当前位置:文档之家› 锂离子电池容量损失分析

锂离子电池容量损失分析

锂离子电池容量损失分析
锂离子电池容量损失分析

锂离子电池容量损失分析 

锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。

一、锂离子电池工作原理

锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下:

正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20

负极: 6C + xLi + + xe -充电→← 放电 LixC6

总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6

充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。

二、容量损失原因分析

1.过充电

所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应;③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++

e→Li(s)

沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。

LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4

同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。

2.电解液分解

电解液由溶剂和支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 和LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量和循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。电解液在石墨和其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液分解会在电极表面形成钝化膜,钝化膜能将电解液与碳负极隔开阻止电解液的进一步分解。从而维持碳负极的结构稳定性。理想条件下电解液的还原限制在钝化膜的形成阶段,当循环稳定后该过程不再发生。电解质盐的还原参与钝化膜的形成,有利于钝化膜的稳定化,但还原产生的不溶物对溶剂还原生成物会产生不利影响,而且电解质盐还原时电解液的浓度减小,最终导致电池容量损失(LiPF6 还原生成LiF、LixPF5-x、PF3O 和PF3),同时,钝化膜的形成要消耗锂离子,这会导致两极间容量失衡而造成整个电池比容量降低。工艺中使用碳的类型、电解液成份以及电极或电解液中添加剂都是影响成膜容量损失的因素。电解液中常常会含有氧、水和二氧化碳等物质。微量

的水对石墨电极性能没影响,但水含量过高会生成LiOH(s)和Li2O 沉积层,不利于锂离子嵌入,造成不可逆容量损失:H2O+e→OH-+1/2H222

OH-+Li+→LiOH(s)

LiOH+Li++e→Li2O(s)+1/2H2

溶剂中的CO2 在负极上能还原生成CO 和LiCO3(s):

2CO2+2e+2Li+→Li2CO3+CO

CO 会使电池内压升高,而Li2CO3(s)使电池内阻增大影响电池性能。

3.自放电

自放电是指电池在未使用状态下,电容量自然损失的现象。锂离子电池自放电导致容量损失分两种情况:一是可逆容量损失;二是不可逆容量的损失。可逆容量损失是指损失的容量能在充电时恢复,而不可逆容量损失则相反,如锂锰氧化物正极与溶剂会发生微电池作用产生自放电造成不可逆容量损失。自放电程度受正极材料、电池的制作工艺、电解液的性质、温度和时等因素影响。如自放电速率主要因溶剂氧化速率控制,因此溶剂的稳定性影响着电池的贮存寿命,如果负极处于充足电的状态而正极发生自放电,电池内容量平衡被破坏,将导致永久性容量损失。长时间或经常自放电时,锂有可能沉积在碳上,增大两级间容量不平衡程度。Pistoia等认为自放电的氧化产物堵塞电极材料上的微孔,使锂的嵌入和脱出困难并且使内阻增大和放电效率降低,从而导致不可逆容量损失。

4.电极不稳定性

如上所述,正极活性物质在充电状态下会氧化电解质分解而造成容量损失。另外,影响正极材料溶解的因素还有正极活性物质的结构缺陷,充电电势过高以及正极材料中炭黑的含量。其中电极在充放电循环过程中结构的变化势最重要的因素

锂钴氧化物在完全充电状态下为六方晶体,理论容量的50%放电后生成新相单斜晶体,锂镍氧化物在充放电循环过程中涉及斜方六面体及单斜晶体的变LiyNiO2 通常在0.3

5.集流体

铜和铝分别是负极和正极集流体最常用的材料。其中铝箔无论是在空气种还是在电解液中都比较容易在表面形成氧化物膜,同时,集流体表面全面腐蚀和局部腐蚀(如点蚀)以及粘附性差等原因都会使得电极反应阻力增大,电池内阻增加,导致容量损失和放电效率降低。为了减少这些原因造成的影响,从市场上购得的集流体最好进行预处理(酸-碱浸蚀、耐腐蚀包覆、导电包覆等),以提高耐腐蚀性与粘附性能。因为集流体表面粘附力太小,电极局部可能会与集流体分开,增加了极化作用,对容量有很大影响。铜集流体在使用过程中腐蚀生成一层绝缘腐蚀产物膜。致使电池内阻增大,循环过程中放电效率下降,造成容量损失。当过放电时,铜箔会发生如下反应:

Cu→Cu++e-所产生的Cu(I)

