当前位置:文档之家› 玻璃钢立式储罐课程设计

玻璃钢立式储罐课程设计

玻璃钢立式储罐课程设计
玻璃钢立式储罐课程设计

前言

玻璃钢贮罐是树脂基复合材料制品中应用最广泛的产品之一,与传统的金属、钢筋混凝土贮罐相比,它具有耐腐蚀性能好、强度高、自重轻、隔热保温效果好、成型容易、维修方便、耐久性好及安装、运输方便的特点[1]。

由于玻璃钢贮罐具有这些特点,它已广泛用于化工、石油、造纸、医药、食品、冶金、粮食、饲料等领域。我国玻璃钢贮罐的发展十分迅速,已经颁布了纤维增强塑料贮罐的标准,规定了贮罐用原材料、生产工艺、结构形式、产品性能和几何尺寸、验收条件等等,规范了玻璃钢产品市场,对提高玻璃钢贮罐产品质量起到了促进作用。国产玻璃钢贮罐主要采用机械化缠绕成型工艺,手糊成型已基本淘汰。工厂缠绕成型玻璃钢贮

罐容积可达150;现场缠绕成型的贮罐直径达15m、容积可达2500

玻璃钢贮罐向着抗渗漏性、多功能(阻燃性、防静电、结构强度)、复合化(热塑性内衬、玻璃钢结构层)低成本的方向发展。玻璃钢贮罐设计要求适应这一发展方向,不断拓展玻璃钢贮罐的应用领域,根据使用条件和结构要求,合理选择材料,确定产品结构形式和制造工艺方法,达到降低成本,满足使用要求的目的[2]。

1.造型设计

1.1贮罐的构造尺寸确定

初取贮罐的直径3.6m,则贮罐高度H===11.8m,故可初选贮罐的结构尺

寸为:D=3.6m;H=12m。

1.2贮罐顶盖的设计

玻璃钢贮罐顶盖有平顶盖、锥形顶盖和椭圆形顶盖三种形式。本设计采用拱形顶盖,与锥形顶盖相比,其结构简单、刚性好、承载能力强,是立式贮罐广为使用的一种形式。为取得罐顶与罐壁等强度,罐顶的曲率半径与贮罐直径差值不超过20%。即=

(0.8。

1.3贮罐罐底设计

立式贮罐罐底采用平底,罐体与罐底的拐角处理,对贮罐设计极为重要。尤其是立式贮罐底部受力较为复杂,应引起足够的重视。一般在拐角处都应设计成一定的圆弧过渡区,圆弧半径不应小于38mm。

1.4支座设计

常用立式贮罐支座有床式、悬挂式、角环支撑式和裙式4钟形式。床式支座是将贮罐直接置于基础上,属于直接支撑形式。因为支承面积大、设备底部的应力状态均匀、应力集中的现象较少,所以这种支承方式可以不再采取其他固定措施,对于室外大型设备,大多要另加地角螺栓固定[3],本设计采用床式支座。

1.5造型设计简图如图

2.1所示

图2.1

2.性能设计

2.1树脂的选择

根据制品的使用条件,对复合材料的物理性能、耐化学腐蚀性能及力学性能进行设计,储罐中储存的物质为饱和盐水,使用温度为80℃,有使用条件可知,所选择的树脂必须耐盐,具有高的热变形温度,此外还要有一定的力学承载能力。

贮罐设计中常用树脂主要是不饱和聚酯树脂,由于不饱和聚酯树脂价格便宜,也可以满足储罐的使用要求,常用不饱和聚酯树脂的牌号如下:

表3-1 树脂的选择要点

树脂基体代号产品性能适用场所

邻苯型OP

具有一般的耐腐蚀性能,可耐海水、弱酸及大气老化环境,长期

使用温度-50℃~60℃,最高使用温度达100℃,这是一种较

经济的树脂类型,耐腐蚀性一般,阻燃氧指数约为26。常用于一般的腐蚀环境,海水腐蚀、弱酸腐蚀及大气老化腐蚀。

间苯型IP 具有优异的耐腐蚀性能, 可耐中等浓度无机酸、碱、各种盐类等

环境,长期使用温度-50℃~90℃,最高使用温度达105℃,

阻燃氧指数约为26。

常用于酸性腐蚀较强或碱

性腐蚀一般的环境。

乙烯基型VE 具有优异的耐腐蚀性能,可耐酸、碱、盐溶剂或酸碱交替等恶劣

的腐蚀环境,长期使用温度-50℃~110℃,阻燃氧指数约为28。

常用于酸、碱、盐溶剂等腐

蚀严重的环境。

阻燃型FI 具有优异的耐腐蚀性能,可耐酸、碱、盐溶剂或酸碱交替等恶劣

的腐蚀环境,长期使用温度-50℃~110℃,其阻燃性能高于一

般树脂,氧指数为28~35。

常用于有阻燃要求的使用

环境。

食品级型FO 间苯型食品级树脂同间苯树脂一样具有优良的耐腐蚀性能,长期

使用温度-50℃~90℃,最高使用温度达105℃,阻燃氧指数约

为26。

常用于肉制品、食品加工厂

及自来水厂。

根据本储罐的使用条件,可以选择乙烯基型不饱和聚酯树脂。

2.2增强材料的选择

玻璃纤维价格便宜,性能优异,可以满足储罐的使用要求,增强材料选择玻璃纤维,常用的玻璃增强材料主要有无捻粗纱布、加捻布、短切毡、表面毡、玻璃纤维无捻粗纱和短切玻璃纤维。玻璃纤维按其使用要求分为[4]:

E-玻璃纤维,无碱纤维,具有优良的、耐老化性和耐水性。

(2)C-玻璃纤维,耐酸性好,耐碱性不如无碱纤维,成本低。

(3)A-玻璃纤维,有碱纤维,含碱量大于12%

(4)S-玻璃纤维,高强度玻璃纤维,拉伸强度较大。

(5)中碱玻璃纤维,耐酸性好,成本低。

(6)耐碱玻璃纤维,抗碱性较好,主要用于增强水泥制品。

(7)空心玻璃纤维,纤维中空,弹性模量较高。

表3.2 无碱和中碱纤维的性能对比

种类耐酸性耐水性机械强度防老化性电绝缘性成本浸润性适合条件无碱玻璃

纤维一般好高较好好较高

树脂易浸

用于强度

高的场合

中碱玻璃

纤维好差较低较差低低

树脂浸润

性差

用于强度

低的场合

储罐用来储存饱和盐水,使用温度为80℃,并且有一定的力学承载,以及经济效益综合考虑选择无碱玻璃纤维,因为无碱玻璃纤维耐水性好,但成本较高。

2.3 助剂选择

2.3.1引发剂的选择

A.过氧化酮类引发剂

国内玻璃钢工业大多用50%过氧化环已酮糊。纯净的过氧化环已酮为粉末状,很不稳定,需配成糊状产品使用,单独使用固化时间长。过氧化环已酮存在着易分层,在树脂中不易分散、活性低、添加量大、固化程度不高、在低温下易出现结晶等缺点。

B.过氧化甲乙酮

过氧化甲乙酮是不饱和聚酯树脂固化在世界上应用最广泛的引发剂,其价格低、性能好,使用方便,和树脂容易混溶[5]。

通过比较,选用过氧化甲乙酮做为引发剂。

2.3.2 促进剂的选择

由于引发剂选用了过氧化甲乙酮,所以促进剂选用钴盐类促进剂,且常用邻苯二甲酸二甲酯稀释后使用。

2.3.3 脱模剂的选择

脱模剂采用聚乙烯醇溶液、脱模蜡等。

3 结构设计

3.1 立式贮罐结构设计

3.1.1立式贮罐设计条件

装满饱和盐水的立式贮罐,贮罐的高度为H,半径为R,充满饱和盐水密度/,

贮罐安装在太原地区,贮罐顶均匀雪荷载

=400N/,风压为=300N/,无地震。玻璃

钢材料的拉伸强度,安全系数取K=10。贮罐内装满液体介质,以地面完全接触方式安装在水平面基础上。

3.1.2 贮罐壁厚计算[6]

罐体沿高度分为12段,先计算罐下1m处的壁厚

t=(4.1)式中p-----荷载引起的罐壁压力。

P= 3.6N/cm(4.2)

=(4.3)

