当前位置:文档之家› PbCa合金电池早期容量衰减的研究

PbCa合金电池早期容量衰减的研究

PbCa合金电池早期容量衰减的研究
PbCa合金电池早期容量衰减的研究

!"#$%合金电池早期容量衰减的研究

郭志刚,杨素玲,董自川

(保定金风帆蓄电池有限公司密封电池事业部,河北保定!"#!$"

)摘要:研究了板栅合金中%&对早期容量衰减的影响。当板栅合金中%&含量从!’($)提高到#’*)时,富液式+,-./合金电池早期容量衰减现象并未明显改善。用高温方法和过放电后的反充电方法都可使早期容量衰减的电池

容量恢复到正常值,但在循环时容量出现快速的衰减。重点研究了不同的电池化成工艺对早期容量衰减的影响,研究了酸液密度、电解液添加剂、灌酸后的静置时间、冷却方法以及开始化成时的温度等工艺参数对容量衰减的影响。试验结果表明,富液式+,-./合金电池采用高温化成方式易出现早期容量衰减现象,采用低温化成工艺,低密度化成酸和电解液添加剂0,

可有效地抑制早期容量衰减现象,提高电池的循环耐久能力。关键词:富液式+,-./合金电池;早期容量衰减;电解液添加剂中图分类号:123#*’#

文献标识码:4

文章编号:#!!*-!5"6(*!!!)!#-!!#5-!7

&’()*+,-./0%’(./1%-%12’*#3+44+5!"#$%%33+*"%’’/.*

89:;<=->/&>,?@08%A -B =&>

,C :08;=-D

"80"!"#!$",490-#)!"#$%&’$:E F F G D H I F %&D I &H G &H =&>J =K /B B I L I &M J G N /H A J G D /M /D =H L -B I O O (+.P )Q /O O H A K =G K ’R J =K /B B I L =&D J G /O G K F J I N!’($)H I #’*),+.P I F F B I I K G K +,-.//B B I L ,/H H G J L K =K &I H J G K A D GN /J S G K B L ’1F J I N+.P D I A B K ,G J G O H I J G K H I H

G J /H A J G N G H =&>/F H G J I T G J K =O D G ,,A H =H K G D J G /O G K U A =D S B L K A J =&>D L D B =&>’E F F G D H O I F T /J =I A O F I J N =&>M J I D G O O G O I &M J G N /H A J G D /M /D =H L -B I O O Q G J G F I D A O G K I &’1

/J /N G H G J O ,O A D H =N G /F H G J F =B B =&>/&K H N G H H G N M

G J /H A J G /J G F /B B =,B G H I +.P ’V I Q G T -G J ,K G D J G /O =&>H H G N M G J /H A J G /&K H /D =K /O Q G B B /O /K K =&>G B G D H J I B L H G /K K =H =T G 0D /&O A M M J G O O +.P G F F G D H =T G B L /&K =N M J I T G D L D B =&>G &K A J /&D G I F H

’()*+

,%-#:F B I I K G K+,-.//B B I L ,/H H G J L ;M J G N /H A J G D /M /D =H L -B I O O ;G B G D H J I B L H G /K K =H =T G 收稿日期:#333-!$-!$作者简介:郭志刚(#3($W ),男,湖北省人,工程师,硕士。./,0%&12*

:89:;<=->/&>(#3($W ),N /B G ,G &>=

&G G J ,N /O H G J ’铅钙合金具有析氢过电位高、自放电少的优点,因此,它是免维护蓄电池首选的板栅材料。但电池正负板栅全部使用铅-钙合金时,电池在深循环时易出现早期容量衰减现象。对铅钙合金电池的早期容量衰减现象,一些学者进行了较详尽的研究,并提出了阻挡层模型、球状聚集模型和凝胶-晶体理论[#]。本文主要研究富液式全+,-./合金电池采用一次

注液电池化成工艺时,不同的化成工艺参数对电池早期容量衰减的影响,重点讨论了化成电解液密度、化成温度和添加剂与早期容量衰减的关系。

3试验

正板栅使用+,-./-%&-@B 四元素合金,其%&含量为

!’($),正板栅尺寸为#!(N NX #73N NX #’7N N ,

负板栅使用+,-./-@B 三元合金,负板栅尺寸为#!(N N X #73N N X #’*N N ,

正负板栅经时效后按表#所示的正负铅膏配方进行铅膏和制后涂板、固化,固化工艺参数为一阶段温度Y $!7$Z ,在相对湿度大于等于3$)的条件下固化*7<;二阶段为($!5!Z ,在相对湿度小于等于7$)的条件下干燥*7!Y (<

。将固化好的正负生板分板后用生板组装(-[R -$7电池,其中每单格片数为正板六片、负板七片,正板用+E 袋式隔板包封。将组装好的(-[R -$7电池每单格落入("!N P

、#’*Y $>/D N

Y 的稀硫酸,放入水浴中进行冷却。当温度低于$!Z 开始化成,

化成电流及时间如表*所示。将化成好的电池进行小盖热封,安装上荷电指示器(此种(-[R -$7电池是我厂为上海大众汽车有限公司最新配套的电池,这种电池由于具有双层盖结构,所以电池在整个寿