在充电时会以金属铜的形式结晶沉积在负极表面上,形成铜枝晶,极易穿透隔膜造成短路甚至出现爆炸。特别注意的是在选择负极极片时绝对不允许有掉料露铜的极片存在,否则在露铜处极片容易生成枝晶损坏电池。防止铜集流体溶解最好是放电电压应不低于2.5V

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

混凝土搅拌站水泥亏损原因的分析与解决办法

混凝土搅拌站水泥亏损原因的分析与解决办法 关键词: 作业管理; 搅拌站作业; 1引言 我们的一个客户跟我说这几个月水泥亏了十几吨,来帮看看秤准不准吧。这是一个混凝土搅拌站的站长,说的是他们的水泥配料秤的问题。 他们的秤每年计量周检都是我们完成的,服务好客户也是我们的一项任务,我便试着帮他分析造成这种现象的几种可能原因,以及如何采取相应的处理方法。先说一下什么是重力式自动装料秤。 2重力式自动装料秤 这是一种把散装物料分成预定的且恒定质量的装料,并将装料装入容器内的自动衡器。具体到水泥秤,就是将水泥按配方值大小的量装入秤斗中。 配料得先设定一个落差,也称提前量,配料过程到配方减去落差值时,螺旋机就得马上停止,等稳定后记录实际配料值。水泥秤准确度等级一般为X(1)级,规程规定,配料大于15kg时,该等级的动态误差检定时最大允许±0.7%,使用中最大允许±1%。 3水泥亏损原因分析及解决 3.1比较的对象 电子汽车衡。每个搅拌站都有一个电子汽车衡,俗称地磅。水泥亏损大多是搅拌站水泥用料累计量与水泥过磅量比较而言,地磅若是不准,进料数量与用料数量便没有了可比性。 处理方法:确认地磅是否准确。 3.2水泥秤自身问题 水泥秤确实不准,负偏差,会造成水泥亏损,可以从下面几方面检查。 3.2.1检查偏载 该水泥秤共三个传感器,在每个传感器上方的秤体单独轮流放置5个20kg砝码,若三者有明显偏差,一般情况会有一个比其他两个偏小很多,如显示100kg、99kg、85kg,则第三个传感器有问题,或者是传感器支撑点与其他两个传感器支撑点不在一个水平面上,要低。 处理方法:更换传感器或调整水平,完成后进行标定。 3.2.2标定后往上加砝码负偏差,往下卸砝码正偏差 具体操作如下。

电压法计算锂离子电池容量

电压法计算锂离子电池容量 锂离子电池开路电压与电池容量的对应关系分析 先给出一个表格:如下,百分比是电池的剩余容量,右侧是对应的电池的开路电压(OCV). 100%----4.20V 90%-----4.06V 80%-----3.98V 70%-----3.92V 60%-----3.87V 50%-----3.82V 40%-----3.79V 30%-----3.77V 20%-----3.74V 10%-----3.68V 5%------3.45V 0%------3.00V 以下是这个表格的来龙去脉. 〓〓〓〓〓〓〓〓

一.首先几个概念解释: 1.OCV:open circuit voltage的缩写,开路电压. 2.锂离子电池:本篇讨论的是目前手机上普遍采用的以4.2V恒压限制充电的单节锂离子电池. 3.mAh:电池容量的计量单位,实际就是电池中可以释放为外部使用的电子的总数. 折合物理上的标准的单位就是大家熟悉的库仑. 库仑的国际标准单位为电流乘于时间的安培秒. 1mAh=0.001安培*3600秒=3.6安培秒=3.6库仑 mAh不是标准单位,但是这个单位可以很方便的用于计量和计算. 比如一颗900mAh的电池可以提供300mA恒流的持续3小时的供电能力. 4.fuel gauging:电量计量,原意是油量计量,后在电化学上被引用为电量计量的意思. 最科学的并且是最原始的电池的电量计量方法是对流经的电子流量的统计.即库仑计(coulomb count). ★要想获得锂离子电池的电量使用的正确情况,只有用库仑计.就象大家家里面的水量计量用的水表的作用原理.要计算流经的电荷的多少才能获得锂

