当前位置:文档之家› 立式储罐课程设计

立式储罐课程设计

立式储罐课程设计
立式储罐课程设计

过程设备课程设计任务书

一、设计题目:二氧化碳立式储罐

二、技术特性指标

设计压力:1.81MPa 最高工作压力:1.6MPa 设计温度:165℃工作温度:≤125℃

受压元件材料:16MnR 介质:二氧化碳气体

腐蚀裕量:1.0mm 焊缝系数:0.85

全容积:13m3 装料系数:0.9

三、设计内容

1、储罐的强度计算及校核

2、选择合适的零部件材料

3、焊接结构选择及设计

4、安全阀和主要零部件的选型

5、绘制装配图和主要零部件图

四、设计说明书要求

1、字数不少于5000字。

2、内容包括:设计参数的确定、结构分析、材料选择、强度计算及校核、焊接结构设计、标准零部件的选型、制造工艺及制造过程中的检验、设计体会、参考书目等。

3、设计说明书封面自行设计(计算机打印),要求有设计题目、班级、学生姓名、指导教师姓名、设计时间。(全班统一)

4、设计说明书用A4纸横订成册,封面和任务书在前。

目录

第一章绪论 (1)

1.1储罐的分类 (1)

1.2立式二氧化碳储罐设计的特点 (2)

1.3设计内容及设计思路 (2)

第二章零部件的设计和选型 (4)

2.1材料用钢的选取 (4)

2.1.1容器用钢 (4)

2.1.2附件用钢 (4)

2.2封头的设计 (5)

2.2.1封头的选择 (5)

2.2.2封头的设计计算 (5)

2.3筒体的设计 (6)

2.3.1筒体的设计计算 (6)

2.4人孔的设计 (6)

2.4.1人孔的选择 (6)

2.4.2人孔的选取 (7)

2.5容器支座的设计 (9)

2.5.1支座选取 (9)

2.5.2支座的设计 (9)

2.5.3支座的安装位置 (10)

2.6接管、法兰、垫片和螺栓的选取 (12)

2.6.1接管的选取 (12)

2.6.2法兰的选取 (12)

2.6.3垫片的选取 (14)

2.6.4螺栓的选取 (14)

第三章强度设计与校核 (16)

3.1圆筒强度设计 (16)

3.2封头强度设计 (16)

3.3人孔补强设计 (17)

第四章试验校核 (20)

4.1水压试验 (20)

4.1.1试验目的 (20)

4.1.2试验强度校核 (20)

4.2气密性试验 (21)

总结 (22)

参考文献 (23)

第一章绪论

1.1 储罐的分类

压力储罐的组成部分根据文献[1]一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完成不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。目前,世界各国均将其列为重要的监检产品,由国家指定的专门机构。

按照国家规定的文献[2]法规和标准实施监督检查和技术检验。储罐按其制造材质可分为金属罐和非金属罐。在化工、石油化工和石油等工业中储存液化气以外的原料油主要采用金属储罐,即金属油罐。油罐分类金属油罐可根据油罐所处位置、几何形状和不同结构形式等几方面来划分。

1、按油罐所处位置划分分为地上油罐、半地下油罐和地下油罐三种。

(1)地上油罐。指油罐的罐底位于设计标高±0.00及其以上;罐底在设计标高±0.00以下但不超过油罐高度的1/2,也称为地上油罐。

(2)半地下油罐。半地下油罐是指油罐埋入地下深于其高度的1/2,而且油罐的液位的最大高度不超过设计标高±0.00以上0.2m。

(3)地下油罐。地下油罐指罐内液位处于设计标高±0.00以下0.2m的油罐。

2、按油罐的几何形状划分按油罐的几何形状可划分为:

(1)立式圆柱形罐;

(2)卧式圆柱形罐;

(3)球形罐;球形储罐和圆筒形储罐相比:前者具有投资少,金属耗量少,占地面积少等优点,但加工制造及安装复杂,焊接工作量大,故安装费用较高。一般储存总量大于500m3或单罐容积大于200m3时选用球形储罐比较经济,而圆筒形储罐具有加工制造安装简单,安装费用少等优点, 但金属耗量大占地面积大, 所以在总储量小于500m3或单罐容积小于100m3时选用圆筒形储罐比较经济。圆筒形储罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形储罐,只有某些特殊情况下(站内地方受限制等) 才选用立式。但本说明书主要讨论立式圆筒形二氧化碳储罐的设计。

1.2 立式二氧化碳储罐设计的特点

立式储罐,危险性大,容易发生火灾和爆炸事故,必须按照有关文献[3],建立防火、防爆制度,经常进行防火巡查,严格进行消防安全管理,确保消防安全。国家劳动部门把这类设备作为受安全监察的一种特殊设备,并在技术上进行了严格、系统和强制性的管理,制定了一系列地强制性或推荐性地规范标准和技术法规,对压力容器的设计、材料、制造、安装、检验、使用和维修提出了相应的要求,同时为确保其安全可靠,实施了持证设计、制造和检验制度。储罐区防火防爆应按文献[4]规定。此类容器接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督,因此设计必须严格按照标准进行。