命期间不需进行加水维护并且电池具有良好的气密性能),然后按!"#$%&%’()*部分进行电池的*)+容量、低温起动过放电、充电接受能力和循环寿命试验。

表!正、负铅膏配方

!"#$!%&’()*"+&’,&-./.01"23214

"/.01,"-/1材料名称,-./01-23单位451.配方量67895.正极:831.1;/负极#/<

-.1;/铅粉:=>8?@/0

A <

B ))

B ))炭黑

C

D -

E

F $C 木钠

G -0=85=2-

H A C D -E F $

C 21<58392I 85-./A

L )L )配方水M -./0N B %B *稀硫酸O *E F $,!P

B J $N

L J &

Q

表"化成电流及时间!"#$"%&’(.245

)’’12/"23/.(1第一次充电R +/B 3.H +-0<

/放

!13H +-0

Q

$

*

$

$(Q

"试验结果及讨论

"J !板栅合金中62含量对容量衰减的影响及电池容量的恢复性试验

试验结果见表%。

在表%中,B 号电池和*号、%号电池除正板栅合金中E 5含量不同外,其它的工艺条件均相同。B 号电池正板栅合金中E 5含量为)J Q &S ,*号及%号电池正板栅合金中E 5含量为B J *S 。从试验结果可以看出,随正板栅合金中E 5含量的增加,:=T G -合金电池的早期容量衰减现象并不仅仅受正板栅合金中E 5含量的控制,若要抑制铅钙合金电池的早期容量衰减现象,必须综合考虑电池生产中各个工艺环节的影响。

从表%的结果还可以看出,容量衰减后的电池其低温大电流放电性能并未出现同比衰减。这是因为*)+容量受正极板控制,而低温大电流放电受负极控制,由于Q T U M T &$电池采用了中间板耳设计,使用了比电阻低的:=T G -合金、片电阻低的聚乙烯袋式隔板和负极添加木素磺酸钠,所以Q T U M T &$电池较我厂以前的&&$B $,K 电池的低温性能有了很大提高。这一点,在电池按!"#$%&%’T *部分进行循环耐久能力试验时表现尤为突出,标准中规定当下列条件之一出现,即定为寿命终止:一是低温起动放电时,%)3电压低于L J *V ,二是用B %J &V 放电*+电压低于B )J )V 时。而Q T U E T &$电池寿命终止全部是由于B %J &6放电*+电压低于B )J )V ,而此时低温放电%)3电压却在W J &V 以上。这说明,由于:=T G -合金电池容量衰减现象没有很好地被抑制,致使电池的循环耐久能力较差。

表#板栅合金62含量对电池容量衰减的影响!"#$#7++15/&+625&2/12/.24’.3"**&8&25","5./8

*&--电池编号D -../0X

H 8@/B *%*)+容量试验*)+H ->-H 1.X

./3./+**J &

**

**J Q

低温放电N 8?T

./7>

/0-.90/@13H +-0<

/%)3电压#/V

’J W ’J L W ’J W W 放电至QV 的时间!13H +-0

B ’*

*)+容量试验*)+H ->-H 1.X ./3./+*)

B ’J Q *)J Q

低温放电N 8?T

./7>

/0-.90/@13H +-0<

/%)3电压#/

V

’J $’J ’$’J ’$放电至QV 的时间!13H +-0<

/.17/.8QV /3B Q )B ’L *))*)+容量试验*)+H ->-H 1.X

./3./+B W B W B W J $过放电后的恢复性能Y /H 8;/0X >

/0I 807-5H /-I ./08;/0@13H +-0<

//+B *J Q

B %B %J Q 容量恢复处理后的*)+容量试验

*)+H ->-H 1.X

./3.-I ./00/H 8;/015<

.0/-.7/5./+*)**J W *)+容量试验*)+H ->-H 1.X

./3./+B W

B W

另外,我们用下述方法对容量衰减后的电池进行了处理:第一种方法是把电池充足电后放于&)Z 的烘箱中,开路放置$W+;第二种方法是将容量衰减后的电池进行过放电,当放电至)V 时对电池进行反充,充电电流为&J $6,时间为B+,再放电至)V 后进行正常的充电。其中,*号电池用方法*处理,%号电池用方法B 处理。从表%结果可以看出,

高温处理可以使电池的容量得以恢复。这主要是电池经高温处理后在板栅和活性物质界面形成了致密的"T :=F *,

这种"T :=F *不参与放电,因而可以防止E F *($的侵入,避免:=T G -合金电池放电时只利用板栅附近区域的活性物质的

现象出现,从而使容量得以恢复。方法*是利用过放电后的反充电技术,消除正板栅与活性物质界面处的高电阻的阻挡层,使其转化为易于导电的金属铅。上述两种方法都能使电池的*)+容量出现明显的恢复,但随循环的进行,*)+容量出现快速容量衰减现象,这说明上述两种方法并不能从根本上解决问题。

"J "不同的电池化成工艺参数对容量衰减的影响

试验结果见表$。

从表$结果可以看出,当初始灌酸液密度为B J *%&时,高温化成的$号电池较低温化成的&号电容量衰减要快。采用高温化成工艺时,正极活性物质中易于形成#T :=F *,从而使正极活性物质"T :=F *比例失调,破坏了正极活性物质结构的完整性,导致:=T G -合金电池早期容量衰减的出现。另外,我们在试验中还发现,当用高温化成工艺化成的Q T U E T &$电池进行充电接受试验时,

其充电接受电流值只有W 6左右,

高温化成造成电池充电接受能力差的原因,一是过高的温度导致负板中膨胀剂的溶出并在正极发生氧化反应,从而导致化成后负板比表面积的减小;二是由于高的温度将导致聚乙烯袋式隔板中油的析出,而油对电池的充电接受是不利的。

表!电池化成工艺对容量衰减的影响

!"#$!%&&’()*&(*+)",+’-&*-."),*+

/"-".’)’-*+("/"(,)01*22

电池编号

!"##$%&’()$*+,-.