依次求得

=0.77cm

=0.93cm

=1.08cm

=1.23cm

=1.39cm

=1.54cm

=1.70cm

=1.85cm

=2.01cm

=2.16cm

=2.31cm

由表查得贮罐对应段最小厚度均小于计算厚度,所以贮罐厚度以计算值为准。

3.1.3 贮罐顶盖的厚度设计

拱形顶盖的曲率半径=D=3.6m。h为罐顶高,r为转角曲率半径,r小则h也小,一般取r=0.2D,此时h0.2D,贮罐顶盖受均布荷载=400N/拱顶顶板的最小厚度为

=4=4=0.27cm (4.4)

--------顶板最小厚度,mm;

式中

E-------拱顶材料的弹性模量,MPa。

按强度设计的拱顶厚度,还必须进行稳定性验算,拱顶的最小厚度不得小于5mm,大于计算结果,故取顶盖厚度5mm。

在外载荷的作用下,拱顶的许用临界荷载为

[]=0.1=0.1 1.1=2121.9N/>p (4.5)

故设计安全。

3.1.4 贮罐底板设计

罐底为平板,直接安装在平面基础上。贮罐内的液体重可直接传给混凝土基础,因此罐底所受的应力很小。但罐底和罐壁连接处受力十分复杂,一般需要加强,根据ASTM—D3299中规定,底板厚度取9.5mm,罐壁下部t=23.1mm时,拐角

处=32.6mm,L=300mm,M=100mm。

根据底板厚度,可计算得,底板需铺层的层数:

n==

(4.6)

纤维选用无碱玻璃纤维毡,其单位面积质量为600g/,树脂选用不饱和聚

酯树脂,密度为1.3g/。铺层时可采用各四层交替铺层。

3.1.5 风荷作用下贮罐强度设计

贮罐设计地区风压=300Pa,计算风压为

W=0.72=0.72300=216Pa (4.7)

贮罐沿高度方向承受的均布荷载为

=0.72=0.72777.6N/m (4.8)

由风压引起的最大弯矩和剪力为

=2=777.62=55987.2N m (4.9)

=

(4.10)

贮罐迎风面的最大拉伸应力,应小于玻璃钢材料的许用拉伸强度;背风面的最大压缩应力;应小于玻璃钢材料的许用压缩强度。在最大风荷载下贮罐的厚度:

===0.039cm

(4.11)

贮罐自重为

=罐体重+罐底重+罐顶重D++[]

=36095

—] =2441.66+174+407.5=3023kg302.3kN (4.12)

贮罐自重引起的抗风弯矩为

==302.3

(4.13)

风压引起贮罐的倾覆弯矩为

=55987.2N5598.7kN(4.14)

贮罐不会因风压而倾覆。

3.1.6 设计结果立式贮罐设计结果如下:

管壁厚度

底部厚23.1mm

上端厚 6.2mm

罐底厚9.5mm

罐顶厚5mm

3.2 支座设计

本设计采用的是床式支座,因为该贮罐比较大,所以要另加地脚螺栓固定。如图4.1所示。

图3.1

4 工艺设计

玻璃钢储罐的成型方法主要有手糊成型工艺、缠绕成型工艺和预应力组装成型。4.1 预应力玻璃钢组装贮罐制造技术[7]

预应力玻璃钢组装贮罐制造,适用于大型贮罐。其特点是罐体构件在工厂内预制,运输到现场后,用螺栓把玻璃钢构件连接制成储罐壳体,然后在罐体外缠绕钢丝绳,使罐体受压应力。当储罐装满液体介质后,环向压应力变成拉应力,而拉应力主要用钢丝绳承担。

玻璃钢贮罐由2块加肋顶盖板、18块周边带法兰的拱板和整块底板组成。各构件之间的连接主要由法兰螺栓,并用作内衬层的材料。

这种贮罐的制造技术分为:玻璃钢构件工厂制造;运输到现场后拼装;缠绕钢丝绳预加应力。

4.1.1 储罐玻璃钢构件制造

罐底、罐壁及罐顶玻璃钢构件采用手糊成型工艺,工艺流程如下:

A、原材料的准备

根据储罐的性能要求选用玻璃纤维和树脂种类及牌号。本设计中选用乙烯基型不饱和聚酯树脂,增强材料选用无碱玻璃纤维表面毡,无碱玻璃纤维布,无碱玻璃纤维短切毡,玻璃纤维需用浸润剂处理。

B、模具的准备

根据储罐的生产数量和外观质量要求,本工艺选用玻璃钢模具。底板和顶盖选用阳模成型;拱板的表面质量要求高,并且要保证法兰连接的尺寸,拱形壁板选用阴模成型。拱板选用阴模的原因,是为了保证法兰尺寸及表面精确。

C、构件的糊制

先在模具上涂脱模剂,将加入引发剂和促进剂的不饱和聚酯树脂涂刷在磨具表面上,内衬层采用玻璃纤维采用表面毡,保证内衬层的树脂含量在90%以上;结构层使用玻璃纤维布,保证结构层厚度和控制含胶量在70%~80%;外表层糊制时树脂中要加入紫外线吸收剂,采用中碱玻璃纤维表面毡,糊制完以后铺一层聚酯薄膜,使制件获得双面光。

4.1.2 储罐现场安装

储罐装配时,将罐体拱形板法兰重合,拧紧螺栓,用聚酯树脂胶泥填缝,并在储罐内的接缝处糊制和内衬层材料相同的玻璃钢层密封。

贮罐壳体装配好后,根据设计要求,在法兰上开槽,在罐体外缠绕钢丝绳。法兰上的槽可作为导槽,使钢丝绳按设计间距缠绕到玻璃钢罐体上。由于贮罐受的环向应力是由底顶逐渐减少,因此,钢丝绳的间距也逐渐由小变大。钢丝绳缠绕张力控制十分重要,

最佳的张力大小是使贮罐装满液体介质后,罐体的环向应力等于零,即应力完全由钢丝绳承担。

4.2 整体式玻璃钢贮罐制造技术

整体式玻璃钢贮罐多为中小型,常采用手糊成型。本设计中贮罐为大型贮罐,不采用这种成型方式,故不做详细介绍。

4.3 缠绕成型储罐的制造技术

缠绕玻璃钢成型是先将储罐分成“钟罩”和封头。将这两部分组装在一起即构成储罐的完整结构,然后再进行结构层缠绕。

4.3.1 “钟罩”的成型

A、模具的清理

缠绕成型的储罐的模具一般为钢模,对模具进行清理是为了保证其表面平滑无异物,使制得的产品内表面光滑,便于脱模。清理完后,胶黏带堵住模具上的脱模孔,B、涂脱模剂

用脱模蜡或聚乙烯醇脱模剂在钟罩模上均匀涂层,要求厚度均匀,防止漏涂。C、加热树脂

使其温度达到35~40℃。

D、按设计要求的原材料和厚度制造内衬层

封头的内衬层用喷射成型或手工成型,铺覆方法根据设计要求,可选用喷射、干法或者湿法缠绕。制作封头的加强层,采用喷射和铺玻璃纤维布。

E、脱模

待钟罩固化完全后脱模。脱模是利用液压空气,通过模具上的脱模孔使模具和钟罩间形成一层空气垫,靠空气压力将钟罩推出。

4.3.2 第二个封头制造

A、清理模具,堵脱模气孔;

B、涂脱模剂;

C、按设计要求缠制内衬层和加强层。在制作过程中,始终进行手动滚压,排除气泡,待树脂固化后脱模。

4.3.3 组装

将第二个封头和钟罩对接成一个整体。对接时先将两部分对接边磨成坡口,用短切毡片和聚酯树脂进行加强,保证组装区平整。

4.3.4 在缠绕机上进行缠绕

由于此卧式储罐具有轴向应力,要进行螺旋缠绕;缠绕工序在缠绕机上进行。缠绕成型用的原材料为乙烯基酯树脂,增强材料为中碱玻璃纤维。缠绕成型需要在全自动缠绕机上进行。

缠绕成型工艺参数控制[8]:

A、缠绕角

B、无捻粗纱的烘干处理

玻璃纤维表面的含有水分,不仅影响树脂基材与玻璃纤维之间的粘结性能,同时将引起应力腐蚀,并且使微裂纹等缺陷进一步扩展,从而使制品强度和耐老化性下降。因此玻璃纤维在使用之前必须进行烘干处理。无捻粗纱在60~80℃烘干24h。

C、玻纤浸胶含量分布

玻纤含胶量的高低及其分布对玻璃钢制品性能影响很大,直接影响制品的重量及厚度;含胶量过高,玻璃钢制品的复合强度降低;含胶量过低,制品的纤维孔隙率增加,使制品的气密性、防老化性能及剪切强度下降,同时也影响纤维强度的发挥;此外含胶量变化大会引起应力分布不均,并在某些区域引起破坏。因此,过程必须严格控制,控制结构层含胶量在25%~30%。