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

公司历年亏损原因分析报告

公司历年亏损原因分析报告 海丰县国家税务局: xxxxxx有限公司是一家从事生产经营 XXXXX、XXXX、XXXX、XXXX 、XXXX 、 XXX、 XXX、XXX、XXX、XXX、XXXX X、 XXXX 、XXXXX 的外资企业。外商投资者名称: XXXXXX有限公司。公司成立日期:二O XX年X月 X日,营业执照注册号:XXXXXXXX ,注册资本:XXXX万美元,法定代表人:XXX。组织机构代码:XXXXXXXX - X 。税务登记证号:XXXXXXXXXXXXXXXX ,登记类型:外资企业。 根据我公司20XX -20XX 年度《企业所得税汇算清缴鉴证报告》显示的纳税数据,截至20XX年12月31日,我公司出现四年持续性经营亏损,在此期间内,未能向国家征税机关缴付企业所得税。经过认真分析,以下诸多原因造成我公司历年来经营性亏损。 公司历年经营性亏损数据一览表 编制单位:XXXXXX 有限公司单位:万元美国次级贷引发的“金融风暴”导致人民币对美元汇率强劲升值,对我公司的经营业务造成重大不利影响。 “金融风暴”的不利影响之一:人民币对美元汇率强 劲升值使我公司承接的部分订单出现意外亏损。由于我公司的业务以珠宝首饰出口销售为主,因人民币兑美元的非正常升值,不

仅造成了公司的汇兑损失,而且,因人民币非常规升值还直接导致了采购成本上升。 “金融风暴”不利影响之二:客户订单量普遍萎缩,公司的主要客户关停并转,甚至倒闭,对我公司的业务产生不利影响。 在国内外如此严峻的经济背景下,我公司的主营销售业务同样受到了一定的负面影响,公司的主要客户的订单较以往在不断地萎缩,不仅客户的订货数量有所减少,而且在订货计划周期上亦有所推迟,一些项目甚至被取消。直接造成我公司销售业务难以按照年初制订的销售计划实施。 对于宏观经济环境估计乐观:自20XX年x月注册成立以来,一直进行雄心勃勃的拓展计划导致公司经营成本迅速上升。 基于对XX年初相对乐观的国内外经济形势的研判,我 公司在制订公司发展计划时满怀信心,均需要按照企业预先制订的标准招聘经常管理和销售人才,均需要购买添置办公设备和用品,同时需要专人办理工商税务登记等一系列手续,为此,产生了数额不等的开办费用。但是,公司销售业务的增长速度未能与经营成本的增加保持同步的上升,进而拖累了公司的经营业绩。历年来经营管理费用过大,进而导致经营效益的下降,出现持续性亏损的原因之一。 由于公司的销售计划无法如期完成,而生产成本持续走高,公司的经营亏损有加剧之虞。如何有效控制公司的运营成本,增加公司收入,使公司在“金融风暴”中顺利度过“寒冬”成为我公

正极材料理论容量计算

锂离子电池正极材料理论电容量的计算 常常看见文献上说该材料的理论电容量是多少mA h/g 下面给出理论计算方法: 1mol正极材料Li离子完全脱嵌时转移的电量为96500C(96500C/mol是法拉第常数) 由单位知mAh/g指每克电极材料理论上放出的电量:1mA·h=1×(10^-3)安培×3600秒=3.6C 以磷酸锂铁电池LiFePO4为例: LiFePO4的分子量是157.756g/mol, 所以他的理论电容量是 96500/157.756/3.6=170 mA h/g 关于法拉第常数 法拉第常数(F)是近代科学研究中重要的物理常数,代表每摩尔电子所携带的电荷,单位C/mol,它是阿伏伽德罗数NA=6.02214×1023mol-1与元电荷e=1.602176×10-19 C的积。尤其在确定一个物质带有多少离子或者电子时这个常数非常重要。法拉第常数以麦可·法拉第命名,法拉第的研究工作对这个常数的确定有决定性的意义。 一般认为此值是96485.3383±0.0083C/mol,此值是由美国国家标准局所依据的电解实验得到的,也被认为最具有权威性。 最早法拉第常数是在推导阿伏伽德罗数时通过测量电镀时的电流强度和电镀沉积下来的银的量计算出来的。 在物理学和化学,尤其在电化学中法拉第常数是一个重要的常数。它是一个基本常数,其值只随其单位变化。在电解、电镀、燃料电池和电池等涉及到物质与它们的电荷的工艺中法拉第常数都是一个非常重要的常数。因此它也是一个非常重要的技术常数。 在计算每摩尔物质的能量变化时也需要法拉第常数,一个例子是计算一摩尔电子在电压变化时获得或者释放出的能量。在实际应用中法拉第常数用来计算一般的反应系数,比如将电压演算为自由能。 如何计算电池材料的理论容量值 C=26.8nm/M,n是电子数,m是活性物质质量,M是活性物质的分子量 电池的化成,有的采用常温化成,有的采用高温化成,这两种化成的优缺点:主要区别应该是SEI膜的厚度和致密程度吧,高温化成形成的SEI较厚但不致密,消耗的锂比较多,常温或低温形成的较薄切致密。 电池配方: 负极配方:CMS:CMC:SBR:Super-P=94.5:2.25:2.25:1 电解液:1M-LiPF6 EC/DMC/EMC 负极设计比容量:300mAh/g 正极设计比容量:140mAh/g 充放电制度:1)恒流充电(1C,4.2V) 2)恒压充电(4.2V,20mA) 3)静置(10min) 4)恒流放电(1C,3.0V) 5)静置(10min) 6)循环(350周)

