当前位置:文档之家› 分析锂离子电池容量衰减的可能原因

分析锂离子电池容量衰减的可能原因

分析锂离子电池容量衰减的可能原因

分析锂离子电池容量衰减的可能原因

前言

锂离子电池是继镉镍、氢镍电池之后发展最快的二次电池。它的高能特性让它的未来看起来一片光明。但是,锂离子电池并不完美,其最大的问题就是它的充放电循环的稳定性。本文总结并分析了锂离子电池容量衰减的可能原因,包括过充电,电解液分解及自放电。本质原因

锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。

在锂离子电池中,容量平衡表示成为正极对负极的质量比,

即:γ=m+/m-=ΔxC-/ΔyC+

上式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。

一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。

对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等

一、过充电

1、石墨负极的过充反应:

电池在过充时,锂离子容易还原沉积在负极表面:

沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

锂离子电池正极材料硅酸锰锂的改性及容量衰减机理

罗明勇等:水蒸气等温吸附表征水泥基材料孔隙结构· 1409 ·第41卷第10期 DOI:10.7521/j.issn.0454-5648.2013.10.14 锂离子电池正极材料硅酸锰锂的改性及容量衰减机理 程琥1,高丹2,施志聪2 (1. 贵州师范大学化学与材料科学学院,贵州省功能材料化学重点实验室,贵阳 550001;2. 广州市香港科大 霍英东研究院,绿色产品和加工技术研究中心,广州 511458) 摘要:以醋酸锂、醋酸锰、醋酸镁、正硅酸四乙酯为原料,采用溶胶–凝胶法制备Li2Mn1–x Mg x SiO4/C正极材料。用X射线衍射和扫描电子显微镜表征材料的晶体结构和形貌。结果表明,掺杂10%Mg的Li2MnSiO4材料仍具有正交斜方结构。电化学测试结果表明:Mg掺杂能够提高Li2MnSiO4材料的比容量,在16.65mA/g电流密度下,Li2Mn1–x Mg x SiO4/C(x=0.1)材料的首次放电比容量为212mA?h/g。用X射线衍射和X射线光电子能谱研究了硅酸锰锂正极材料的容量衰减机理,其主要是由硅酸锰锂晶体结构退化引起的。 关键词:锂离子电池;正极材料;硅酸锰锂;硅酸盐;镁掺杂 中图分类号:O614 文献标志码:A 文章编号:0454–5648(2013)10–1409–06 网络出版时间:2013–09–24 18:23:01 网络出版地址:https://www.doczj.com/doc/a517556225.html,/kcms/detail/11.2310.TQ.20130924.1823.014.html Modification and Deterioration Mechanism of Lithium Manganese Silicate as Cathode Material for Lithium-ion Batteries CHENG Hu1,GAO Dan2,SHI Zhicong2 (1. School of Chemistry and Material Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang 550001, China; 2. Center for Green Products and Processing Technologies, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China) Abstract: Li2Mn1–x Mg x SiO4/C cathode material for lithium-ion batteries was synthesized by a sol–gel method using LiCH3COO?2H2O, Mn(CH3COO)2?4H2O, Mg(CH3COO)2?4H2O, and Si(OC2H5)4 as starting materials under Ar/H2 atmosphere. The crystal structures and morphology of the as-prepared compounds were characterized by X-ray powder diffraction (XRD) and scanning electron mi-croscopy, respectively. The Li2MnSiO4 material maintains an orthorhombic structure with up to 10% (mass fraction) Mg doping on the Mn sites. The result obtained by electrochemical tests of the cathode materials reveals that Mg doping can improve the specific capacity of Li2MnSiO4. An initial specific discharge capacity of 212mAh/g can be achieved for the Li2Mn1–x Mg x SiO4/C (x=0.1) cathode material at a current density of 16.65mA/g. The deterioration mechanism was also discussed based on the results determined by XRD and X-ray photoelectronic spectroscopy. The poor capacity retention is mainly caused by the deterioration of the silicate crystal. Key words: lithium-ion batteries; cathode materials; lithium manganese silicate; silicates; magnesium doping 1 Introduction The lithium-ion batteries (LIBs) industry is developed with dominating applications in portable electronic de-vices.[1] Recent development on hybrid electric vehicles (HEVs) and electric vehicles (EVs) promotes low carbon transportation and energy and environmental require-ments.[2] However, the conventional cathode materials, i.e., LiCoO2, LiNiO2, LiMnO2 and their ternary systems, can not meet the requirements for automotive applications due to their unsafety and high cost.[6–8] Polyanion systems based on the olivine structure have attracted considerable attention since Goodenough and co-workers developed it as the cathode material for lithium-ion batteries.[9–12] 收稿日期:2013–03–28。修订日期:2013–05–09。 基金项目:国家自然科学基金(21176045);贵州省科学技术基金(黔科合J字[2012]2284)。 第一作者:程琥(1977—),男,副教授。 通信作者:施志聪(1975—),男,副教授。Received date:2013–03–28. Revised date: 2013–05–09. First author: CHENG Hu (1977–), male, Associate Professor. E-mail: chenghu8802@https://www.doczj.com/doc/a517556225.html, Correspondent author: SHI Zhicong (1975–), male, Associate Professor. E-mail: zhicong@ust.hk 第41卷第10期2013年10月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 10 October,2013