D、缠绕张力

缠绕张力大小、各纤维束间张力的均匀性,以及各缠绕层之间纤维张力的均匀性,对制品的质量影响极大。张力过小,制品的强度低,内衬层所受压缩应力较小,因而内衬在充压时的变形较大,其疲劳性能就越低。张力过大,则纤维磨损大,使纤维和制品强度下降。此外,缠绕张力对制品的密实度和含胶量会产生很大的影响。

为了使制品里的各缠绕层不会由于缠绕张力作用导致产生内松外紧的现象,采用张力递减制度,使内外层纤维的初始应力相同,容器充压后内外层纤维能同时承受荷载。

E、纱片宽度的变化和缠绕位置

纱片间隙会成为富树脂区,结构上的薄弱环节。纱片宽度很难精确控制,这是因为它会随着缠绕张力的变化而变化,选取纱片宽度20mm。

F、缠绕速度

缠绕速度通常是指纱线速度,应控制在一定范围内。因为纱线速度过低,生产率低;纱线速度过大,运行不稳,因产生颠簸振动。缠绕速度控制为0.85m/s。

G、固化制度

玻璃钢的固化主要有常温固化和加热固化两种,加热固化制度包括加热的范围,升温速度,恒温温度及保温时间。本设计采用加热固化,因为加热固化可以提高化学反应的速度,缩短固化时间,缩短生产周期,提高生产率。升温速率一般在0.5℃/min~1℃/min,本设计选用1℃/min,既可以提高生产周期,提高生产率,又不至于影响玻璃钢制品的质量。保温时间由树脂发生聚合反应所需要的时间和传热时间决定;降温冷却阶段速度要始终,防止使制品产生内应力,并且要尽量缩短生产周期。

采用分层固化制度,这样可以消弱环向应力沿筒壁的分布高峰;可以提高纤维的初始张力;减缓树脂含量沿筒壁分布不均的现象,同时利于溶剂的挥发,提高制品内外质量的均匀性。

H、环境温度

环境温度降低,树脂的粘度升高,纤维浸渍不充分。所以环境温度要控制在一定的范围内,保证缠绕过程的浸渍效果,避免某些固化剂的低温析出。环境温度控制在15℃以上。

综上三种方法,选用缠绕成型工艺,考虑到本贮罐体积较大,采用现场制作的缠绕成型工艺。

5 零部件设计

零部件是贮罐必不可少的部分。它主要涉及贮罐的开孔、补强、人孔、进出管设计、支座设计等。

5.1贮罐的开孔与补强[9]

由于工艺和结构上的需要,复合材料贮罐要有各种开孔,供工艺接管或零部件安装时使用。开孔的大小决定于开孔的用途,开孔的形状应该是圆形或长短轴比不超过2的椭圆形。用连续纤维制成的设备,再用机械方法切孔后,无凝会破坏纤维的连续性。纤维被切断,不单会削弱贮罐强度,而且由于结构连接性受破坏,壳体和接管变形不一致,在开孔和接管出将产生较大的附加内力分量。其中影响最大的是附加弯曲内力,局部地区的应力可达壳体壁基本应力的三倍以上。这种局部应力增长现象,称为应力集中[10]。

大量实验表明,如果将连接处的接管或壳体壁厚适当加厚,上述局部区域的应力集中现象在很大程度上会得到缓和,应力集中系数有人可以控制在所允许的范围内。所谓“开孔补强设计”,就是指采取适当加厚接管或壳体壁厚的方法,使之达到提高壳壁强度,并把应力集中系数降低到某一允许数值的目的。

在实际工作中较多的采用局部补强形式。即在壳体开孔处的一定范围内将增加壳体

的壁厚。补强设计方法可采用等面积补强发,即局部的符合材料截面积。也就是用的开孔相等截面的外加复合材料来补偿被消弱的壳壁强度。

5.2贮罐进出口管和人孔设计[10]

5.2.1进出口管

进出口管一般采用带法兰的短接管,其规格与管子相同,接管长度一般不小于180100mm。壳体与进出口管的链接部位,要求兼顾耐用,不渗漏。建议在管口处设置3个或4个角撑板以提高接管强度。管口与壳体的链接课采用带塑料衬里的伸入式支管结构。手糊成型的法兰接管尺寸如表5.1所示。有时进口管插入壳体5080mm,除了祈祷增强作用外,并能避免腐蚀液体进入壳体内时沿着壳壁流淌,冲刷壳壁[9]。法兰接管尺寸选接管内径51mm。

5.2.2人孔

人孔是为了检查设备的内部空间,对设备内部进行清洗、安装及拆卸内部结构而设置的。手孔通常是在短接管加一个盲板而构成。

表5.1 手糊成型法兰接管尺寸(额定压力0.18MPa)

接管内径

d b/mm 最小壁

t n/mm

法兰最

小厚度

t h/mm

轮壳最

小厚度

t h/mm

轮壳最

小长度

h/mm

接管内

d b/mm

最小壁

t n/mm

法兰最

小厚度

t h/mm

轮壳最

小厚度

t h/mm

轮壳最

小长度

h/mm

25 5 13 6 51 254 5 17 10 70

38 5 13 6 51 305 5 19 10 76

51 5 13 6 51 356 6 21 11 83

76 5 13 6 51 406 6 22 11 89

102 5 13 6 51 457 6 24 13 95

152 5 13 6 51 508 6 25 13 102 203 5 14 8 57 610 6 29 14 114

直径大于900mm的容器和贮罐应开设人孔,方便检修时工作人员能进入设备内部,及时发现内表面的腐蚀、磨损或裂纹,并进行修补。常用的人孔形式为圆形。人孔的处的构造处理应该按照大型接管一样处理,要充分注意连接处的加固。人孔的大小及其位置应以工作人员进出壳体方便为原则。人孔直径一般为450600mm,颈高100150mm。人孔尺寸如表6.2所示。深度大于3m的贮罐,应考虑设置两个人孔,一个在顶部,一

个在紧靠罐基础上部以利于进出。人孔盖可以是平的,带有手柄;但也可以是盘形的。人孔一般设置角撑板。人孔尺寸选取人孔直径508mm。

表5.2 典型人孔尺寸

壳体侧面人孔(0.1MPa)顶部人孔(0.1MPa)

人孔直径d b/mm 法兰及

盖子直

径/mm

法兰及

盖子厚

度/mm

螺孔分

布圆直

径/mm

螺栓孔

直径/mm

人孔直

径d b/mm

法兰及

盖子直

径/mm

法兰及

盖子厚

度/mm

螺孔分

布圆直

径/mm

螺栓孔

直径/mm

457 635 25 578 19 457 635 10 578 13

508 699 25 635 22 508 699 10 635 13

559 762 25 686 25 559 762 10 686 13

610 813 29 749 25 610 813 10 749 13

5.3排液管

贮罐的排液管通常设置在罐底和罐壁下部。其典型设计如图5.1所示。

图5.1

5.4排气孔

各种顶端封闭的直接排到大气的常压贮罐,必须开设能自由排气道大气中的排气孔。最小排气孔尺寸应该满足控制所有的联合入口或排出口的排气量,使封闭贮罐不产生正压或负压。

5.5 液面计孔

液面计口用于测量液面高度。

经查阅中华人民共和国行业标准,玻璃钢储罐标准系列HG 21504.1-92,立式储罐

容积350V m =,选用液面计口内径25m m

a d =。

6 安装设计

(1)立式平底贮罐应安装在连续支承的平面基础上,并有足够的强度,以支承充满液体的贮罐。

(2)在罐底排液口处,基础上应有凹槽便于排液,排液接管法兰不得与基础接触。 (3)与设备连接的管道及附件应避免其重量直接作用在设备上。起吊时,设备上的接管、人孔等不得作为着力点使用。

(4)储罐下部如有接头或法兰连接的管子要垂直于桶壁,最好使用软连接,以免装满液体后,桶壁上下不均匀膨胀导致接头连接受损导致泄漏,严重时损坏接头和桶体。 (5)开口断面处应进行封闭处理,所用材料应与内衬层材料相同。 (6)开孔补强[11]

贮罐是用连续纤维制成的整天成型的设备,由于工艺和结构上的需要,贮罐要开设各种孔,供成型接管或者零部件安装时使用。用机械方法切孔后,无疑会破坏纤维的连续性,纤维被切断后,不但会削弱贮罐强度,而且由于结构连续性受到破坏,壳体和接管变形不一致,在开孔和接管处将产生较大的附加内力分量,因此开孔处必须采取适当加厚接管或壳体厚度的方法,使之达到提高壳体强度,降低应力集中系数。