锂离子电池容量衰减机理和界面反应研究

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries Pankaj Arorat and Ralph E. White Center For Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina,Columbia, South Carolina 29208, USA ABSTRACT The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium-ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models。锂离子电池容量衰减机 理和界面反应研究 作者:Pankaj Arorat and Ralph E. White 美国,南卡罗来纳29208,哥伦比亚,南卡罗来纳州大学,化工学院化工系 摘要 锂电池在循环过程中,其容量会逐渐衰减。而出现容量衰减主要归因于几个不同的机理,这些机理大多与电池内部的界面反应相关,这些反应持续性的发生在电池的充放电环节,并且引起电解液的分解、钝化膜的形成、活性材料的溶解等其它现象。关于容量衰减的机理在目前公开的锂离子电池数学模型的文献中并未加以阐述,因此在锂电池循环过程中和处于苛刻的条件下,我们无法通过模型来对锂电池的性能作出有效的预测。本篇文章将陈述容量衰减的机理,并且试着去解释其本质,为构建先进的锂电池模型指明方向。 lntroduction The typical lithium-ion cell(Fig. 1) is made up of a coke or graphite negative electrode, an electrolyte which serves as an ionic path between electrodes and separates the two materials, and a metal oxide (such as LiCoO2, LiMn2O4, or LiNiO2) positive electrode. This secondary (rechargeable) lithium-ion cell has been commercialized only 概论 传统的锂电池由碳或石墨负极材料、作为电极间的离子传输通道的电解液、金属氧化物(例如LiCoO2、LiMn2O4、LiNiO2)正极材料三部分组成,这种二次(可充电)电池已经商业化。依照这种原理制作的锂电池已

配电网中损耗原因分析及管理措施(2021)

配电网中损耗原因分析及管理 措施(2021) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0499

配电网中损耗原因分析及管理措施(2021) 摘要:电网线损管理是供电企业管理的关键环节之一,加强线损管理,对降低电网线损具有重要意义。文章从电网线损概念出发,分析了线损的原因,并重点探讨了加强电网线损管理的建议及措施,从而提高整个电网的经济效益。 关键词:电网线损;原因;线损管理;措施 1线损概念 线损即电能在输送和分配过程中,由电力网中各个元件所产生的一定数量的有功功率损耗和电能损耗以及在电网运营管理过程中发生的电能损耗称为电力网损耗,简称线损。 线损电量即指电力网或一个供电地区电网在给定时段(日、月、季、年)内,输电、变电、配电及营销各个环节中所消耗的全部电量(其中包括电抗器和无功补偿设备等所消耗的电量,以及不明损

耗电量)。线损电量的包括范围是指从发电厂主变压器一直到主用户电能表上的所有电能损耗。 线损率是指线损电量占供电量的百分比。 2配电网中损耗原因分析 配电网中损耗原因很多,其中线损和网损是最主要的两种。 三相负荷不平衡引起线损升高。农村电网是经10/0.4kv变压器降压后,以三相四线制向用户供电,是三相负载与单相负载混合用电的网络。在装接单相用户时,供电部门均能将单相负载均衡地分接在a、b、c三相上。但在农网运行中,由于用电户私自增容,或大功率单相负载的投入,或单相负载设备的用电不同时性等,均可造成三相负载不平衡。农网若在三相不平衡度较大的情况下运行,将会给农网带来以下损耗: (1)增加线路电能损耗。在三相四线制的供电网络中,电流通过线路导线时,因存在阻抗,必然产生电能损耗,其损耗与通过电流的平方成正比。当农网以三相四线制供电时,不能很好的调整负载,造成三相负载不平衡并不鲜见。当三相负载不平衡运行时,中