锂电池随使用而最大容量下降的原因

锂电池随着使用次数增加而最大容量下降 将分为内因和外因来说: 1.内因 (1)在电极方面,反复充放电使电极活性表面积减少,电流密度提高,极化增大;活性材料的结构发 生变化;活性颗粒的电接触变差,甚至脱落;电极材料(包括集流体)腐蚀; 现阶段常用电池负极为石墨,正极是LiCoO2,LiFePO4以及LiMn2O4等,电池放点初期电解液会在电 极表面形成一层SEI(固态电解质)膜,其成分主要是ROCO2Li(EC和PC环状碳酸酯还原产物)、ROCO2Li和ROLi(DEC和DMC等链状碳酸酯的还原产物)、Li2CO3(残余水和ROCO2Li反应产物),若用LiPF6时,残余的HF会与SEI中ROCO2Li,使SEI中主要是LiF和ROLi。 SEI是Li+导体,脱嵌锂时碳电极体积变化很小,但即使很小,其产生的内应力也会使负极破裂,暴露 出来新的碳表面再与溶剂反应形成新的SEI膜,这样就造成了锂离子和电解液的损耗,同时,正极材料 活性物质膨胀超过一定程度也会形成无法修复的永久性结构触损耗,这样正极和负极的不断损耗造成了 容量的不断衰减;再者,增加的SEI膜会造成界面的电阻层架,使电化学反应极化电位升高,造成电池 性能衰减 在电极中,随着充放电反应的进行,黏结剂的性能也会逐步下降,,黏结强度降低,使电极材料脱落; 铜箔和铝箔是常用的负极和正极集流体,两者都容易发生腐蚀,腐蚀产物聚集在集流体表面成膜,增加 内阻,铜离子还能形成枝晶,穿透隔膜,使电池失效。 (2)在电解质溶液方面,电解液或导电盐分解导致其电导率下降,分解物造成界面钝化; 锂离子电池液体电解质一般由溶质(如LiPF6、LiBF4、LiClO4等锂盐)、溶剂和特种添加剂构成。电 解质具有良好的离子导电性和电子绝缘性,在正负极之间起着输送离子传导电流的作用。锂离子电池在 第一次充放电、过充和过放时以及长期循环之后,电解质会发生降解作用,并伴有气体产生,气体的组 成较为复杂,还无法通过某种反应在电池内加以消除。随着电池充放电次数的增加。由于电极材料氧化 腐蚀会消耗掉一部分电解液,导致电解液缺乏,极片不能完全清润到电解液,从而电化学反应的不完全,使得电池容量达不到设计要求。 (3)隔膜阻塞或损坏,电池内部短路等 隔膜的作用是将电池正负极分开防止两极直接短路。在锂离子电池循环过程中,隔膜逐渐干涸失效是电 池早期性能衰退的一个重要原因。这主要是由于隔膜中电解液变干使溶液电阻增大,隔膜电化学稳定 性和机械性能,以及对电解质浸润性在反复充电过程中变差造成的。由于隔膜的干涸,电池的欧姆内阻 增大,导致放电不完全,电池反复受到大容量过充,电池容量无法回复到初始状态,大大降低了电池的 放电容量和使用寿命。 2.外因 (1)快速充放电 快速充电时,电流密度过大,负极严重极化,,锂的沉积会更明显,使在铜箔与碳类活性物质边界处的铜 箔脆化,极易产生裂缝。电芯自发卷绕受到固定空间的限制,铜箔无法自由伸展产生压力,在压力的作 用下,原有的裂缝扩散生长,因扩展空间不够,铜箔发生断裂。 (2)温度 在明显高于室温的情况下,有机电解质的热稳定性成为首先要考虑的问题,这全要包括有机电解质自身 热稳定性以及电极隋机电解质相互作用的热稳定性两个方面。一般认为,正极/有机电解质的反应对铿 离子电池安全性的影响是主要因素。因为正极、电解质的反应动力学非常快,故控制着整个电池耐热