在实际工作中较多采用局部补强形式,即在开孔处的一定范围内增加壳体的壁厚,

补强设计采用等面积补强法,即局部补强的面积必须大于或等于开孔所挖去的壳壁截面积。

在贮罐筒壁和封头开设,按图纸要求的直径,并且在图纸要求的位置开设圆孔,本设计总共开设八个孔,其中包括人孔、手孔、排液孔、排气孔和液面计孔。

(7)装配法兰及配件

贮罐缠绕层全固化后,从缠绕机上卸下,并拆除旋转支撑环,然后按照图纸安装预先做好的进料口、出料口、排气口、人孔和其他配件。

7 制品检验

每个产品必须进行出厂检验,检验项目有各层厚度,总厚度,溢流管尺寸,法兰平面与管轴线垂直度,法兰接管方位偏差,管接头力矩载荷,管接头扭转载荷,总质量,总长度,渗漏,巴氏硬度和外观检验[12]。

7.1 各层厚度

用精度为0.05mm的卡尺对开孔处切取的试样进行测量,测量五个点取最小值。7.2 筒体和封头厚度

用精度为 0.05mm的卡尺对开口处切取的试样进行测量,或测量筒体的内、外径。

7.3按设计充水,检查溢流功能。

7.4贮罐装满清水后,用静态电阻应变仪测量环向应变,取最大值

7.5内壁锥度用精度为l mm的钢卷尺测量筒体两端内径差与其对应的长度,按锥度公式求得。

7.6弯曲强度和弯曲弹性模量按GB 1449测试,试样从贮罐开口处切取,其长度方向的曲率可与贮罐的曲率一致。

7.7 筒身轴向拉伸强度可用同工艺同层次的小直径管试样按 GB 5349测试。

7.8法兰平面与接管轴线的垂直度用角尺检验。

7.9法兰接管的方位偏差用精度为l mm的钢卷尺测量;角度偏差用角度尺测量。

7.10管接头力矩载荷通过连接在管接头法兰上的一根lin长的管,将力矩载荷加到贮罐管接头上来测量,加载增量为规定载荷的20%,直至加到规定的力矩载荷。

7.11管接头扭转载荷通过连接在管接头法兰上的一根 lin长的管将扭转载荷加到贮罐管接头上来测量,加载增量为规定载荷的20%,直至加到规定扭矩载荷。

7.12总质量用地中衡或起吊时串接测力传感器测量。

7.13贮罐总长度用精度为 l mm钢卷尺或合适的仪器测量。

7.14渗漏检验是将贮罐注满清水,卧式贮罐打压 0.1MPa,保压 30min,观察有无渗漏。

7.15树脂含量按GB 2577测定,树脂的固化度不低于85%[13]。

测定固化度方法也很多,如:溶剂萃取法,差示扫描量热法及红外光谱法。但目前应用较广的仍是溶剂萃取法。萃取就是利用不同物质在选定的溶剂中溶解度的不同分离混合物中组分的方法。萃取所选用的溶剂,要求对液体或固体混合物中被提取的组分具有选择性的溶解能力。并要求有较大热稳定性和化学稳定性,较小的毒性和腐蚀性。

将玻璃钢粉末试样(或其它增强材料的粉末试样)用丙酮溶剂萃取。使没固化的部分通过丙酮萃取而分离出来,根据萃取前后试样的质量变化计算树脂的固化度。丙酮溶剂萃取法适用于以环氧、不饱和聚酯、酚醛等为树脂基体;以玻璃纤维、碳纤维,芳纶为增强材料的纤维增强塑料树脂固化度的测定[14]。

7.16 外观检测

内表面外观质量在 100W白炽灯照明下目测,外表面在充足的日照下用肉眼目测,储罐内表面应该平整光滑,色泽均匀,无杂质混入,无纤维外露,无目测可见的裂纹、划痕、瑕疵点及白化分层等缺陷。玻璃钢层间粘结,不允许有分层脱层、异物夹杂、树脂脱节等现象。其余外观质量及修补办法按照CD130A19-85规定[15]。

8 小结

玻璃钢贮罐的应用由它自身的优势,应用越来越广,但在设计贮罐时也要注意一些问题,在本产品设计时,它包括有造型设计、性能设计、结构设计、工艺设计、零部件设计、安装设计及制品检验。在性能设计时,要充分考虑它所贮存的介质,选择合适的基体材料和增强材料,以满足使用要求;在结构设计时,要充分考虑到它的受力情况,按标准选择合适的直径、高度等;在工艺设计时,要考虑到它的经济性、方便性和可行性等,以使产品可以制造出来;在安装设计时,要考虑到它的安装场地及风雪等因素,根据不同的情况,对贮罐进行加固及其它处理;制品检验时要依照相关的标准,检验合格才可以使用,以免造成不必要的损失。

总之,我们在进行设计时,一定要考虑的谨慎细致,以使我们的产品可以达到使用要求。

参考文献

[1].陈博.我国玻璃管道和贮罐的生产与应用[J].中国建材.1995.11:21~22.

[2].化工部第六设计院.玻璃钢贮罐标准系列HG 21504.1-92[M].北京:化工部工程建设标准编辑中心.1992.10~14.

[3].刘雄亚,晏石林.复合材料制品设计及应用[M].北京:化学工业出版社.2002.84.

[4].高素云,王辉.耐氢氟酸/硝酸贮罐的研制[J].玻璃钢/复合材料.1997,3.34~35

[5].周祖福.复合材料学[M].武汉:武汉理工大学出版社.1995.119.

[6].王耀光.玻璃钢容器和贮罐设计[J].化工腐蚀与防护.1990,17(3):28~39.

[7].吴书信.改进大型贮罐拐角结构与工艺[J].玻璃钢/复合材料.2004,5:36~37.

[8].徐至钧.大型贮罐底板的可靠度分析[J].化工设备设计.1990,1:20~23.

[9].端木强.玻璃钢立式贮罐的设计计算[J].化学工程师.2002, 92(5):50~51.

[10] 李顺林,王业兴.复合材料结构设计基础[J].武汉:武汉理工大学出版社.2008.231.

[11] 赵贵哲,张彦飞.复合材料工艺与设备[M].太原:中北大学出版社.2009.120.

[12] 王庆,王庭慰,魏无际.不饱和聚酯树脂固化特性的研究[J].化学反应工程与工艺.2005,21(6):492~496.

[13] 康潆丹,朱玉红,武士威.UP树脂室温固化体系的影响因素及进展[J].沈阳师范学院学

立式储罐课程设计说明书

立式贮罐设计 前言 玻璃钢罐分为立式、卧式机械缠绕玻璃钢储罐、运输罐、反应罐、各种化 工设备,玻璃钢卧式罐、立式贮罐、运输罐、容器及大型系列容器、根据所用(贮存或运输)介质选用环氧呋喃树脂、改性或聚酯树脂、酚醛树脂为粘结剂, 由高树脂含量的耐腐蚀内衬层、防渗层、纤维缠绕加强层及外表保护层组成。 玻璃钢具有耐压、耐腐蚀、抗老化、使用寿命长、重量轻、强度高、防渗、 隔热、绝缘、无毒和表面光滑等特点。机械缠绕玻璃钢容器可以通过改变树脂 系统或采用不同的增强材料来调整产品的物理化学性能以适应不同介质和工 作条件需要,通过结构层厚度、缠绕角和壁厚设计制不同压力,是纤维缠绕复 合材料的显著特点。 由于有以上的特点,玻璃钢贮罐可广泛应用于石油、化工、纺织、印染、 电力、运输、食品酿造、给排水、海水淡化、水利灌溉及国防工程等行业。储 存各种腐蚀性介质可以耐多种酸、碱、盐和有机溶剂,主要应用于石油、化工、 制药、印染、酿造、给排水、运输等行业,适应于盐酸、硫酸、硝酸、醋酸、 双氧水、污水、次氯酸钠等多种产品的贮存、运输,也可作地下油槽、保温储槽、运输槽车等[1]。 本设计为容积180,贮存质量分数为的硫酸,使用温度为90℃的立式贮罐,设计中分别从造型、性能、结构、工艺、零部件、防渗漏、安装、检验等八个方面做了说明、计算和设计,整体介绍了立式贮罐的设计流程、方法及主要事项,最终设计出了满足设计要求的立式贮罐。