酸液密度

/0$’#%(0&#$

)$123#&/4?’567

89:7+89:7+89:7+89:7+89:;电解液添加剂

/0$’#%(0&#$ "))3#3<$+=>3?:874

/@

A":>?*

灌酸后静置时间

>("B314#35$"C#$%

C300314/531

+;,;,;,;,;

冷却方式

D((03145$#E()自然冷却

A"#F%"0

’((0314

水冷

G"#$%

’((0314

水冷

G"#$%

’((0314

水冷

G"#$%

’((0314

水冷

G"#$%

’((0314

开始化成时的温度

H$5I$%"#F%$"#

#E$J$4311314(C

C(%5"#3(1/K

-;!+;!+;!+;!+;

化成电流

及时间

L(%5314’F%%$1# "1)#35$同表::

H E$

2"5$"2

#E"#31

H"J9:

同表::

H E$

2"5$"2

#E"#31

H"J9:

同表::

H E$

2"5$"2

#E"#31

H"J9:

同表::

H E$

2"5$"2

#E"#31

H"J9:

同表::

H E$

2"5$"2

#E"#31

H"J9:

:;E容量试验:;E’"I"’3#&

#$2#/E :897:88+97:89.:; 8M97:;978,9+8+:: 8+9,8M8+9787:;98 8*9+8.8+9,88:;

A":>?*是密封电池中常用的添加剂,其目的是防止密封电池化成过程中或电池进行过放电时由于N J>?

*

的溶解O 析出反应导致的隔板的短路。从表*中-号电池的结果可

知,当在富液式电池中加有A"

:

>?*时,N"O D"合金电池的早

期容量衰减现象更加明显,这可能是由于A"

:

>?*的加入,提高了溶液的电导率,提高了正极活性物质的利用率,而过高的活性物质利用率将促使容量衰减现象发生。另外,由于,O P G O+*电池使用了N/隔板,而N/隔板本身具有排酸量低和孔径小的优点,所以富液式N J O D"合金电池电解液中应避

免加入A"

:

>?*。

由于胶体电池具有良好的深充放能力,我们用表*中的,号电池进行了胶体电池化成,其中的硅胶由硅溶液和硫酸配制而成。,号电池化成后电解液未呈现胶状,只是稠度增

加,而密度为89:-+的酸当含有7=!+=的>3?

:

时将呈现良好的胶状。造成上述性能差异的原因是由于表:中的化成电流较大,造成了胶体的过度破碎[:]。从,号电池的试验结果可知,胶体电池具有较好的容量保护能力,但由于它还达不到电池的额定容量,不能满足标准要求。

从表*中的+号电池和.号电池可知,电解液密度低的.号电池容量保持能力明显优于密度高的+号电池。这是

因为低密度的化成酸液有利于正极活性物质中!O N J?

:

的形

成。而在正极活性物质中主要起骨架和导电作用的!O N J?

:对N J O D"合金电池的容量保持起重要作用。有研究表明[7],当电池化成用酸密度从898;增加到898M时,化成后正极活

性物质中!O N J?

:

含量从,;=减少到:+=,但随酸密度的降低,其板栅受到腐蚀的可能性增大,所以国外富液式N J O D"合金电池的化成所用酸液密度的上限为898M。考虑到一次注液化成电池和我厂铅膏配方含酸量较国外配方低,我们认为,我厂,O P G O+*电池化成用酸密度应为89:;较为适宜。"9#电解液添加剂3对容量衰减的影响

经过以上分析,我们认为正负板栅全部使用N J O D"合金的,O P G O+*电池化成以采用低密度酸液、低温化成方式较优。为了进一步验证上述结果,我们用7只,O P G O+*的电池灌注密度为89:;的酸液后,按降低温度的化成方式进行了化成。其电池试验结果见表+。其中的M号、88号电池加有等量的电解液添加剂A(氮族化合物),但M号电池电解液添加剂A直接加入化成酸中,而88号电池电解液添加剂A 是在电池化成结束前:E内加入。

从表+的结果可知,电解液添加剂A能有效抑制早期容量衰减现象。未加有添加剂的8;号电池,在第+次:;E 容量循环时出现衰减现象。而加有添加剂A的M号和88号电池在已进行的.次:E容量循环内,容量不但不衰减,反而出现小幅攀升的迹象。另外在试验中还发现,把电解液添加剂A直接加入化成酸的M号电池化成后,其酸密度要比8;号、88号电池的密度低;9;8。这说明,添加剂A对活性物质的初次转化产生不利影响,从而导致电池初期容量较低。因此,电解液添加剂A最好是在化成将要结束时加入,这样既能使活性物质充分转化,保证适当的初期容量,又能使电池呈现良好的容量保持能力。

表$添加剂对深循环容量的影响

!"#$$%&&’()*&"44,),5’*+4’’/6(0(1’("/"(,)0

(8;;74’/)8*&4,2(8"-9’)

电池编号!"##$%&’()$M8;88

:;E容量试验

:;E’"I"’3#&#$2#/E

8-:89+:;9+

8-9*::9:::

8-9::89.::9.