最全最经典的电池容量衰减原因总结

最全最经典的锂离子电池容量衰减原因分析(附各原因专家分析) 0本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电 1、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量损失,原因有: ①可循环锂量减少;【电源网】【李伟善】【阮艳莉】 ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;【电源网】【李伟善】【阮艳莉】 ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。 【电源网】【李伟善】【阮艳莉】 ④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】 快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,【电源网】但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】 2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。【李伟善】 正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 (1)LiyCoO2: LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4【电源网】【李伟善】【黄可龙】 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。【电源网】【黄可龙】 (2)λ-MnO2锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g)【李伟善】【黄可龙】 3、电解液在过充时氧化反应 当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。【电源网】【黄可龙】【阮艳莉】 影响氧化速率因素: 正极材料表面积大小【电源网】【黄可龙】 集电体材料【电源网】【黄可龙】 所添加的导电剂(炭黑等)【电源网】【黄可龙】

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索 及“锂亚原子”模型的建立 贵州航天电源科技有限公司张忠林杨玉光 摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。 主题词:锂离子电池、反应机理、锂亚原子 一、前言 锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。 由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理 目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

造成锂离子电池容量不同的原因分析

造成锂离子电池容量不同的原因 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(D MC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和Li CIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 -xCoO2+xLi++xe-20 负极:6C +xLi ++xe -充电→← 放电LixC6 总的反应为:6C +LiCoO2充电→← 放电Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应; ③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→L i(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2 O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2

铅酸蓄电池锂电池等电池容量衰减原因

铅酸蓄电池锂电池等电池容量衰减原因 电池的能量存储可以分为三个虚拟区域,即可填充的空白区、提供能量的可用区以及由于使用和老化作用造成的闲置不可用区域,或者说是岩石区,如图1所示。 电池能量存储虚拟区域示意图 电池从制造完成时就开始衰减,一个新电池须提供100%的容量,但大多数使用中的电池组是达不到的。

随着电池的可用区域缩小,可填充的能量降低,充电时间逐渐缩短。在大多数情况下,由于周期循环和老化的原因,电池容量呈线性衰减。此外,深度放电给电池造成的压力大于不完全放电,因此最好不要把电池电量全部耗尽,而是经常性充电。对于镍基电池以及作为校准部件的智能电池则应周期性深度放电,这有助于消除镍基电池的“记忆效应”。镍基锂电池在容量衰减到80%之前可以完全充放电循环300~500周。 充放电循环并不是容量衰减的唯一原因,高温下存储锂电池也会导致容量衰减。一个充满电的锂电池在40℃(104°F)保存一年而不使用的情况下会造成35%的容量损失。超快速充放对电池也是有害的,会使电池寿命减少一半,这对于单体锂电池是非常明显的。电池组比能量高,但由于单体电池的差异而显得特别微妙。 设备的规格参数往往基于新电池,但这仅仅是初试阶段的短暂现象,而不能维持太长的时间。就像一个体育运动员,成绩会随着时间的推移而逐渐下降,并且如果任其发展,将会最终导致电池相关的故障。 电池需要经常计算其容量衰减和最终寿命。容量衰减到80%就需要更换电池组,电池组的最终寿命极限应根据应用的不同、用户的喜好以及公司的保障而改变。由于机械故障比较罕见,容量衰减便成了最终替代计划的一个最佳指标,这一指标可以通过对现役电池每三个月进行一次容量核实来完成。此外,充电器充电运行状态表征的技术也在研发中。 除了与老化相关的衰减,硫酸盐化和板栅腐蚀是铅酸蓄电池衰减的主要影响因素。硫酸盐化是指电池停留在较低倍率充电时,在阴极极板上形成的薄膜层。如果发现及时,可以通过均衡充电来消除这一状况。板栅腐蚀可以通过改善充电状态或采用优化的浮动充电方法来减弱。 镍基电池,所谓的不可用岩石区通常是由于活性物质晶体的形成而引起,也被称为“记忆效应”。深度充放电循环的方法常常可以使电池容量恢复到全满。周期性的放电也可以控制结晶过程,避免对隔膜的危害。 锂离子电池的老化是内部物质的氧化,是使用和老化过程中的一部分,并且是自然发生且不可逆转的。 原标题:铅酸蓄电池锂电池等电池容量衰减原因