锂电池随使用而最大容量下降的原因

锂电池随着使用次数增加而最大容量下降 将分为内因和外因来说: 1.内因 (1)在电极方面,反复充放电使电极活性表面积减少,电流密度提高,极化增大;活性材料的结构发 生变化;活性颗粒的电接触变差,甚至脱落;电极材料(包括集流体)腐蚀; 现阶段常用电池负极为石墨,正极是LiCoO2,LiFePO4以及LiMn2O4等,电池放点初期电解液会在电 极表面形成一层SEI(固态电解质)膜,其成分主要是ROCO2Li(EC和PC环状碳酸酯还原产物)、ROCO2Li和ROLi(DEC和DMC等链状碳酸酯的还原产物)、Li2CO3(残余水和ROCO2Li反应产物),若用LiPF6时,残余的HF会与SEI中ROCO2Li,使SEI中主要是LiF和ROLi。 SEI是Li+导体,脱嵌锂时碳电极体积变化很小,但即使很小,其产生的内应力也会使负极破裂,暴露 出来新的碳表面再与溶剂反应形成新的SEI膜,这样就造成了锂离子和电解液的损耗,同时,正极材料 活性物质膨胀超过一定程度也会形成无法修复的永久性结构触损耗,这样正极和负极的不断损耗造成了 容量的不断衰减;再者,增加的SEI膜会造成界面的电阻层架,使电化学反应极化电位升高,造成电池 性能衰减 在电极中,随着充放电反应的进行,黏结剂的性能也会逐步下降,,黏结强度降低,使电极材料脱落; 铜箔和铝箔是常用的负极和正极集流体,两者都容易发生腐蚀,腐蚀产物聚集在集流体表面成膜,增加 内阻,铜离子还能形成枝晶,穿透隔膜,使电池失效。 (2)在电解质溶液方面,电解液或导电盐分解导致其电导率下降,分解物造成界面钝化; 锂离子电池液体电解质一般由溶质(如LiPF6、LiBF4、LiClO4等锂盐)、溶剂和特种添加剂构成。电 解质具有良好的离子导电性和电子绝缘性,在正负极之间起着输送离子传导电流的作用。锂离子电池在 第一次充放电、过充和过放时以及长期循环之后,电解质会发生降解作用,并伴有气体产生,气体的组 成较为复杂,还无法通过某种反应在电池内加以消除。随着电池充放电次数的增加。由于电极材料氧化 腐蚀会消耗掉一部分电解液,导致电解液缺乏,极片不能完全清润到电解液,从而电化学反应的不完全,使得电池容量达不到设计要求。 (3)隔膜阻塞或损坏,电池内部短路等 隔膜的作用是将电池正负极分开防止两极直接短路。在锂离子电池循环过程中,隔膜逐渐干涸失效是电 池早期性能衰退的一个重要原因。这主要是由于隔膜中电解液变干使溶液电阻增大,隔膜电化学稳定 性和机械性能,以及对电解质浸润性在反复充电过程中变差造成的。由于隔膜的干涸,电池的欧姆内阻 增大,导致放电不完全,电池反复受到大容量过充,电池容量无法回复到初始状态,大大降低了电池的 放电容量和使用寿命。 2.外因 (1)快速充放电 快速充电时,电流密度过大,负极严重极化,,锂的沉积会更明显,使在铜箔与碳类活性物质边界处的铜 箔脆化,极易产生裂缝。电芯自发卷绕受到固定空间的限制,铜箔无法自由伸展产生压力,在压力的作 用下,原有的裂缝扩散生长,因扩展空间不够,铜箔发生断裂。 (2)温度 在明显高于室温的情况下,有机电解质的热稳定性成为首先要考虑的问题,这全要包括有机电解质自身 热稳定性以及电极隋机电解质相互作用的热稳定性两个方面。一般认为,正极/有机电解质的反应对铿 离子电池安全性的影响是主要因素。因为正极、电解质的反应动力学非常快,故控制着整个电池耐热