8-9::89,::97

8-9,8M9.::9+

8-9-8M9;:79,

8-9-8.9M::9+

8-9.8:9.::

8-978:97::9.

8-978:98::9M

8-9;8:9;::9-

8-98.98:79;

8-9;-9.::9*

8.9;,::9.

8-9M+::97

为了进一步考察电解液添加剂A对电池其它性能的影响,我们又用低温化成方式化成了7只电池,电池试验结果见表,。其中8:号、87号电池初始灌酸密度为89:;。87号电池在化成结束前:E内加入电解液添加剂A,而8*号电池初始灌酸密度为89:7+,上述7只电池化成好后进行了:; E容量、低温性能比较试验,循环寿命已进行到*单元,进一步的试验仍在进行中。

从表,结果可以看出,当电解液密度相同时,加有添加

电源技术

郭志刚等:N J O D"合金电池早期容量衰减的研究

!"#$%&%’()*$+,(-.(/%*0()*1%&

表!循环寿命实验

!"#$!%&’()(*+),)-,

电池编号!"##$%&’()$*+*,*-+./容量试验+./’"0"’1#&#$2#//+-3++-+4

低温试验

5(67

#$80$%"#9%$

#$2#

,.2电压!/:;3;<;3<;;3;<放电至=3.:的时间

>12’/"%?$#18$#(=3.:/2++-*@.++=

*单元A B1#*以*,34C放电+/电池电压

:(D#"?$"E#$%)12’/"%?1B?

"#*,34C E(%+//:

**34=**3<<*+3+4低温放电时,.2电压

:(D#"?$1B,.2)9%1B?

D(67#$80$%"#9%$)12’/"%?$/:

;3@@;3@4;3<-

+单元A B1#+以*,34C放电+/电池电压

:(D#"?$"E#$%)12’/"%?1B?

"#*,34C E(%+//:

**3@.**3<-**3@*低温放电时,.2电压

:(D#"?$1B,.2)9%1B?

D(67#$80$%"#9%$)12’/"%?$/:

;3@@;3=@;3@,

,单元A B1#,以*,34C放电+/电池电压

:(D#"?$"E#$%)12’/"%?1B?

"#*,34C E(%+//:

**3=.**3<4**3=.

低温放电时,.2电压

:(D#"?$1B,.2)9%1B?

D(67#$80$%"#9%$)12’/"%?$/:

;3<,;3<;;34+

-单元A B1#-以*,34C放电+/电池电压

:(D#"?$"E#$%)12’/"%?1B?

"#*,34C E(%+//:

**34.**3<4**3-.

低温放电时,.2电压

:(D#"?$1B,.2)9%1B?

D(67#$80$%"#9%$)12’/"%?$/:

;3<.;3<4;3<=

剂F的*,号电池+./容量和不含添加剂的*+号电池的+.

/容量相当,但*,号电池的低温放电性能较差,这说明添加剂F会对电池的初期低温性能产生不良影响。但随着循环的进行,添加剂F对电池低温性能的不利影响逐渐减弱,当

进行到第,单元时,加有添加剂F的电池低温放电时的,.2电压已略优于未加添加剂的电池。当电解液密度不同时,电解液密度高的*-号电池其+./容量及初次的低温性能优于*+号和*,号电池。另外*-号电池在第*循环时以*,34 C放电+/的电压高于其它两只电池,但在循环过程中以*,34C放电+/时的电压下降较快,到第-循环时其电压已低于其它两只电池,这是由于高密度的电解液易促使阻挡层的形成,对电池的长时率放电产生不良影响。*,号电池由于含有添加剂F,可以看出以*,34C放电+/的电压具有极好的稳定性,这说明添加剂F在抑制早期容量衰减的同时,会对电池的循环耐久能力产生有利影响,从而解决G H7I"合金电池寿命短的问题。

"结论

(*)富液式G H7I"合金电池采用高温电池化成工艺时,会促使G H7I"合金电池早期容量衰减的发生。

(+)富液式G H7I"合金电池当化成酸中含有F"

+

J K-时,会促使G H7I"合金电池早期容量衰减的发生。

(,)采用低密度化成酸、低温化成工艺,在化成结束前+ /内加入添加剂F,会有效地抑制G H7I"合金电池的早期容量衰减现象。

参考文献:

[*]L K!M L NO,F M5J K F,>C:P>Q R12)(83G9%$D$")"B)#/$#1B $E E$’#1B)$$07’&’D1B?D$")7"’1)H"##$%&"00D1’"#1(B2[S]3SG(6$%

J(9%’$2,*;;*,,,;*=4T*<43

[+]吴寿松U密封式铅酸蓄电池化成[S]U电池,*;;-,(+):==3[,]M P J M F V A NFL,J M F P C WMQ3O(%8"#1(B(E D$")7’"D’198H"#7 #$%1$2E(%’(B212#$B’&[S]3S G(6$%J(9%’$2,*;;*,(,,):@@T<*3