1.造型设计 1.1设计要求 立式玻璃设计,容积为140,贮存质量分数为的醋酸,使用温度为常温,拱形顶盖设计。 1.2贮罐构造尺寸确定 贮罐容积V140,取公称直径为D3800, 则贮罐高度为(式1.1)初定贮罐结构尺寸为D H 1.3拱形顶盖尺寸设计 与锥形顶盖相比,其结构简单、刚性好、承载能力强,是立式贮罐广为使用的一种形式。为取得罐顶和罐壁等强度,罐顶的曲率半径与贮罐直径差值不超过20%。即 (式1.2)式中——拱顶球面曲率半径,; ——贮罐内径,,等于。 取罐顶高为h,r为转角曲率半径,r小则h小,一般取此时[1]。 所以 1.4贮罐罐底设计 罐体和罐底的拐角处理,对贮罐设计极为重要。尤其是立式贮罐底部附近的受力较为复杂,应引起足够的重视。一般在拐角处都应设计成一定的圆弧过渡区,圆弧半径不应小于38。如果罐壳和罐底分开制造,则应注意在罐壳和罐底的结合处内外进行有效的补强。拐角区域的最小厚度等于壳壁和底部的组合厚度。拐角区

玻璃钢储罐技术参数

河南大学2#中试线玻璃钢储罐 序号名称容积(M3) 介质浓度介质比重温度℃材质压力数量 1 储罐20 热水 1 80 FRP 常压1台 2 储罐45 硅酸钠≤40﹪ 1.2~1.4 60 FRP 常压2台 3 储罐30 纯水 1 常温FRP 常压1台 4 储罐4 5 纯水 1 常温FRP 常压2台 5 储罐10 自来水 1 常温FRP 常压1台 6 储罐45 硫酸铵≤5﹪ 1.1 常温FRP 常压3台 要求: 1.45立方储罐直径设为3.5米,高度5.6米;30立方直径3米高度5米;20 立方储罐直径2.5米高度4.7米;10立方储罐直径2米高度3.7米。采用平 底立式椭圆封头。(高度为总高度) 2.储罐/计量罐需加液位计,液位计形式为浮子式现场显示液位计。其中纯水 储罐加差压式液位变送器(需远传显示,并与纯水设备连锁) 3.储罐需开直径125进料口/出料孔,直径50排污孔及放空孔,人孔。 4.45立方储罐需外加爬梯。 5.内衬层树脂采用酚醛型乙烯基树脂或环氧型乙烯基树脂。 6.结构层采用帝斯曼或天马牌环绕型树脂。 7. 增强材料选用天马牌或重庆国际集团复合材料有限公司。

玻璃钢设备技术参数 注:1.以下厚度均指平均厚度。 规格介质数量 (台)内衬厚 度 总厚度 重量(kg)体积(m3)上封头厚 度 筒体厚度底封头厚 度 Φ2500*H4700 热水 1 3 12 14 14 1036.4 20 Φ3500*H5600 硅酸钠 2 4 13 17 16 2380.9 45 Φ3500*H5600 纯水 2 4 13 17 16 2380.9 45 Φ2000*H3700 自来水 1 3 12 14 14 750.7 10 Φ3500*H5600 硫酸铵 3 4 13 17 16 2380.9 45 Φ3000*H5000 原水 1 3 12 15 15 1644.8 30

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

15M3 甲醇储罐设计

目录 一序言 (一)设计任务 (二)设计思想 (三)设计特点 二储罐总装配示意图 三材料及结构的选择 (一)材料的选择 (二)结构的选择 四设计计算内容 (一)设计温度和设计压力的确定 (二)名义厚度的初步确定 (三)容器的压力实验 (四)容器应力的校核计算 (五)封头的设计 (六)人孔的设置 (七)支座的设计确定 (八)各物料进出管位置的确定及其标准的选择(九)液位计的设计 (十)焊接接头设计 五设计小结 六参考资料

太原科技大学材料科学与工程学院 过程设备课程设计指导书 课程设计题目: (15)M3甲醇储罐设计 课程设计要求及原始数据(资料): 一、课程设计要求: 1.使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。 2.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 3.设计计算采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。 4.工程图纸要求计算机绘图。 5.毕业设计全部工作由学生本人独立完成。 二、原始数据: 设计条件表

管口表 课程设计主要内容: 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书 应交出的设计文件(论文): 1.设计说明书一份 2.总装配图一张 (折合A1图纸一张)

一序言 (一)设计任务: 针对化工厂中常见的甲醇储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。(三)设计特点: 容器的设计一般由筒体,封头,法兰,支座,接口管及人孔等组成。常,低压化工设备通用零件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的筒体,封头的设计计算,低压通用零件的选用。 各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

玻璃钢储罐尺寸

简介: 天马牌玻璃钢贮罐采用玻璃纤维高张力、多层次、多角度、包封头缠绕,满足有机、无机溶剂及具有化学、电化学腐蚀性介质的储存、中转和生产需要,满足非电解质流体的中转、输送、消除静电的需要满足抗各式支承剪切及掩埋与荷载的力学要求。 玻璃钢缠绕贮罐特点: 1、设计灵活性大、罐壁结构性能优异。

纤维缠绕玻璃钢可以通过改变树脂体系或增强材料来调整贮罐的物理化学性能,以适应不同介质和工作条件的需要。通过结构层厚度、缠绕角和壁厚结构的设计来调整罐体的承载能力,适应不同压力等级、容积大小,以及某些特殊性能的玻璃钢贮罐需要,是各向同性的金属材料无法与其相比的。 2、耐腐蚀、防渗漏、耐候性好。 玻璃钢具有特殊的耐腐蚀性能,在贮存腐蚀性介质时,玻璃钢显示出其他材料所无法比拟的优越性,可以耐多种酸、碱、盐和有机溶剂。 3、具有优良的机械物理性能。 玻璃钢贮罐制品的材料密度在1.8-2.1g/cm3之间,约为钢材的1/4-1/5,采用直径为7-17μm的玻璃纤维缠绕成型,降低了纤维的微裂纹存在率,实现等强度,该成型方法能使纤维含量高大80%,比强度高于钢材、铸铁和塑料等,热膨胀系数与钢大体相当,热传导系数只有钢的0.5%。 4、使用寿命长,维护费用低。 制造工艺:采用先进的微机控制缠绕主机,在芯模上按要求制做内衬层(含防腐、过渡),凝胶后按规定设计好的线型、厚度缠绕结构层,最后制做结构层的外保护层。根据贮存介质不同,采用薄壳无矩理论分别设计贮罐壁厚。 原辅材料:本厂自行开发的各种型号缠绕树脂,玻璃纤维毡(表面毡,短切毡)、粗纱等。 检验标准:执行国家行业标准JC/T587-1995《纤维缠绕增强塑料贮罐》,进行规定的制造工艺及产品性能检验。

机电工程学院空气储罐设计

齐齐哈尔大学设备设计课程设计题目名称:空气储罐设计 学院:机电工程学院 专业班级:过控102 学生姓名:王国涛 指导教师:刘岩 完成日期: 2013-12-20

目录 摘要3 绪论..................................................................4 第一章压缩空气的特性5 第二章设计参数的选择6 第三章容器的结构设计7 3.1圆筒厚度的设计7 3.2封头厚度的计算7 3.3筒体和封头的结构设计8 3.4人孔的选择9 3.5接管,法兰,垫片和螺栓(柱)9 3.6鞍座选型和结构设计12 第四章开孔补强设计15 4.1补强设计方法判别15 4.2有效补强范围15 4.3有效补强面积16 4.4补强面积17 第五章强度计算18 5.1水压实验应力校核18 5.2圆筒轴向弯矩计算18 5.3圆筒轴向应力计算及校核20 5.4切向剪应力的计算及校核22 5.5圆筒周向应力的计算和校核23 5.6鞍座应力计算及校核25 第六章归纳总结28 参考文献29

摘要 本说明书为《3.0m3空气储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关规范,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计技术方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

压缩空气储罐设计

目录 绪论 (3) 第一章压缩空气的特性 (4) 第二章设计参数的选择 (5) 第三章容器的结构设计 (6) 3.1圆筒厚度的设计 (6) 3.2封头厚度的计算 (6) 3.3筒体和封头的结构设计 (6) 3.4人孔的选择 (7) 3.5接管,法兰,垫片和螺栓(柱) (9) 3.6鞍座选型和结构设计 (11) 第四章开孔补强设计 (14) 4.1补强设计方法判别 (13) 4.2有效补强范围 (13) 4.3有效补强面积 (14) 4.4补强面积 (14) 第五章强度计算 (16) 5.1水压试验应力校核 (15) 5.2圆筒轴向弯矩计算 (15) 5.3圆筒轴向应力计算及校核 (16) 5.4切向剪应力的计算及校核 (17) 5.5圆筒周向应力的计算和校核 (20) 5.6鞍座应力计算及校核 (22) 5.7地震引起的地脚螺栓应力 (24) 第六章设计汇总 (25) 参考文献.............................................................. 错误!未定义书签。