最全最经典的电池容量衰减原因总结

最全最经典的锂离子电池容量衰减原因分析(附各原因专家分析) 0本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。从上式可以看出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地看出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电 1、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。【电源网】【李伟善】【黄可龙】【阮艳莉】导致放电效率降低和容量损失,原因有: ①可循环锂量减少;【电源网】【李伟善】【阮艳莉】 ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物;【电源网】【李伟善】【阮艳莉】 ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。 【电源网】【李伟善】【阮艳莉】 ④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低和容量的损失。【黄可龙】 快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,【电源网】但是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。【李伟善】 2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。【李伟善】 正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 (1)LiyCoO2: LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4【电源网】【李伟善】【黄可龙】 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。【电源网】【黄可龙】 (2)λ-MnO2锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g)【李伟善】【黄可龙】 3、电解液在过充时氧化反应 当压高于4.5V 时电解液就会氧化生成不溶物(如Li2Co3)和气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。【电源网】【黄可龙】【阮艳莉】 影响氧化速率因素: 正极材料表面积大小【电源网】【黄可龙】 集电体材料【电源网】【黄可龙】 所添加的导电剂(炭黑等)【电源网】【黄可龙】

物业项目亏损原因分析及扭亏解决方案教学文稿

项目亏损原因分析及扭亏解决方案 Y P分公司自2013年2月全套接管B J广场项目至今已三个月时间。在面对管理混乱、员工执行力差与业务素质不过硬,尤其是面对诸多疑难杂症预留问题的应对与处理的困难局面同时,我们也着重化大力气不断研究、分析项目亏损原因,也逐步采取了一些减亏举措并付诸实施,取得了一些成效,项目亏损数据在不断下降。但当前依旧处亏损状态,4月份仍亏损7.45万元。现根据总司要求,将BJ一期项目亏损原因分析及扭亏解决方案汇报如下: 一、收支数据分析。 1、13年1-4月营业收入50.4万。其中: ⑴物业费27.45万; ⑵开办费15.49万; ⑶其他收入7.46万。 2、13年1-4月成本为87.33万(主要为外包服务人力费用63.44万,内部人员工资及社保20万。 3、13年1-4月亏损数据为36.94万(月均亏损数据为9.235万元/月。其中4月份亏损数据为7.45万元/月,下降幅度较大)。 ⑷成本87.33万,成本主要为保安保洁费63.44万,人员工资及社保20万。 2、进户情况: BJ一期办公楼总共900户数,截止到4月结账日已进户524户,进户率为58.2% ,已进户单元1-4月物业费应收数为40.5万,剩余376户为空置房及尚未进户单元,空置房及未进户单元的物业费月均8万元,1-4月合计则为32万元。

二、亏损原因分析。 根据1-4月份经营收支数据分析,主要以下原因导致亏损情况: 1、项目进户率较低,空置房及未进户单元较多,从而影响物业费的应收数,在目前保安保洁费及人员工资成本合计已达到83.44万的前提下较难保持收支平衡。 2、1-4月份项目总体收缴率为73% ,虽然达到上半年65%的目标收缴率,但仍有个别客服未完成收缴指标,且整体收缴率尚未达到全年75%的目标收缴率,收缴率偏低也是导致项目亏损的一个原因。 3、外包服务项目人力费用占成本比重最大,达到73% ,如能够减少这方面的开支,将有效降低项目的成本。 4、接管前,物业增值、延伸服务收费均无,主要原因归咎于少数物业负责同志“以权谋私、中饱私囊”违纪所致(注:现在我们在梳理和整顿中,并采取收费措施)。 三、扭亏解决方案(计划)。 撇开项目230万元/年补贴数据这一前提下,我们坚决贯彻总司领导“减亏、扭亏、增效”之思路,采取以下解决方案(计划)来具体实施。 1、针对BJ1期项目亏损数据与空置率较高之实际情况,对外包服务项目采取收回自管紧急措施来减少人力成本支出,达到减亏增效之目的。本项措施在5.1已开始实施。拟通过“收回自管”措施后,预计从5月份开始,每月可减少保安人力成本支出费用5万元左右(注:从原每月外保人力服务费103600元降至53600元,每月实际可降低保安人力费用50000元。如按年12个月计算,一年可节约600000元左右)。 2、继续对客服人员进行收缴指标考核,加大物业费收缴与清欠工作力度。

