则呈现为被采样信号频谱的周期延拓,且随着抽样频率的升高,每个周期间的信号频谱的间隔逐渐增大,能被很好地区分开来。(2)随着抽样占空比的增大,采样信号频谱包络的第一个过零点逐渐减小,两个过零点之间包含的延拓信号的周期数也随之减小。 4.为什么采用低通滤波器就可以完成PAM解调? 答:因为当抽样脉冲的频率高于输入信号的频率时,通过低通滤波器之后高频的延拓信号被滤掉了,同时高频的抽样时钟信号也被滤除,因此,只需通过低通滤波器便能完成PAM解调,恢复出原信号。 实验九脉冲编码调制与解调实验(PCM)实验目的:

多媒体-简答题

★什么是多媒体?◆多媒体是指信息表示媒体的多样化,常见的过媒体有文本、图形、图像、声音、音乐、视频、动画等多种形式。 ★触摸屏分为哪几类?简述常见触摸屏的工作原理?◆触摸屏可分为:电阻式、电容式、红外线式、声表面波式。工作原理:当用户用手指或其他设备触摸安装在计算机显示器前面的触摸屏时,所触摸的位置(以坐标的形式)被触摸屏控制器检测到,并通过串行口或其他接口送到CPU,从而确定用户输入的信息。 ★什么是视频扑捉卡?它的主要作用是什么?◆视频捕捉卡是把输入的模拟视频信号,通过内置芯片提供的捕捉功能转换成数字信号的设备。主要作用:用来连接模拟视频输出的微型摄像头。 ★简述数据压缩的必要性和可能性?◆能够对多媒体数据进行压缩的前提是因为数据存在大量的冗余,尤其是声音和图像。数据压缩的目的就是尽可能地消除这些冗余。 ★矢量图与位图有哪些不同?◆区别:矢量图文件内容是:图形指令;文件大小与图的复杂度有关;显示速度:图越复杂,须执行的指令越多,显示越慢;特点:易于编辑,适于“绘制”和“创建”,便于网络传输。但表现力受限。 位映像图文件内容是:图像点阵数据;文件大小与图的尺寸、彩色深度有关;显示速度:与图的大小无关;特点:适于“获取”和“复制”,表现力较丰富,但编辑较复杂。图像文件大,不便于网络传输。 ★与GIF和JPEG文件格式相比,PNG具备的优点有哪些?◆优点:①兼具GIF和JPEG的色彩模式;②PNG能把图像文件压缩到极限以利于网络传输,且能保留所有与图像品质有关的信息解决方案;③更优化的传输显示;④透明图像在制作网页图像的时候很有用,还可以最大范围的减小文件大小,提高传输速度;⑤PNG可使图像在所有系统上的显示图像完全相同。 ★列出所知道的语音编码标准?◆语音编码标准:G.711标准:于1972年制定,其比特率64kbps,编码技术PCM,应用于公共电话网、G.722标准:于1988年11月制定,其比特率64kbps,编码技术SBC+ADPCM,应用于视听多媒体和电话会议、G.723.1标准:于1996年3月制定,其比特率5.3kbps或6.3kbps,编码技术MP-MLQ,应用于视频电话及IP电话等、G.728标准:于1992年9月制定,其比特率16kbps,编码技术LD-CELP,应用于公共电话网、G.729标准:于1996年3月制定,其比特率8kbps,编码技术CS-ACELP,应用于无线移动网、计算机系统等。 ★什么叫做均匀量化?什么叫做非均匀量化?◆均匀量化(线性量化):采用相等的量化间隔采样得到的信号进行量化。非均匀量化(非线性量化):对输入信号进行量化时,大的输入信号采用大的量化间隔,晓得输入信号采用小的量化间隔。 ★自适应脉冲编码调制(APCM)的基本思想是什么?◆自适应脉冲编码调制(APCM)的基本思想是根据输入信号幅度的均方根值的变化来改变量化。自适应可以瞬时适应,即量化增量每隔几个样本就改变,也可以是非瞬时的,即量化增量在较长时间内保持稳定 ★差分编码调制(DPCM)的基本思想是什么?◆差分编码调制(DPCM)的基本思想是:根据过去的样本去估算下一个样本信号的幅度的大小,这个值称为预测值,然后对实际信号值与预测值之差进行量化编码,从而减少了表示每隔样本信号的位数。 ★自适应差分脉冲编码调制(ADPCM)的两个基本思想是什么?◆自适应差分脉冲编码调制(ADPCM)的两个基本思想:1,利用自适应的思想改变量化增量的大小,即使用小的量化增量去编码小的差值,使用大的量化增量去编码大的差值。2,使用过去的样本值估算下一个输入样本的预测值,使实际样本值和预测样本值之间的差值总是最小。 ★声卡的性能?声卡的工作原理?◆声卡的性能:①录制、编辑和回放数字声音文件;②控