动力电池容量损失原因分析

动力电池容量损失原因分析 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应;③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于 4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 2.电解液分解 电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但还原产生的不溶物对溶剂还原生成物会产生不利影响,而且电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3),同时,钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。工艺中使用碳的类型、电解液成份以及电极或电解液中添加剂都是影响成膜容量损失的因素。电解液中常常会含有氧、水和二氧化碳等物质。微量的水对石墨电极性能没影响,但水含量过高会生成LiOH(s)和Li2O 沉积层,不利于锂离子嵌入,造成不可逆容量损失:H2O+e→OH-+1/2H222 OH-+Li+→LiOH(s)LiOH+Li++e→Li2O(s)+1/2H2 溶剂中的CO2 在负极上能还原生成CO 和LiCO3(s):2CO2+2e+2Li+→Li2CO3+CO CO 会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。 3.自放电 自放电是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况:一是可逆容量损失;二是不可逆容量的损失。可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,如锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失。自放电程度受正极材料、电池的制作工艺、电解液的性质、温度和时等因素影响。如自放电速率主要因溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命,如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失。长时间或经常自放电时,锂有可能沉积在碳上,增大两级间容量不平衡程度。Pistoia等认为自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。 4.电极不稳定性 如上所述,正极活性物质在充电状态下会氧化电解质分解而造成容量损失。另外,影响正极材料溶解的因

锂离子电池保护原理

电 池管理单元及电池保护 基于阻抗跟踪技术的电池管理单元(BMU)会在整个电池使用周期内监控单元阻抗和电压失衡,并有可能检测电池的微小短路(micro-short),防止电池单元造成火灾乃至爆炸。对于锂离子电池包制造商来说,针对电池供电系统构建安全且可靠的产品是至关重要的。电池包中的电池管理电路可以监控锂离子电池的运行状态,包括了电池阻抗、温度、单元电压、充电和放电电流以及充电状态等,以为系统提供详细的剩余运转时间和电池健康状况信息,确保系统作出正确的决策。此外,为了改进电池的安全性能,即使只有一种故障发生,例如过电流、短路、单元和电池包的电压过高、温度过高等,系统也会关闭两个和锂离子电池串联的背靠背(back-to-back)保护MOSFET,将电池单元断开。 锂离子电池安全 过高的工作温度将加速电池的老化,并可能导致锂离子电池包的热失控(thermal run-away) 及爆炸。对于锂离子电池高度活性化的含能材料来说,这一点是备受关注的。大电流的过度充电及短路都有可能造成电池温度的快速上升。锂离子电池过度充电期间,活跃得金属锂沉积在电池的正极,其材料极大的增加了爆炸的危险性,因为锂将有可能与多种材料起反应而爆炸,包括了电解液及阴极材料。例如,锂/碳插层混合物(intercalated compound)与水发生反应,并释放出氢气,氢气有可能被反应放热所引燃。阴极材料,诸如LiCoO2,在温度超过175℃的热失控温度限(4.3V单元电压)时,也将开始与电解液发生反应。 锂离子电池使用很薄的微孔膜(micro-porous film)材料,例如聚烯烃,进行电池正负极的电子隔离,因为此类材料具有卓越的力学性能、化学稳定性以及可接受的价格。聚烯烃的熔点范围较低,为135℃至165℃,使得聚烯烃适用于作为热保险(fuse)材料。随着温度的升高并达到聚合体的熔点,材料的多孔性将失效,其目的是使得锂离子无法在电极之间流动,从而关断电池。同时,热敏陶瓷(PCT)设备以及安全排出口(safety vent)为锂离子电池提供了额外的保护。电池的外壳,一般作为负极接线端,通常为典型的镀镍金属板。在壳体密封的情况下,金属微粒将可能污染电池的内部。随着时间的推移,微粒有可能迁移至隔离器,并使得电池阳极与阴极之间的绝缘层老化。而阳极与阴极之间的微小短路将允许电子肆意的流动,并最终使电池失效。绝大多数情况下,此类失效等同于电池无法供电且功能完全终止。在少数情况下,电池有可能过热、熔断、着火乃至爆炸。这就是近期所报道的电池故障的主要根源,并使得众多的厂商不得不将其产品召回。 电 池管理单元(BMU)以及电池保护 电池材料的不断开发提升了热失控的上限温度。另一方面,虽然电池必须通过严格的UL安全测试,例如UL16?2,但提供正确的充电状态并很好的应对多种有可能出现的电子原件故障仍然是系统设计人员的职责所在。过电压、过电流、短路、过热状态以及外部分立元件的故障都有可能引起电池突变的失效。这就意味着需要采取多重的保护――在同一电池包内具有至少两个独立的保护电路或机制。同时,还希望具备用于检测电池内部微小短路的电子电路以避免电池故障。 图1展示了电池包内电池管理的单元方框图,其组成包括了电量计集成电路(IC)、模拟前端