造成锂离子电池容量不同的原因分析

造成锂离子电池容量不同的原因 锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(D MC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和Li CIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 -xCoO2+xLi++xe-20 负极:6C +xLi ++xe -充电→← 放电LixC6 总的反应为:6C +LiCoO2充电→← 放电Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电的过程。在过充的情况下会造成电池容量的衰减,主要有如下因素:①石墨负极的过充反应;②正极过充反应; ③电解液在过充时氧化反应。电池在过充时,锂离子容易还原沉积在负极表面:Li++e→L i(s) 沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低和容量损失,原因有:①可循环锂量减少;②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其他产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。正极过充导致容量损失主要是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失是不可逆的。 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0.4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2 O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。过充还会导致电解液的氧化反应,其氧化速率跟正极材料表面积大小、集电体材料以及所添加的导电剂(炭黑等)有很大关系,同时,炭黑的种类及表面积大小也是影响电解液氧化的一个重要因素,其表面积越大,溶剂更容易在表面氧化。当压高于4.5V 时电解液就会氧化生成不溶物(如Li2

企业亏损的原因分析

“企业为什么会亏损?”这个问题表面上很大,很难回答,其实,这个问题并不大,并不难回答。因为,成功的企业是相似的,失败的企业也是相似的。 一、为什么失败? 答曰:企业的投资者或(和)经营者“喜欢”失败,“故意”让企业亏损。 1、产品的成本、价格、性能、目标顾客四要素互相错位。 最近一家保健酒企业新开张,作为顾问去咨询。与客户见面第一次,我就与客户“达成共识”,自动放弃了“项目组组长”的职位,由另外的同事牵头;我还“不怀好意”地向同事们申明:“今后不许说这个项目有我参与”。 我之所以不赚这笔钱,不是因为我不爱钱,而是因为这个产品“故意走上了一条亏损路”,我至多只能让它少赔钱而没法给它一个良好的未来:它成本高,价格自然高;高价酒的消费地点主要是酒楼,其次是送礼,该酒保健功能明显,功效明显,并且功效指向“人们不愿承认的需求”,所以不大可能在公开场所消费,也不大可能送给别人(送这种功效的酒,那岂不是等于藐视受礼者?);该酒的功能、功效,不可能与同等价位或 更低价位的药品相比,因此不能当药卖;该酒是“食字号”批文,不允许宣传功效;该酒价格高,作为功能酒、又难以找到“情感因素”,只有靠“功效”才能支撑该价位。 总而言之,该酒充满了矛盾。 这些道理,别说经营者啦,就是业务员,也都明白。 可是,投资者为了自己的“爱好”,为了自己的“追求”,决心投资这样一个产品。 2、产品的特征与企业组织的核心能力不匹配 还说上面这个酒吧。 很显然,产品的功效越复杂,传播中“口耳相传”的权重就越大,电视广告的作用就越小,企业组织中企划、培训两个板块的权重就越高,所需的产品运作空间也越大。 但是,该企业的组织却是“销售型”的,价格体系上看运作空间也非常小。 我深深地知道,这种企业“逆天行事”,“不亏损不足以平民憤”,“不亏损就没有天理”,虽然我主观上、我内 心深处仍然深深地祝愿它“一路走好”。 3、目标不明确或手段与目标不匹配 一家“白酒OEM基地”企业,产品质量非常好。为了搞好质量,该企业同本行业一些顶级专家们保持着紧密 联系,在员工培训、技术革新、设备更新、白酒生态园建设等方面都投入了巨大的资金,这样一来,成本显然就高于其他竞争者了。在同行的“价格战”面前,该厂销售人员显得很不平衡,希望白酒制造商(它的采购商)认可他的成本。

2020年配电网中损耗原因分析及管理措施

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020年配电网中损耗原因分析 及管理措施 Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

2020年配电网中损耗原因分析及管理措施 摘要:电网线损管理是供电企业管理的关键环节之一,加强线损管理,对降低电网线损具有重要意义。文章从电网线损概念出发,分析了线损的原因,并重点探讨了加强电网线损管理的建议及措施,从而提高整个电网的经济效益。 关键词:电网线损;原因;线损管理;措施 1线损概念 线损即电能在输送和分配过程中,由电力网中各个元件所产生的一定数量的有功功率损耗和电能损耗以及在电网运营管理过程中发生的电能损耗称为电力网损耗,简称线损。 线损电量即指电力网或一个供电地区电网在给定时段(日、月、季、年)内,输电、变电、配电及营销各个环节中所消耗的全部电量(其中包括电抗器和无功补偿设备等所消耗的电量,以及不明损