PCM编译码实验

PCM编译码实验 一、实验目的 1、掌握脉冲编码调制与解调的原理。 2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。 3、了解脉冲编码调制信号的频谱特性。 二、实验内容 1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。 2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。 3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。 4、改变位同步时钟,观测脉冲编码调制波形。 三、实验器材 1、信号源模块一块 2、②号模块一块 3、20M双踪示波器一台 4、立体声耳机一副 5、连接线若干 四、实验原理 (一)基本原理 模拟信号进行抽样后,其抽样值还是随信号幅度连续变化的,当这些连续变化的抽样值通过有噪声的信道传输时,接收端就不能对所发送的抽样准确地估值。如果发送端用预先规定的有限个电平来表示抽样值,且电平间隔比干扰噪声大,则接收端将有可能对所发送的抽样准确地估值,从而有可能消除随机噪声的影响。 脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图5-1所示。 PCM主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间

离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300Hz ~3400Hz 左右,所以预滤波会引入一定的频带失真。 在整个PCM 系统中,重建信号的失真主要来源于量化以及信道传输误码。通常,用信号与量化噪声的功率比,即信噪比S/N 来表示。国际电报电话咨询委员会(ITU-T )详细规定了它的指标,还规定比特率为64kbps ,使用A 律或μ律编码律。下面将详细介绍PCM 编码的整个过程,由于抽样原理已在前面实验中详细讨论过,故在此只讲述量化及编码的原理。 图5-1 PCM 调制原理框图 1、 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图5-2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电平或量化电平。当量化器输入信号幅度x 落在k x 与1+k x 之间时,量化器输出电平为k y 。这个量化过程可以表达为: {}1(), 1,2,3,,k k k y Q x Q x x x y k L +==<≤== 这里k x 称为分层电平或判决阈值。通常k k k x x -=?+1称为量化间隔。 图5-2 模拟信号的量化 模拟入 y x 量化器 量化值

脉冲编码调制

脉冲编码调制(PCM)系统设计与仿真 目录 一、前言 (2) 二,设计目的 (3) 三、脉冲编码调制介绍 (3) 3.1简介 (3) 3.2脉冲编码调制PCM的基本原理 (4) 3.3编码 (5) 四、设计步骤 (5) 4.1系统介绍 (5) 4.2PCM编码器组件功能实现 (9) 4.3 PCM编码器模块 (10) 4.4 PCM译码器模块 (11) 4.5、系统仿真模型 (12) 4.6仿真波形 (13) 五、设计过程中需解决的问题 (14) 六、设计心得......................... 错误!未定义书签。参考文献 (14)

脉冲编码调制(PCM)系统设计与仿真 摘要: SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制(PCM)是现代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进行分析。 ABSTRACT SystemView simulation software multi-level communication system simulation. Pulse code modulation (PCM) is a modern digital voice communication important encoding. SystemView achieved using pulse code modulation (PCM) emulation, the hardware circuit can provide a theoretical basis. The simulation shows the PCM code to implement the design concept and the specific process and analyze them. 关键词: PCM 编译码 一、前言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。 SystemView具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤

自适应差分脉冲编码调制语音编码

自适应差分脉冲编码调制(ADPCM)语音编 码 摘要:在过去的几十年中人类在语音数字化和数字化压缩领域研究摸索中取得了辉煌的成就。开 辟了崭新的信息数字化时代。 1972年CCITT制定了G.711 64kb/s PCM语音编码标准,CCITT G.711A规定的A律和μ律PCM采用非线性量化,在64kb/s的速率语音质量能够达到网络等级,当前已广泛应用于各 种数字通信系统中。由于它是一维统计语音信号,当速率进一步减小时,将达不到网络等级所 要求的话音质量。对于许多应用,尤其在长途传输系统中,64kb/s的速率所占用的频带太宽以 至通信费用昂贵,因此人们一直寻求能够在更低的速率上获得高质量语音编码质量的办法。于 是在1984年CCITT又提出了32kb/s标准的G.721 ADPCM编码。 ADPCM充分地使用了语音信号样点间的相关性,利用自适应预测和量化来解决语音信号的非平稳特点,在32kb/s速率上能够给出符合公用网的要求的网络等级语音质量。 本文对PCM、DPCM、DM、ADM以及ADPCM的编码、译码原理进行讨论,并对它们性能进行比较,然后着重阐述基于ADPCM的语音压缩算法,并介绍了ADPCM编码在蓝牙技术 上的使用,最后对ADPCM在现代通信中的应用做个总结与展望。 1 脉冲编码调制及差分脉冲编码调制 1.1脉冲编码调制(PCM) 脉冲编码调制PCM(Pulse Code Modulation)是把模拟信号变换成数字信号的一种调制方式。其功能是完成模-数转换,实现连续消息数字化。在PCM的调制过程中,将输入的模拟信号进行取样,量化和编码。经量化后的样值进一步变换为表示量化电平大小的二进制,即用二进制的大小来代表模拟信号的幅度(一个二进制码是一组有限的“0”、“1”脉冲序列)。在接收端再将这些编码的二进制数还原为原来的模拟信号。由于二进制PCM便于应用现代数字技术,且具有抗噪性能好的优点,因此是一种最常用的PCM形式。 1.2差分脉冲编码调制(DPCM)

PAM与脉冲编码调制解调实验报告__PAM与PCM

实验二PAM与PCM 一、实验目的 1.掌握脉冲编码调制与解调的原理。 2.掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。3.了解大规模集成电路TP3067 的使用方法。 二、实验器材 1. 信号源模块 2. 模拟信号数字化模块 3. 终端模块(可选) 4. 60M 双踪示波器一台 5. 音频信号发生器(可选)一台 6. 立体声单放机(可选)一台 7. 立体声耳机一副 8. 连接线 三、实验内容 1.观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。2.改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。3.改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况 四、实验原理 1 PAM 实验 原理框图如图2-1所示: 图2-1 假设m(t)、和的频谱分别为、、)。可得:

所以,抽样频率,频谱才不会发生混叠,此时,被称为奈奎斯特频率。所谓脉冲振幅调制,即是脉冲载波的幅度随基带信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则上述所介绍的抽样定理,就是脉冲幅度调制的原理。但是,实际上理想的冲激脉冲串物理实现困难,通常采用窄脉冲串来代替。本实验模块采用32K 或64K 或1MHz 的窄矩形脉冲来代替理想的窄脉冲串,当然,也可以采用外接抽样脉冲对输入信号进行脉冲幅度调制,本实验采用图2-2 所示的原理方框图。 图2-2 脉冲编码调制(PCM)简称为脉码调制,它是一种将模拟语音信号变换成数字信号的编码方式。脉码调制的过程如图2-3所示。 PCM 主要包括抽样、量化与编码三个过程。抽样是把时间连续的模拟信号转换成时间离散、幅度连续的抽样信号;量化是把时间离散、幅度连续的抽样信号转换成时间离散、幅度离散的数字信号;编码是将量化后的信号编码形成一个二进制码组输出。国际标准化的PCM 码组(电话语音)是用八位码组代表一个抽样值。编码后的PCM 码组,经数字信道传输,在接收端,用二进制码组重建模拟信号,在解调过程中,一般采用抽样保持电路。预滤波是为了把原始语音信号的频带限制在300-3400Hz 左右,所以预滤波会引入一定的频带失真。 图2-3 五、实验步骤及结果分析

编码调制原理

在通信原理中把通信信号按调制方式可分为调频、调相和调幅三种。数字传输的常用调制方式主要分为: 正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。 键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。 残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。 编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。 世广数字卫星广播系统的下行载波的调制技术采用TDM QPSK调制体制。它比编码正交频分多路复用(COFDM)调制技术更适合卫星的大面积覆盖。 摘要:由于数字电视系统采用数字传输,而在传输系统中都使用到了数字调制技术,本文就对ASK、FSK、PSK、QAM等数字调制方法进行详细的介绍。 1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。 一数字调制 数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。所以常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。 1、基带传输 传输信息有两种方式:基带传输和调制传输。由信源直接生成的信号,无论是模拟信号还是数字信号,都是基带信号,其频率比较低。所谓基带传输就是把信源生成的数字信号直接送入线路进行传输,如音频市话、计算机间的数据传输

相关主题
文本预览
相关文档 最新文档