电源技术

研究与设计!"#$%&%’()*$+,(-.(/%*0()*1%&

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

阀控式密封和免维护铅酸蓄电池的寿命影响

阀控式密封和免维护铅酸蓄电池的寿命影响 摘要:本文讨论了阀控式密封和免维护铅酸蓄电池作为太阳能灯具、光伏电站和光伏户用系统的储能电源,在全天候运行时的耐候性问题,即自然环境下温度对蓄电池寿命、容量的影响,以及光伏系统储能铅酸蓄电池研究、开发。 关键词:VRLA蓄电池胶体铅酸蓄电池免维护铅酸蓄电池环境温度蓄电池寿命蓄电池容量蓄电池研发方向 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目。太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池(以下简称铅酸蓄电池缩写为VRLAB)胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。本文主要讨论自然环境下温度对蓄电池寿命、容量的影响及解决方法,以及储能铅酸蓄电池研究发展方向。上述三种产品在河北奥冠电源公司已批量生产,山东皇明太阳能公司做储能蓄电池已配套应用,现场试验效果很好。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。(一)硫酸电解液干涸: 硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因:(1)气体再化合的效率偏低,析氢析氧、水蒸发;(2)从电池壳体内部向外渗水;(3)控制阀设计不当;(4)充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。 VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4)三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。 (二)热失控: 蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下非凡分类生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 (三)内部短路:由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。 由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

锂电池随使用而最大容量下降的原因

锂电池随着使用次数增加而最大容量下降 将分为内因和外因来说: 1.内因 (1)在电极方面,反复充放电使电极活性表面积减少,电流密度提高,极化增大;活性材料的结构发 生变化;活性颗粒的电接触变差,甚至脱落;电极材料(包括集流体)腐蚀; 现阶段常用电池负极为石墨,正极是LiCoO2,LiFePO4以及LiMn2O4等,电池放点初期电解液会在电 极表面形成一层SEI(固态电解质)膜,其成分主要是ROCO2Li(EC和PC环状碳酸酯还原产物)、ROCO2Li和ROLi(DEC和DMC等链状碳酸酯的还原产物)、Li2CO3(残余水和ROCO2Li反应产物),若用LiPF6时,残余的HF会与SEI中ROCO2Li,使SEI中主要是LiF和ROLi。 SEI是Li+导体,脱嵌锂时碳电极体积变化很小,但即使很小,其产生的内应力也会使负极破裂,暴露 出来新的碳表面再与溶剂反应形成新的SEI膜,这样就造成了锂离子和电解液的损耗,同时,正极材料 活性物质膨胀超过一定程度也会形成无法修复的永久性结构触损耗,这样正极和负极的不断损耗造成了 容量的不断衰减;再者,增加的SEI膜会造成界面的电阻层架,使电化学反应极化电位升高,造成电池 性能衰减 在电极中,随着充放电反应的进行,黏结剂的性能也会逐步下降,,黏结强度降低,使电极材料脱落; 铜箔和铝箔是常用的负极和正极集流体,两者都容易发生腐蚀,腐蚀产物聚集在集流体表面成膜,增加 内阻,铜离子还能形成枝晶,穿透隔膜,使电池失效。 (2)在电解质溶液方面,电解液或导电盐分解导致其电导率下降,分解物造成界面钝化; 锂离子电池液体电解质一般由溶质(如LiPF6、LiBF4、LiClO4等锂盐)、溶剂和特种添加剂构成。电 解质具有良好的离子导电性和电子绝缘性,在正负极之间起着输送离子传导电流的作用。锂离子电池在 第一次充放电、过充和过放时以及长期循环之后,电解质会发生降解作用,并伴有气体产生,气体的组 成较为复杂,还无法通过某种反应在电池内加以消除。随着电池充放电次数的增加。由于电极材料氧化 腐蚀会消耗掉一部分电解液,导致电解液缺乏,极片不能完全清润到电解液,从而电化学反应的不完全,使得电池容量达不到设计要求。 (3)隔膜阻塞或损坏,电池内部短路等 隔膜的作用是将电池正负极分开防止两极直接短路。在锂离子电池循环过程中,隔膜逐渐干涸失效是电 池早期性能衰退的一个重要原因。这主要是由于隔膜中电解液变干使溶液电阻增大,隔膜电化学稳定 性和机械性能,以及对电解质浸润性在反复充电过程中变差造成的。由于隔膜的干涸,电池的欧姆内阻 增大,导致放电不完全,电池反复受到大容量过充,电池容量无法回复到初始状态,大大降低了电池的 放电容量和使用寿命。 2.外因 (1)快速充放电 快速充电时,电流密度过大,负极严重极化,,锂的沉积会更明显,使在铜箔与碳类活性物质边界处的铜 箔脆化,极易产生裂缝。电芯自发卷绕受到固定空间的限制,铜箔无法自由伸展产生压力,在压力的作 用下,原有的裂缝扩散生长,因扩展空间不够,铜箔发生断裂。 (2)温度 在明显高于室温的情况下,有机电解质的热稳定性成为首先要考虑的问题,这全要包括有机电解质自身 热稳定性以及电极隋机电解质相互作用的热稳定性两个方面。一般认为,正极/有机电解质的反应对铿 离子电池安全性的影响是主要因素。因为正极、电解质的反应动力学非常快,故控制着整个电池耐热