耗电量)。线损电量的包括范围是指从发电厂主变压器一直到主用户电能表上的所有电能损耗。 线损率是指线损电量占供电量的百分比。 2配电网中损耗原因分析 配电网中损耗原因很多,其中线损和网损是最主要的两种。 三相负荷不平衡引起线损升高。农村电网是经10/0.4kv变压器降压后,以三相四线制向用户供电,是三相负载与单相负载混合用电的网络。在装接单相用户时,供电部门均能将单相负载均衡地分接在a、b、c三相上。但在农网运行中,由于用电户私自增容,或大功率单相负载的投入,或单相负载设备的用电不同时性等,均可造成三相负载不平衡。农网若在三相不平衡度较大的情况下运行,将会给农网带来以下损耗: (1)增加线路电能损耗。在三相四线制的供电网络中,电流通过线路导线时,因存在阻抗,必然产生电能损耗,其损耗与通过电流的平方成正比。当农网以三相四线制供电时,不能很好的调整负载,造成三相负载不平衡并不鲜见。当三相负载不平衡运行时,中

浅谈项目亏损的原因分析

浅谈项目亏损的原因分析 随着我国加入WTO后过渡期的结束,国内建筑市场将成为国际市场的一部分,我国建筑业不仅面临国内市场的白热化竞争,而且还要应对来自国外建筑业集团的竞争。据统计,我国建筑业一直是微利行业,大部分企业存在亏损,与国外成熟建筑业市场相比,有较大的差距。那么,如何加强管理、降低成本、提高效益已成为摆在建筑施工企业面前的紧迫课题。本文从成本目标、管理措施和财务措施等方面对项目部的成本亏损进行分析,提出解决措施,以达到提高企业经济效益的目的。 一、引言 近年来,建筑业对于国民经济的支柱作用日益增强.统计数据显示,2005年的增加值占GDP的比重为5.5%,建筑业在国民经济中支柱产业的地位突出。但是建筑业的总体利润水平不高,据统计,建筑业企业平均产值利润率仅为 1.2% 施工企业成本管理是指对施工企业发生的实际成本通过预测、计划、控制、核算、分析等一系列活动在满足工程质量和工期的条件下,采取有效的措施不断降低成本达到成本控制的预期目标。施工企业成本管理的好坏直接决定着施工企业的经济效益,能集中体现企业全部工作的经济效果如企业劳动生产率的高低、材料消耗的浪费和节约、施工机械利用程度、工程质量的优劣、工程进度的快慢、管理费用的节约和超支以及施工技术和经营管理的水平。 而施工企业所属的工程项目部是建筑产品的直接生产者,建筑产品的优劣影响企业的信誉,继而影响企业承揽工程任务,关系到企业能否持续发展和整体竞争力的提高,而建筑产品的直接成本由人工费、材料费、机械使用费和措施费组成,这些费用发生在工程项目实施过程中,主要发生在项目部,因此项目部直接成本的高低又决定企业的成本水平.在一定程度上,项目部所施工工程的工期、质量决定着企业的信誉,项目部的盈亏又决定着企业的盈亏,严重的并有可能危及企业的生存和发展。因此,控制项目部的亏损,提高企业的经济效益,已成为企业目前非常紧迫的任务。为此,笔者对项目部亏损的主要原因进行分析,并对如何控制项目部的成本进行粗浅的探讨。 二、项目部亏损的主要原因是成本失去控制 项目部可以自行支配而没有任何外部影响就可以控制的成本支出因素,则对施工组织的安排,人员的调配,材料和部分设备的采购、保管、使用、消耗,安全和质量的管理具有一定的自主权。其主要原因包括如下几个方面: 1.没有落实执行成本控制的总目标。绝大多数亏损的项目部根本没有成本控制的总目标,没有分级、分类的成本控制目标和责任制度,有的虽然有但却没有认真落实和严格执行,因而使项目部的成本处于失控状态。如某企业一个工程项目部,工程开工后企业对项目成本进行了分析预测,并确定了分项工程成本、分类成本和工程总成本目标;待工程竣工后进行项目核算过程中,除固定费用(包括上交的管理费、提取的固定资产折旧费、大修费等)未超出测算外,项目部间接费等可变费用基本出现超支,即使考虑变更设计增加成本的因素,并将变更增加的预算费用全部计算为成本,其实际成本也比测算成本高出相当比例。为什么固定费用可以控制,而可变费用却得不到控制?其问题就在于没有严格执行控制的目标,分项工程成本和分类成本的控制没有落实,从而导致总成本超支。 2.施工材料的管理制度不健全。在亏损的项目部中,购买材料、配件无计划的现象比比皆是,如果是有经验的材料人员执行采购任务,则材料的采购数量不至于超出太多,不会造

相关主题
文本预览
相关文档 最新文档