锂电池的国家标准

1、锂离子电池标称电压 3.7V(3.6V),充电截止电压 4.2V(4.1V,根据电芯的厂牌有不同的设计)。(锂离子电芯规范的说法是:锂 离子二次电池) 2、对锂离子电池充电要求(GB/T18287 2000规范):首先恒流充电,即电流一定,而电池电压随着充电过程逐步升高,当电 池端电压达到 4.2V(4.1V),改恒流充电为恒压充电,即电压一定,电流根据电芯的饱和程度,随着充电过程的继续逐步减小,当 减小到0.01C时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA,注意是mA而不是mAh,0.01C就是10mA。)当然,规范的表示方式是0.01C5A,我这里简化了。 3、为什么认为0.01C为充电结束:这是国家标准GB/T18287-2000所规定的,也是讨论得出的。以前大家普遍以20mA为结束,邮电部行业标准YD/T998-1999也是这样规定的,即不管电池容量多大,停止电流都是20mA。国标规定的0.01C有助于充电更饱满,对厂家一方通过鉴定有利。另外,国标规定了充电时间不超过8小时,就是说即使还没有达到0.01C,8小时到了,也认为充电结束。(质量没问题的电池,都应在8小时内达到0.01C,质量不好的电池,等下去也无意义) 4、怎样区别电池是 4.1V还是 4.2V:消费者是无法区分的,这要看电芯生产厂家的产品规格书。有些牌子的电芯是 4.1V和 4.2V通用的,比如A&TB(东芝),国内厂家基本是 4.2V,但也有例外,比如天津力神是 4.1V(但目前也是按 4.2V了)。 5、把4.1V的电芯充电到 4.2V会怎么样:会使电池容量提高,感觉很好用,待机时间增加,但会减短电池的使用寿命。比如 原来500次,减少到300次。同样道理,把 4.2V的电芯过充,也会减短寿命。锂离子电芯是很娇嫩的。 6、既然电池内有保护板,我们是否就可以放心了呢:不是,因为保护板的截止参数是 4.35V(这还是好的,差的要 4.4到4.5V), 保护板是应付万一的,假如每次都过充,电池也会很快衰减的。 7、多大的充电电流算是合适的:理论上越小对电池越有好处。但你总不能为了一块电池充电等3天吧。国标规定的低倍率充 电是0.2C(仲裁充电制式),还以上面的1000mAh容量的电池为例,就是200mA,那么我们可以估计出这只电池5个多小时可以 充饱。(容量mAh=电流mA×时间h) 国家技术监督部门鉴定锂电容量,是以1C的高倍率充电,以0.2C的低倍率放电,以时间计算出容量值,试验次数5次,有1次容量达到试验结束。(就是有5次机会,如果第一次试验就合格了,后面的4次不做)检测之前允许有一次预循环,就是以1C 恒流充电至 4.2V即停止,而没有后面的恒压到0.01C的过程,更没有14小时。 8、锂离子电池能承受多大的充电电流:厂家试验时可以很高,但国标高倍率规定为1C,还以上面的电池为例,1个多小时即可充满。这么大的充电电流,电池能承受吗?对于目前的锂离子电芯,是小意思而已。目前没有对充电器的国家标准,所执行的是 邮电部行业标准YD/T998 1999/2,里面规定了充电器的电流不得大于1C。 9、寿命是怎样规定的:简单说是指电池经过N次1C充、1C放电后,容量下降到70%,此时的N就是寿命。并不是说300 次还可以用,301次就不能用了。国标规定寿命不得小于300次。我们平时使用的条件没有检测时这么严酷,寿命会更长。

相关主题
文本预览
相关文档 最新文档