铅酸免维护蓄电池保养手册

铅酸免维护蓄电池保养手册 1、环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右,UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。一般情况:电池存放容量:1个月(25℃),96%。3个月,(25℃)90%。6个月(25℃),80%。 2、充电电压。由于EPS电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长电池的使用寿命,EPS的充电器一般采用恒压限流的方式控制,电池充满后即转为浮充状态,每节浮充电压设置为左右。在使用温度15~30℃环境中,电池浮充使用过程容量递减。递减情况:1年容量为90%左右;2年容量为70%左右;3年容量为50%左右。 3、放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然EPS都有电池低电位保护功能,一般单节电池放电至左右时,EPS就会自动关机。但是,如果EPS处于轻载放电或空载放电的情况下,也会造成电池的深度放电。? ?4、电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开路电压高于,则表示电池储能还有80%以上,若开路电压低于,则应该立刻进行补充充电。若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。? 5、免维护电池由于采用吸收式电解液系统,在正常使用时不会产生任何气体,但是如果用户使用不当,造成电池过充电,就会产生气体,此时电池内压就会增大,将电池上的压力阀顶开,严重的会使电池爆裂。?? 6、电池应尽可能安装在清洁、阴凉、通风、干燥的地方,并要避免受到阳光、加热器或其他辐射热源的影响。电池应正立放置,不可倾斜角度。每个电池间端子连接要牢固。? 7、定期保养。电池在使用一定时间后应进行定期检查,如观察其外观是否异常、测量各电池的电压是否平均等。如果长期不停电,电池会一直处于充电状态,这样会使电池的活性变差。因此,即使不停电,UPS也需要定期进行放电试验以便使电池保持活性。放电试验一般可以三个月进行一次,做法是EPS带载--最好在50%以上,然后断开市电,使EPS 处于电池放电状态,放电持续时间视电池容量而言一般为几ms至几十ms,放电后恢复市电供电,继续对电池充电。? 蓄电池性能曲线:

最全最经典的电池容量衰减原因总结

最全最经典的锂离子电池容量衰减原因分析(附各原因专家分析) 0本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电 1、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量损失,原因有: ①可循环锂量减少;【电源网】【李伟善】【阮艳莉】 ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;【电源网】【李伟善】【阮艳莉】 ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。 【电源网】【李伟善】【阮艳莉】 ④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】 快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,【电源网】但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】 2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。【李伟善】 正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 (1)LiyCoO2: LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4【电源网】【李伟善】【黄可龙】 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。【电源网】【黄可龙】 (2)λ-MnO2锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g)【李伟善】【黄可龙】 3、电解液在过充时氧化反应 当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。【电源网】【黄可龙】【阮艳莉】 影响氧化速率因素: 正极材料表面积大小【电源网】【黄可龙】 集电体材料【电源网】【黄可龙】 所添加的导电剂(炭黑等)【电源网】【黄可龙】

造成锂离子电池容量不同的原因分析

造成锂离子电池容量不同的原因 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(D MC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和Li CIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 -xCoO2+xLi++xe-20 负极:6C +xLi ++xe -充电→← 放电LixC6 总的反应为:6C +LiCoO2充电→← 放电Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应; ③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→L i(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2 O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗? 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化! 这个说法对吗? ⑴维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

铅酸蓄电池使用说明

铅酸蓄电池使用说明 GFM系列阀控密封铅酸蓄电池是充分消化吸收国外先进技术及多年的研制、生产经验积累、不断创新的新一代产品,产品技术先进、质量可靠、运行稳定。 GFMG系列高能型阀控密封铅酸蓄电池是采用新型电解质和进口微孔隔板,优化了电池正负极板配方,使其比传统的阀控电池具有如下优点:体积更小,重量更轻,耐深放电性能优良,荷电保持能力高,循环寿命更长等特点。产品广泛应用于通信、电力、储能、船舶、航空军事工业等。一、执行标准 GFM/GFMG固定型阀控密封铅酸蓄电池符合如下标准: 1、JISC8707-1992 阴极吸收式密封固定型铅酸蓄电池标准 2、GB/T 19368-2005 中华人民共和国国家标准 3、YD/T 799-2002 中华人民共和国通信行业标准 4、DL/T 637-1997中华人民共和国电力行业标准 5、GB/T 14436-93 工业产品保证文件总则 6、JB/T 8451-96 中华人民共和国机械行业标准 二、组成及原理 1、阀控密封铅酸蓄电池的组成:阀控密封铅酸蓄电池主要由正负极板、 硫酸电解液、隔板、槽盖、安全阀、汇流排和极柱端子等组成。 2、阀控密封铅酸蓄电池的原理 (1)放电过程的电化学反应式PbO 2+ 2H 2 SO 4 + Pb→ PbSO 4 + 2H 2 O +PbSO 4