绪论 课程设计是一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 迅速准确的进行工程计算的能力; 4. 用简洁的文字,清晰的图表来表达自己设计思想的能力 本次设计为压缩空气储罐,在三周时间内内,通过相关数据及对国家标准的查找计算出合适的尺寸,设计出主体设备及相关配件,画出装备图零件图以及课程设计说明书。 压缩空气储罐的设计一般由筒体、封头、法兰、支座、接口管及人孔等组成。常、低压化工设备通用零部件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求, 合理地进行设计。

玻璃钢储罐生产工艺

玻璃钢储罐生产工艺 玻璃钢储罐成型工艺为喷射缠绕成型,在我国储罐生产过程中为先进的玻璃钢成型工艺,“喷衬工艺”可以理解为用喷枪喷射技术使玻璃钢缠绕容器的内衬成型的工艺。“衬”就是玻璃钢缠绕容器的内衬,从结构上又分为内衬层和过渡层,主要起到防腐防渗的作用。玻璃钢容器结构由防腐防渗内衬层、增强结构层、外表抗老化层组成。确保既有良好的耐介质腐蚀性,又具有足够的物理机械性能满足盛装要求。采用玻璃纤维高张力、多层次、多角度、包封头缠绕,满足有机、无机溶剂及具有化学、电化学腐蚀性介质的储存、中转和生产需要,满足非电解质流体的中转、输送、消除静电的需要,满足抗各式支承剪切及掩埋与荷载的力学要求。设计灵活性大、容器壁结构性能优异。纤维缠绕玻璃钢可以通过改变树脂体系或增强材料来调整贮罐、塔器等的物理化学性能,以适应不同介质和工作条件的需要。通过结构层厚度、缠绕角和壁厚结构的设计来调整罐体的承载能力,适应不同压力等级、容积大小,以及某些特殊性能的玻璃钢贮罐、塔器的需要,是各向同性的金属材料无法与其相比的。耐腐蚀、防渗漏、耐候性好。玻璃钢具有特殊的耐腐蚀性能,在贮存腐蚀性介质时,玻璃钢显示出其他材料所无法比拟的优越性,可以耐多种酸、碱、盐和有机溶剂,由此可见玻璃钢的应用十分普遍,但是玻璃钢产品的质量却是取决于原材料、施工工艺等几方面因素。玻璃钢喷衬工艺作为一种国内新兴的机械化生产工艺是存在很大的优点的。

喷射成型的优点: 1、生产效率比手糊的高4-8倍。 2、产品整体性好,无接缝,层间剪切强度高,树脂含量高,抗 腐蚀、耐渗漏性好。 3、可减少飞边,裁布屑及剩余胶液的消耗。 4、产品尺寸、形状不受限制。 5、喷射机能使催化剂和树脂于喷射前在液压下在喷管内混合均 匀,故喷射时无压缩空气漏出,喷射时空气污染少。 生产准备: 一、材料准备:原材料主要是树脂和无捻玻纤纱。 二、模具准备:准备工作包括清理、组装及涂脱模剂等。 三、喷射成型设备:喷射成型机分压力罐式、泵供式和综合式三种: 1、泵式供胶喷射成型机,是将树脂引发剂和促进剂分别由泵输送到 静态混合器中,充分混合后再由喷枪喷出,称为枪内混合型。其组成部分为气动控制系统、树脂泵、助剂泵、混合器、喷枪、纤维切割喷射器等。树脂泵和助剂泵由摇臂刚性连接,调节助剂泵在摇臂上的位置,可保证配料比例。在空压机作用下,树脂和助剂在混合器内均匀混合,经喷枪形成雾滴,与切断的纤维连续地喷射到模具表面。这种喷射机只有一个胶液喷枪,结构简单,重量轻,引发剂浪费少,但因系内混合,使完后要立即清洗,以防止喷射堵塞。

课程设计液氨储罐设计

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1) 二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2)

3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 设计参数的确定 (3) 筒体壁厚的设计 (3) 刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 液压试验压力的确定 (3) 液压试验的强度校核 . (3) 压力表的量程、水温的要求 (3) 液压试验的操作过程 (3) 4、罐体的气压试验 (4) 气压试验压力的确定 (4) 气压试验的强度校核 (4) 、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计 算 ..................................4 、开孔

补强的有关计算参数 .......................5 、补强圈的 设计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7) 2、液氨出料管 (7) 3、排污管 (7) 4、安全阀接口管 (7) 5、压力表接口管 (8) 七、设计结果一览表 (9) 八、液氨储罐装配图(见附图)............................... 一、设计任务书 试设计一液氨储罐,其公称容积、储罐内径、罐体(不包括封头)长度见下表。使用地点:家乡--湖北省十堰市竹溪县。 技术特性表

10000立方米的汽油储罐设计

6*10000m3成品油库安全设计 一汽油的理化性质 1.1 物理化学性质 汽油的重要性能有为蒸发性、抗爆性、安定性和腐蚀性。 1.2 汽油的危险特性 1.2.1 油料的火灾危险特性 油料具有较强的挥发性和扩散性,具有易燃易爆特性,具有易积累静电和热膨胀性。由于这些特性的存在,使它具有较大的火灾危险性:挥发性;扩散性;易燃性;易爆性;易积聚静电荷性;热膨胀性;沸溢性。 1.3 安全防护措施 汽油的安全防护措施可以分为以下几类。 1 工程控制。生产过程密闭,全面通风。 2 呼吸系统防护。高浓度环境中,佩带供气式呼吸器。应急或有计划进入浓度未知区域,或处于立即危及生命或健康的状况 3 眼睛、身体和手的防护。一般不需特殊防护,但高浓度接触时安全防护眼镜。且必须穿工作服。对于手,一般不需特殊防护,高浓度接触戴防护手套。 4 其他防护。工作现场严禁吸烟。避免长期反复接触。进入罐或其它高浓度区作业,须有人监护。 二油罐的整体设计 2.1 油罐的选型 2.2 10000m3油罐设计参数 储罐内径:φ 28000mm 罐壁高度:18000mm 公称容积:10000m3计算容量:11084m3 设计压力:490Pa~1960Pa 设计风压:850Pa 设计温度:-10~50 ℃腐蚀裕度: 1.5mm 地震烈度:7 焊缝系数:0.9 2.3 材料确定 根据汽油物性选择罐体材料,汽油几乎没有腐蚀性,且有属于低压灌,可以考虑16MnR这两种钢材。 2.4 结构设计

内浮顶油罐的结构形式其实就是内浮盘和密封装置的结构形式。本设计采用边缘板的钢制单盘式内浮顶和弹性材料密封结构。 2.4.1内浮盘 内浮盘由一层薄的单盘板,在其外侧围以一圈边缘板焊制而成。盘上带有若干立柱,使浮盘下沉时最终支撑在罐底上,以免浮顶与罐内附件相碰。为了检修需要,内浮盘上还设有人孔。 2.4.2密封装置 内浮顶油罐要求密封间隙为150mm,密封为196N/m时,达到良好的密封性能。本设计采用弹性材料密封结构,由密封袋、软泡沫塑料块、固定钩板等组成。考虑到储存介质为汽油,密封袋采用丁腈耐油橡胶带制作,厚度取1.5mm。 2.4.3 内浮顶与罐壁之间的密封 圆弧转角是为不致戳破密封胶袋。每米圆周长度设置固定钩板。内浮盘与罐壁之间间隙取 150mm,采用断面宽度 230~250mm 的软泡沫塑料密封块,密封力约为200N/m。为消除蒸汽空间,弹性块应侵入液面下 20-50mm,外层密封袋能在使用环境中经久耐用,且不污染储液。为防止液体的毛细现象,要在橡胶密封袋上压有锯齿。 三罐体的设计 3.1 罐壁设计 随着储罐的大型化,储罐的直径和钢材总重量也随之增大。大型储罐的设计应尽可能地减少钢材的消耗量. 达到比较好的经济合理性。罐壁钢材的重量在大型储罐罐体的总重量中约占35%~50% ,因此确定罐壁厚度的罐壁强度计算. 对于减少罐壁的重量从而降低整个储罐的钢材消耗量、对于大型储罐的经济合理性具有决定性的作用。考虑贮液静压力,罐壁应由上至下逐渐增厚,但实际制造中不可能采用过多的板厚规格。罐壁的最大应力为环向应力,一次薄膜应力与局部应力相叠加,最大应力值分面在距罐底1000mm 左右的位置,并随贮罐直径和罐底、罐壁厚度增加而升高。 1 与罐底板相焊的最低层罐壁应适当加厚,且选用较宽的板材,以上各层则分档减薄,最小厚度4mm。 2 在最低层罐壁上开清扫口及人孔时,对罐壁强度有一定削弱,应对开孔大小、结构、热处理、探伤等提出明确要求。 储罐罐壁除应满足强度要求外,还应具有足够的抗风能力,以避免储罐在风载作用下失稳。随着储罐大型化和高强度钢的采用,使储罐罐壁减薄,储罐的抗风稳定性设计越趋重要。对于大型储罐来说,为防止储罐抗风圈以下的罐壁局部被风吹,通常需要在罐壁适当的位置上设置一道或数道加强圈。加强圈的功能是在罐壁上形成节线圈,以提高储罐的抗外压能力。当两个加强圈之间(或加强圈与抗风圈、包边角钢、罐底等加强截面之间)的罐壁许用临界压力大于设计外压时,就可以认为罐壁具备了足够的抗风能力。对于加强圈的设计计算,各国标准中部有详细的计算方法,我国标准SH3046《石油化工立式圆筒形钢制焊接储罐设计规范》中也对加强圈的计算做了详细的描述。