(2)充电过程时,在正极板上发生下列电化学反应:PbSO 4+2H 2O → PbO 2+H 2SO 4+2H++2e -H 2O →2H++O 2+2e -在负极上发生下列化学反应:PbSO 4+2H++2e →Pb+H 2SO 42H++2e →H 2由于蓄电池在充电过程中,正、负极板发生的电化学反应各具特点,所以当正极板充电到70%时,开始析出氧气O 2,而负极板充电到90%时,开始析出氢气H 2。为了抑制H 2和O 2的析出,实现密封和免维护功能,在负极板材料中加入了钙金属以提高H 2析出的电位,使电池在正常充电下不产生H 2。同时又采用贫电解液设计加上超细玻璃纤维隔板膜,使纯铅的氧化反应:Pb+O 2 → PbO 和PbO + H 2 SO 4→PbSO 4 + H 2 O 得以进行,以此来消除O 2的析出。 三、性能特点 耐腐蚀铅钙锡多元合金 高倍率放电极优 自放电率极低 超细玻璃纤维隔膜吸液 无有害气体溢出 低温性能优越 高强度A B S 树脂外壳 与设备同处安装 不会污染环境 全密封不漏液无需加水 安全阀自动开闭 免建蓄电池室 四、存放与安装 1、蓄电池的存放 (1)存放环境应干燥、清洁,不受阳光直射。 (2)存放位置应远离火源或易于产生火花的物体。 (3)存放环境温度为-10℃~45℃。 (4)电池存放应避免与有机溶剂或其他具有腐蚀性的物品和气体靠近。

铅酸蓄电池锂电池等电池容量衰减原因

铅酸蓄电池锂电池等电池容量衰减原因 电池的能量存储可以分为三个虚拟区域,即可填充的空白区、提供能量的可用区以及由于使用和老化作用造成的闲置不可用区域,或者说是岩石区,如图1所示。 电池能量存储虚拟区域示意图 电池从制造完成时就开始衰减,一个新电池须提供100%的容量,但大多数使用中的电池组是达不到的。

随着电池的可用区域缩小,可填充的能量降低,充电时间逐渐缩短。在大多数情况下,由于周期循环和老化的原因,电池容量呈线性衰减。此外,深度放电给电池造成的压力大于不完全放电,因此最好不要把电池电量全部耗尽,而是经常性充电。对于镍基电池以及作为校准部件的智能电池则应周期性深度放电,这有助于消除镍基电池的“记忆效应”。镍基锂电池在容量衰减到80%之前可以完全充放电循环300~500周。 充放电循环并不是容量衰减的唯一原因,高温下存储锂电池也会导致容量衰减。一个充满电的锂电池在40℃(104°F)保存一年而不使用的情况下会造成35%的容量损失。超快速充放对电池也是有害的,会使电池寿命减少一半,这对于单体锂电池是非常明显的。电池组比能量高,但由于单体电池的差异而显得特别微妙。 设备的规格参数往往基于新电池,但这仅仅是初试阶段的短暂现象,而不能维持太长的时间。就像一个体育运动员,成绩会随着时间的推移而逐渐下降,并且如果任其发展,将会最终导致电池相关的故障。 电池需要经常计算其容量衰减和最终寿命。容量衰减到80%就需要更换电池组,电池组的最终寿命极限应根据应用的不同、用户的喜好以及公司的保障而改变。由于机械故障比较罕见,容量衰减便成了最终替代计划的一个最佳指标,这一指标可以通过对现役电池每三个月进行一次容量核实来完成。此外,充电器充电运行状态表征的技术也在研发中。 除了与老化相关的衰减,硫酸盐化和板栅腐蚀是铅酸蓄电池衰减的主要影响因素。硫酸盐化是指电池停留在较低倍率充电时,在阴极极板上形成的薄膜层。如果发现及时,可以通过均衡充电来消除这一状况。板栅腐蚀可以通过改善充电状态或采用优化的浮动充电方法来减弱。 镍基电池,所谓的不可用岩石区通常是由于活性物质晶体的形成而引起,也被称为“记忆效应”。深度充放电循环的方法常常可以使电池容量恢复到全满。周期性的放电也可以控制结晶过程,避免对隔膜的危害。 锂离子电池的老化是内部物质的氧化,是使用和老化过程中的一部分,并且是自然发生且不可逆转的。 原标题:铅酸蓄电池锂电池等电池容量衰减原因

动力电池容量损失原因分析

动力电池容量损失原因分析 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应;③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于 4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 2.电解液分解 电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但还原产生的不溶物对溶剂还原生成物会产生不利影响,而且电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3),同时,钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。工艺中使用碳的类型、电解液成份以及电极或电解液中添加剂都是影响成膜容量损失的因素。电解液中常常会含有氧、水和二氧化碳等物质。微量的水对石墨电极性能没影响,但水含量过高会生成LiOH(s)和Li2O 沉积层,不利于锂离子嵌入,造成不可逆容量损失:H2O+e→OH-+1/2H222 OH-+Li+→LiOH(s)LiOH+Li++e→Li2O(s)+1/2H2 溶剂中的CO2 在负极上能还原生成CO 和LiCO3(s):2CO2+2e+2Li+→Li2CO3+CO CO 会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。 3.自放电 自放电是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况:一是可逆容量损失;二是不可逆容量的损失。可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,如锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失。自放电程度受正极材料、电池的制作工艺、电解液的性质、温度和时等因素影响。如自放电速率主要因溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命,如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失。长时间或经常自放电时,锂有可能沉积在碳上,增大两级间容量不平衡程度。Pistoia等认为自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。 4.电极不稳定性 如上所述,正极活性物质在充电状态下会氧化电解质分解而造成容量损失。另外,影响正极材料溶解的因

影响铅酸蓄电池使用寿命的主要因素

影响铅酸蓄电池使用寿命的主要因素 蓄电池是UPS系统中的一个重要组成部分,它的优劣直接关系到整个UPS 系统的可靠程度。不管UPS设计的多么先进,功能多么齐备,一旦蓄电池失效,再好的UPS也无法提供不间断供电。千万不要因贪图便宜而选用劣质铅酸蓄电池,这样会影响整个UPS系统的可靠性,并将因此造成更大的损失。 蓄电池是整个UPS系统中平均无故障时间(MTBF)最短的部分。如果能够正确使用和维护,就能够延长其使用寿命,反之其使用寿命会大大缩短。因此,我们要了解蓄电池的基本原理和使用注意事项。 关于铅酸蓄电池 蓄电池的种类一般可分为铅酸蓄电池、铅酸免维护蓄电池及镍镉电池等,考虑到负载条件、使用环境、使用寿命及成本等因素,UPS一般选择阀控式铅酸免维护蓄电池。它的主要特点是在充电时正极板上产生氧,通过化学反应在负极板上还原成水,使用时在规定浮充寿命期内不必加水维护,因此又称为免维护铅酸蓄电池。免维护只是与普通蓄电池相比,使用过程中免去了添加纯水或蒸馏水,调整电解液液面的工作,并非免去一切维护工作。相反,为实现UPS 的不间断 供电,我们要更加细致地维护和保养好铅酸免维护蓄电池。 下面介绍一下影响蓄电池使用寿命的主要因素和使用过程中应注意的事项: ⑴环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右, UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。 ⑵放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然UPS都有电池低电位保护功能,一般单节电池放电至10.5V左右时,UPS就会自动关机。但是,如果UPS 处于轻载放电或空载放电的情况下,也会造成电池的深度放电。 ⑶电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开

锂电池的国家标准

1、锂离子电池标称电压 3.7V(3.6V),充电截止电压 4.2V(4.1V,根据电芯的厂牌有不同的设计)。(锂离子电芯规范的说法是:锂 离子二次电池) 2、对锂离子电池充电要求(GB/T18287 2000规范):首先恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电 池端电压达到 4.2V(4.1V),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当 减小到0.01C时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA,注意是mA而不是mAh,0.01C就是10mA。)当然,规范的表示方式是0.01C5A,我这里简化了。 3、为什么认为0.01C为充电结束:这是国家标准GB/T18287-2000所规定的,也是讨论得出的。以前大家普遍以20mA为结束,邮电部行业标准YD/T998-1999也是这样规定的,即不管电池容量多大,停止电流都是20mA。国标规定的0.01C有助于充电更饱满,对厂家一方通过鉴定有利。另外,国标规定了充电时间不超过8小时,就是说即使还没有达到0.01C,8小时到了,也认为充电结束。(质量没问题的电池,都应在8小时内达到0.01C,质量不好的电池,等下去也无意义) 4、怎样区别电池是 4.1V还是 4.2V:消费者是无法区分的,这要看电芯生产厂家的产品规格书。有些牌子的电芯是 4.1V和 4.2V通用的,比如A&TB(东芝),国内厂家基本是 4.2V,但也有例外,比如天津力神是 4.1V(但目前也是按 4.2V了)。 5、把4.1V的电芯充电到 4.2V会怎么样:会使电池容量提高,感觉很好用,待机时间增加,但会减短电池的使用寿命。比如 原来500次,减少到300次。同样道理,把 4.2V的电芯过充,也会减短寿命。锂离子电芯是很娇嫩的。 6、既然电池内有保护板,我们是否就可以放心了呢:不是,因为保护板的截止参数是 4.35V(这还是好的,差的要 4.4到4.5V), 保护板是应付万一的,假如每次都过充,电池也会很快衰减的。 7、多大的充电电流算是合适的:理论上越小对电池越有好处。但你总不能为了一块电池充电等3天吧。国标规定的低倍率充 电是0.2C(仲裁充电制式),还以上面的1000mAh容量的电池为例,就是200mA,那么我们可以估计出这只电池5个多小时可以 充饱。(容量mAh=电流mA×时间h) 国家技术监督部门鉴定锂电容量,是以1C的高倍率充电,以0.2C的低倍率放电,以时间计算出容量值,试验次数5次,有1次容量达到试验结束。(就是有5次机会,如果第一次试验就合格了,后面的4次不做)检测之前允许有一次预循环,就是以1C 恒流充电至 4.2V即停止,而没有后面的恒压到0.01C的过程,更没有14小时。 8、锂离子电池能承受多大的充电电流:厂家试验时可以很高,但国标高倍率规定为1C,还以上面的电池为例,1个多小时即可充满。这么大的充电电流,电池能承受吗?对于目前的锂离子电芯,是小意思而已。目前没有对充电器的国家标准,所执行的是 邮电部行业标准YD/T998 1999/2,里面规定了充电器的电流不得大于1C。 9、寿命是怎样规定的:简单说是指电池经过N次1C充、1C放电后,容量下降到70%,此时的N就是寿命。并不是说300 次还可以用,301次就不能用了。国标规定寿命不得小于300次。我们平时使用的条件没有检测时这么严酷,寿命会更长。

文本预览
相关文档 最新文档