储罐设计

《化工容器设计》课程设计说明书 题目: 学号: 专业: 姓名: I 目录 1 设计 (1) 1.1工艺参数的设定 (1) 1.1.1设计压力 (1) 1.1.2筒体的选材及结构 (1) 1.1.3封头的结构及选材 (2) 1.2 设计计算 (2) 1.2.1 筒体壁厚计算 (2) 1.2.2 封头壁厚计算 (3)

1.3压力实验 (4) 1.3.1水压试验 (4) 1.3.2水压试验的应力校核: (4) 1.4附件选择 (4) 1.4.1 人孔选择及人孔补强 (4) 2.4.3 进出料接管的选择 (6) 1.4.4 液面计的设计 (8) 1.4.5 安全阀的选择 (8) 1.4.6 排污管的选择 (8) 1.4.7 鞍座的选择 (8) 1.4.8鞍座选取标准 (9) 1.4.9鞍座强度校核 (10) 1.4.10容器部分的焊接 (11) 1.5 筒体和封头的校核计算 (11) 1.5.1 筒体轴向应力校核 (11) 1.5.2 筒体和封头切向应力校核 (13) 2 液氨储罐的泄漏及处理方法............................................................. 错误!未定义书签。 2.1 液氨泄漏的危害 .............................................................................. 错误!未定义书签。 2.2 泄漏的危害 ...................................................................................... 错误!未定义书签。 2.2 .1 生产运行过程中危险性分析······································错误!未定义书签。 2.2.2 设备、设施危险性分析 ············································错误!未定义书签。 2.3液氨储罐泄漏事故的应急处置措施 .............................................. 错误!未定义书签。

课程设计液氨储罐设计精编WORD版

课程设计液氨储罐设计精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级 12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1)

二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2) 3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 1.1设计参数的确定 (3) 1.2筒体壁厚的设计 (3) 1.3刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 3.1液压试验压力的确定 (3) 3.2液压试验的强度校核 . (3) 3.3压力表的量程、水温的要求 (3) 3.4液压试验的操作过程 (3) 4、罐体的气压试验 (4)

4.1气压试验压力的确定 (4) 4.2气压试验的强度校核 (4) 4.4、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计算 ..................................4 2.1、开孔补强的有关计算参数 .......................5 2.2、补强圈的设 计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7)

储罐 课程设计

茂名学院课程设计 目录 一、绪论 (1) 1.1设计任务、设计思想、设计特点 (1) 1.2主要设计参数的确定记说明 (1) 二、材料及结构的选择与论证 (2) 2.1 材料选择与论证 (2) 2.2 结构选择与论证 (3) 2.2.1 封头形式的确定 (3) 2.2.2 人孔的选择 (3) 2.2.3 法兰的选择 (3) 2.2.4 液面计的选择 (4) 2.2.5 鞍式支座的选择与确定 (4) 三、设计计算 (5) 3.1筒体厚度的计算 (5) 3.2封头壁厚的计算 (5) 3.3水压试验压力及其强度的计算 (6) 3.4人孔的选择及核算开孔补强 (6) 3.5鞍座的选择及核算承载能力 (8) 3.6液位计的选择 (9) 3.7选配工艺接管 (9) 四.设备总装备图(附录) (10) 五.小结 (10) 六.设计参考书目 (10)

液氨储罐机械设计 一. 绪论 1. 1 设计任务、设计思想、设计特点 (1)设计任务 按要求设计一压力容器,液氨储罐的公称直径为1400mm,罐体的公称容积为20m3,制造地点:广东省广州市。 (2)设计思想 液氨储罐通常由卧式圆柱形圆筒和两端椭圆封头组成,按照化学生产工艺的要求设置进料口,出料口,放空口,排污口,压力表,安全阀和液面计等,为了检修方便开设人孔,用鞍式支座支撑于混凝土基座上。 综合运用化工过程设备机械基础及所学的知识,联系实际,进而巩固加深和发展所学的知识,提高分析实际问题和解决问题的能力。 (3)设计特点 液氨对钢材的腐蚀作用很小,但是,至于室外的液氨储罐,其工作温度为环境温度,其工作压力为该环境温度下的饱和蒸汽压,随着气温的变化,液氨储罐的操作温度和操作压力也会变化,所以其材料的钢材必须应能承受这种变化,在我国的北方严寒地区,冬季气温很低,普通钢材就可能出现低温脆性,所以选用低温设备用钢。 ①壁厚分类———薄壁容器 工程上的容器外径和内径的比值K=D0/D i小于等于1.2的压力容器称为薄壁容器。 ②受压状况的分类——内压容器 容器器壁承受的拉应力,通过强度条件计算壁厚。 ③安装方式分类——卧式容器 在自重和内部充满液体等载荷作用下在壳体一些特殊部位产生各种局部应力,加以考虑。 ④容器工作温度的确定——常温容器 设计温度在-200C~2000C的压力容器,根据本次设计的容器的工作温度为-400C~400C,确定为常温容器。 ⑤设计压力的分类——中压容器 压力1.6MPa到10MPa的容器为中压容器,本次设计的容器工作的压力为1.55MPa,设计压力稍大于工作压力,所以为中压容器。 ⑥容器在生产中的用途和分类——贮存容器 ⑦按《压力容器安全技术监察视程》分类——第二类容器 1. 2主要设计参数的确定和说明 (1)工作温度的确定 贮罐常至于室外,在夏天经过太阳的曝晒,温度可达400C,所以工作温度应低于400C (2)工作压力的确定

液氨储罐课程设计分析

课程设计任务书 1. 设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规范进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据:

3. 工艺条件图 4. 计算及说明部分内容(设计内容): 第1章绪论: (1)液氨储罐的设计背景 (2)液氨贮罐的分类及选型; (3)主要设计参数的确定及说明。 第2章材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍座的选择确定。 第3章工艺尺寸的确定 第4章设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; (6)选择液位计; (7)选配工艺接管。 设计小结 参考文献 5.绘图部分内容: 总装配图一张(A1图纸)

6.设计期限:1周( 2013 年 06月 24 日~ 2013 年 07 月 05 日) 7、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 8.参考资料: (一)国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998; (二)国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999 (三)《金属化工设备·零部件》第四卷 (四)中华人民共和国化学工业部,中华人民共和国待业标准《钢制管法兰、垫片、紧固件》,1997 (五)《化工设备机械基础课程设计指导书》(图书馆借阅书号:TQ 05/51) (六)刁玉纬王立业,《化工设备机械基础》,大连理工大学出版社,2003年第五版; (七)李多民俞惠敏,《化工过程设备机械基础》,中国石化出版社,2007; (八)董大勤,《化工设备机械基础》,化学工业出版社,1994年第二版; (九)汤善甫朱思明,《化工设备机械基础》,华东理工大学出版社,2004年第二版; 发给学生(签名):指导教师: 年月日 (注:此任务书应附于所完成的课程设计说明书封面后)

最新玻璃钢储罐部分施工组织设计(可编辑)说课讲解

玻璃钢储罐部分施工组织设计 联合站增容工程 施工组织设计 (玻璃钢储罐部分) 编制人: 审核人: 审批人: 胜利油田新大安装工程有限公司 2010年3 月22日 目录 一、工程概况 二、编制依据 三、施工方案 四、施工准备 五、施工技术措施 六、施工进度计划 七、工程质量保证措施 八、HSE管理措施 工程概况 车 1联合站增容工程,由于该站产能的需要需增加原油沉降罐,为了解决对金属罐和金属管道的腐蚀问题,工程选用了具有优越耐腐蚀性能的玻璃钢罐和玻璃钢管道。

1.1建设地址:xx联合站 1.2建设性质:改造扩建 1.3建设用地:原有站址 1.4工程内容 程量一览表 序号名称规格及型号单位数量备注 1 1000m3玻璃钢罐DN11500×10725 座 1 二、编制依据 2.1施工蓝图 2.2标准规范 《玻璃纤维增强热固性树脂现场缠绕立式储罐》 Q/SH1020 1798―2007 《纤维缠绕增强塑料贮罐》 JC/T 587―1995 《纤维缠绕玻璃钢耐腐蚀管道施工及验收规范》 Q/SL 1287―1997《现场设备、工业管道焊接工程施工及验收规范》 GB50236―98 《石油天然气站内工艺管道工程施工及验收规范》 SY0402--2000 《油气田地面管线和设备涂色标准》 SY/T0043―2006 《油田集输管道施工及验收规范》SY0422―97 《建筑工程施工质量验收统一标准》 GB50300―2001 三、施工方案 3.1总体施工方案 施工时遵循以下总体方案:先地下、后地上;先土建,后安装;先基础,后

设备安装;先设备安装,后工艺管道安装;特殊情况应视具体情况而定。 3.2玻璃钢罐安装工程 玻璃钢罐采用工艺先进的微控现场缠绕设备,在现场进行缠绕;罐顶预制后在现场进行组装,然后进行构件、爬梯、配管安装;最后进行充水试验。 四、施工准备 4.1人员准备 组织成立工程项目部。 成员名单 职务姓名项目经理技术负责人施工负责人电工起重工质检员安全员主要职责 项目经理:作为该工程的总负责人,全本项目管理。认真组织全体施工人员合理计划工程保证的各项目标全部实现组织项目内部评审评估的工作,领导并组织项目管理总结。参加图纸会审,负责分项工程的技术、质量和安全交底组织有关人员学习和熟悉施工图并按图施工,解决施工中技术疑难问题材料管理工作,及时编制材料计划及加工计划。具体落实材料降本目标,并进行动态控制做好材料进场、调拔、转移、竣工验收前的物资利用和余料处理工作。4.2技术准备对施工现场进行自然地貌等情况进行全面了解,组织有关人员熟悉施工图纸和有关标准规范,技术人员作好施工前的技术交底。 对参加本工程的工人进行施工技术、施工标准及安全制度的培训并严格考核,持证上岗。 4.3材料准备 工程所用材料、设备,由项目部材料员负责落实货源和委托预制,保证在开工前将80%材料落实到位。质检人员做好设备、材料的质检、验收工作。 施工用原材料须进行严格的质量检验。材料进场须有生产厂家出具的产品合

液氯储罐课程设计---液氯储罐的设计

课程设计说明书 设计题目:压力容器课程设计 (40m3)液氯储罐的设计学院、系:机电工程系 专业班级:过控0901 学号: 学生姓名: 指导教师: 成绩: 2011年10月15日

目录 第一章.《过程设备课程设计》指导书 (2) 一.课程设计的性质、目的与任务 (2) 二.程设计的主要内容与要求 (2) 三、课程设计教学的基本要求 (2) 四、课程设计进度与时间安排 (3) 五、课程设计考核 (4) 第二章、课程设计任务书 (5) 第三章、设计计算说明书正文 (6) 3.1. 储存物料性质 (6) 3.1.1物料的物理及化学特性 (6) 3.1.2 物料储存方式 (6) 3.2. 压力容器类别的确定 (6) 3.3.液氯储罐构形的设计计算 (6) 3.3.1储罐筒体公称直径和筒体长度的设计 (6) 3.3.2封头结构型式尺寸的确定 (7) 3.3.3 物料进出口管及人孔等各种管口的布置 (7) 3.4.壳体厚度设计及其校核 (8) 3.4.1 设计温度T和设计压力P的确定 (8) 3.4.2 壳体材料的选择 (8) 3.4.3壳体A/B类焊接接头的设计 (8) 3.4.4壳体厚度设计及其校核 (8) 3.4.5封头厚度设计及其校核 (9) 3.4.6 压力试验种类和试验压力的确定 (9) 3.4.7 压力试验校核 (10) 3.4.8 卧式容器的应力校核 (10) 3.4.8.1液氯储罐的质量计算 (10) 3.4.8.2正常操作和液压试验时跨中截面处的弯矩 (12) 3.4.8.3液氯储罐的应力校核 (12) 3.5零部件设计 (13) 3.5.1 支座的设计 (13) 3.5.2 人孔的设计及补强圈的计算 (14) 3.5.2.1人孔设计 (14) 3.5.2.2补强圈计算 (14) 3.5.3接口管的设计 (16) 3.5.4. 液位计的设计 (17) 3.5.4.1 液位计选型 (17) 3.5.4.2 液位计接口设计 (17) 3.5.5法兰选择 (18) 3.5.5. C/D类焊接接头设计 (19) 第四章、参考文献 (20) 第五章、结束语 (21)

玻璃钢卧式贮罐设计

目 录 1.前言 (1) 2.造型设计 (2) 2.1储罐构造尺寸确定 (2) 2.2封头的选择 (2) 2.3伸臂长度确定 (3) 2.4支座及间距 (3) 3.性能设计 (4) 基体3.1材料性能及其特点介绍 (5) 3.2增强材料介绍 (6) 4.节构设计 (7) 4.1储罐荷载计算和设计简图 (7) 4.2由储罐的轴向应力计算壁厚 (8) 4.3由储罐的剪力计算储罐的壁厚 (8) 4.4由储罐的环形应力计算储罐壁厚 (8) 4.5由蝶形封头设计壁厚 (10) 4.6设计结果 (10) 5.工艺设计 (11) 5.1筒身设计 (11) 5.2封头的制造工艺及模具制造方法 (12) 6.玻璃钢卧式贮罐零部件设计 (14) 6.1贮罐的开孔与补强 (14) 6.2排气孔 (14) 6.3贮罐进出口管和人孔设计 (14) 6.4排液管 (16) 6.5支座设计 (16) 7.安装设计 (17) 8.制品检 [键入公司名称] [键入文档标题] [键入文档副标题] [键入作者姓名] 2012/6/30

验 (18) 9.小结 (19) 10.参考文献 (20) 前言 卧式玻璃纤维增强塑料贮罐主要用做化工贮罐、运输罐车、反应釜、喷雾洗涤器等。与立式贮罐相比,卧式贮罐的容积较小,但具有搬运方便,可异地安装使用的特点。 玻璃钢容器、玻璃钢储罐耐化学腐蚀,使用寿命长,玻璃钢具有特殊的耐腐性能,在储存腐蚀性介质时,玻璃钢显示出其他材料所无法比拟的优越性,可以耐多种酸、碱、盐和有机溶剂[1]。 玻璃钢容器、玻璃钢储罐设计灵活性大,罐壁结构性能优异,纤维缠绕玻璃钢可以改变树脂系统或增强材料来高速玻璃钢贮罐及非标装置的物理化学性能,以适应不同介质和工作条件的需要。通过结构层厚度、缠绕角和壁厚结构和设计来调整罐体的承载能力,制成不同压力等级或某些特殊性能的玻璃钢贮罐及非标装置,这是各向同性的金属材料无法与其相比的。 因为玻璃钢的比重通常为1.8-2.1,是钢的1/4-1/5,比钢、铸佚和塑料的比强度都高。玻璃钢的热膨胀系数与钢大体相当,热传导系数只有钢的0.5%。玻璃钢贮罐具有一系列特点,如质量轻、耐腐蚀性强、强度高、保温隔热效果好、成型容易、安装和运输方便、维护费用低等,在各工业领域得到广泛应用[2]。 我国玻璃钢贮罐的发展十分迅速,已经颁布了纤维增强塑料贮罐的标准,规定了贮罐用原材料、生产工艺、结构形式、产品性能和几何尺寸、验收条件等等,规范了玻璃钢产品市场,对提高玻璃钢贮罐产品质量起到了促进作用。目前国内玻璃钢贮罐主要用于地下石油贮

相关主题
文本预览
相关文档 最新文档