二氧化碳,化学式为CO2,碳氧化物之一,是一种无机物,常温下是一种无色无味气体,密度比空气略大,微溶于水,并生成碳酸。(碳酸饮料基本原理)可以使澄清的石灰水变浑浊,做关于呼吸作用的产物等产生二氧化碳的试验都可以用到。

二氧化碳不参与燃烧,密度比空气略大,所以也被用作灭火剂。

二氧化碳是绿色植物光合作用不可缺少的原料,温室中常用二氧化碳作肥料。

立式二氧化碳储罐,此次设计针对的是第一类压力容器的设计。储罐主要由筒体、封头、人孔、支座以及各种接管组成。储罐上设有进料管、出料管、排污管以及安全阀、压力表等。

1.3 设计内容及设计思路

设计内容:

1、储罐的强度计算及校核

2、选择合适的零部件材料

3、焊接结构选择及设计

4、安全阀和主要零部件的选型

5、绘制装配图和主要零部件图

表1-1 技术特性指标

序号名称指标

1 设计压力 MPa 1.81

2 设计温度0C 165

3 最高工作压力 MPa ≤1.6

4 工作温度0C ≤125

5 工作介质二氧化碳气体

6 主要受压元件材料16MnR

7 焊接接头系数0.85

8 腐蚀余量 mm 1.0

9 全容积 m313

10 容器内别第一类

设计思路:

我的设计题目是二氧化碳气体储罐设计,设计压力为1.81MPa,设计温度为165 0C 。

首先我根据设计压力、设计温度、介质特性在结合经济性选择了筒体和封头的材料16MnR以及各附件的材料;

然后进行筒体和封头的设计计算,进行筒体和封头的强度设计与校核;

然后根据文献[5]选择支座以及支座的安装位置,根据文献[6]如选择人孔的型式及尺寸;

最后根据文献[7]选择各个接管法兰及其附件。根据自己所设计的参数进行二维装配图、零件图等的绘制、说明书的编写和排版。

第二章零部件的设计和选型

2.1 材料用钢的选取

2.1.1 容器用钢

压力容器的使用工况(如温度、压力、介质特性和操作特点等)差别很大,制造压力容器所用的钢种类很多,既有碳素钢、低合金高强度钢和低温钢,也有中温抗氢钢、不锈钢和耐热钢,还有复合钢板。

一般中低压设备可采用采用屈服极限为245Mpa-345Mpa级的钢材;直径较大、压力较高的设备,均应采用普通低碳钢,强度级别宜用400Mpa级或以上;如果容器的操作温度超过4000C,还需考虑材料的蠕变强度和持久强度。

16MnR钢是屈服强度340Mpa级的普通低合金高强度钢,具有良好的综合力学性能、焊接性能、工艺性能以及低温冲击韧性。在焊接压力容器时采用碱性焊条(J507),15MnVR钢和18MnMoNbR钢是屈服强度分别为400、500Mpa级普通低合金高强度钢,虽然有较高的强度,但韧性、塑性都较C-Mn钢低,且有较高的缺口敏感性和时效敏感性。并且这两类钢均较16MnR钢昂贵。

因此选用16MnR钢作为筒体与封头的材料,既符合工艺要求也节约资源,以便获得更好的经济价值。

2.1.2 附件用钢

优质低碳钢的强度较低,塑性好,焊接性能好,因此在化工设备制造中常用作热交换器列管、设备接管、法兰的垫片包皮。

优质中碳钢的强度较高,韧性较好,但焊接性能较差,不宜用作接管用钢。

由于接管要求焊接性能好且塑性好。故选择10号优质低碳钢的普通无缝钢管制作各型号接管。

由于法兰与支座必须具有足够大的强度和刚度,以满足连接的条件,使之能够密封良好,故选用Q235-A的普通碳素钢。

2.2 封头的设计

2.2.1 封头的选择

从受力与制造方面分析来看,半球形封头是最理想的结构形式,但缺点是深度大,冲压较为困难。椭圆形封头深度比半球形封头小得多,易于冲压成型,是目前中低压容器中应用较多的封头之一。平板封头因直径各厚度都较大,加工与焊接方面都要遇到不少困难。根据文献[8]

从钢材耗用量来看,球形封头用材最少,比椭圆形封头节约,平板封头用材最多。因此,从强度、结构和制造方面综合考虑,采用椭圆形封头最为合理。

2.2.2 封头的设计计算

由2h 2D i i =,得mm D h i i 525421004===

封头的其他参数:查标准文献[6]中表B.1 EHA 和B.2 EHA 表椭圆形封头内表面积、容积,质量,见封头尺寸表2-1

图2-1 封头

表2-1 封头尺寸

公称直径DN/mm 总深度H/mm 内表面

积A/2

m 容积

V/3

m

质量/Kg

2100

565

5.0443 1.3508 624.6

2.3 筒体的设计

2.3.1 筒体的设计计算

设计体积313m V =,根据文献[7]选得容器公称直径mm Di 2100=, 采用标准椭圆形封头:取直边高度mm h 40=。

单个封头容积: 313508.1m V h =,封头总容积: 317016.22m V V h h ==, 单个封头内表面积200443.5m S =, 封头总内表面积:200886.102m S S == 故筒体容积: 32984.10m V V V h =-=筒。 则筒体长度:

mm

Di

V

L o

29754

2

==π筒

取整后筒体长度取mm L 3000=。 则实际体积: 3

2

8712.134

m

V Di L V

h =+=

π

筒体内表面积: 2782.19m DiL S ==π筒 则总内表面积: 28706.29m S S S =+=筒总

长径比: 428.11.2/0.3/==i D L 介于1与2之间,符合条件。

2.4 人孔的设计

2.4.1 人孔的选择

压力容器设置人孔是作为工作人员进出设备以进行检验和维修之用,而且能避免因意外原因造成罐内急剧超压或真空时,损坏储罐而发生事故,还能起到安全阻火作用,是保护储罐的安全装置。因此,人孔的位置应适当,人孔直径必须保证工作人员能携带工具进出设备方便。人孔主要由筒节、法兰、盖板和手柄组成。一般人孔有两个手柄。选用时应综合考虑公称压力、公称直径(人、手孔的公称压力与法兰的公称压力概念类似。公称直径则指其筒节的公称直径)、工作温度以及人、手孔的结构和材料等诸方面的因素。人孔的类型很多,选择使用上有较大的灵活性。通常可以根据文献[9]需要选择,在这选用回转盖带颈对焊法兰人孔。

2.4.2 人孔的选取

由于贮罐是在125℃及最高压力为 1.6MPa下工作,人孔标准按公称压力2.5MPa的压力等级根据文献[10]标准适用于公称压力PN 2.5-6.3MPa。又因人孔盖直径较大且质量较重,故选用回转盖带颈对焊法兰人孔(A型)。

人孔的型式和基本参数见下图2-2A和图2-2B。

图2-2A RF型人孔主视图

图2-2B RF型人孔俯视图

人孔各部件的材料的选取:(见表2-2)

表2-2 人孔各部件的材料

标号 名称 材料

标准

1 筒节 16MnR

2 全螺纹螺柱

8.8级35CrMoA HG 20613 3 螺母 8级30CrMo HG 20613 4 法兰 16Mn Ⅱ(锻件) HG 20595 5 垫片 缠绕式垫片

HG 20607 6 法兰盖 16MnR HG 20601

7 把手 Q235-A 2F 8 轴销 Q235-A 2F 9 支承板 16MnR 10 垫圈 100HV GB/T 95

11 盖轴耳(1) Q235-A 2F 12 法兰轴耳(1) Q235-A 2F 13 法兰轴耳(2) Q235-A 2F 14

盖轴耳(1)

Q235-A 2F

注: 1.螺柱与螺母材料匹配如下:8.8级螺柱配用8级螺母,35CrMoA 螺柱配30CrMo 螺母。 2.35CrMoA 螺柱使用于工作温度小于或等于-20℃时,应进行工作温度下的低温冲击试验,其相应的材料标记代号为35CML 。工作温度大于-20℃时,其标记代号为35CM 。

人孔尺寸的选取:(见尺寸表2.3)

表2-3 人孔尺寸

密封面形式

凸面RF 公称压力PN 2.5MPa 公称直径DN

450mm S d w

480312 d

456mm D

670mm 1D

600mm 1H

250mm 2H

121mm b

42mm 1b 41mm

2b

46mm

注:人孔高度1H 系根据容器的直径不小于人孔的公称直径的二倍而定;如有特殊要求,允许改变,但需注明改变后的1H 尺寸,并修正人孔总质量。

则该人孔标记为: 人孔RF Ⅲ(A.G )450-2.5 HG/T21518-2005

2.5 容器支座的设计

2.5.1 支座选取

支座用来支撑容器的重量、固定容器的位置并使容器在操作中保持稳定。立式圆筒形容器的支座分为支承式支座、群座、腿式支座三类。由于立式支座承压能力较好且对筒体产生的局部应力较小,故根据文献[11]设计中选用支承式支座。

由于在此设计中,贮罐体积较小且长径比较小,由于是立式容器,故采用三个A 型4号支承式支座。

2.5.2 支座的设计

首先估算计算支座的负荷。 贮罐总质量:

4

321m m m m m +++= (2-1)

式中:m 1为筒体质量(kg ),m 2为封头质量(kg ),m 3为二氧化碳质量(kg ),m 4 为附件质量(kg )。 筒体质量m 1:

mm

DN 2100=,mm

n

16=δ的筒节,每米质量为q 1=874.0kg ,

故 : m 1= q 1L=874.033.0=2622kg 封头质量m 2:

mm

DN

2100=,mm

n

16=δ直边高度h=40mm 的标准椭圆形封头,其质量为

q 2=624.6kg 。

故: m 2=2q 2=1249.2kg 二氧化碳质量m 3:

A 375mm o d

24mm B 175mm L 250mm 螺柱数 20 螺母数 40 螺柱规格

M33323165

总质量

245kg

充气质量:ρ

ρ

co 2

>水

,水压试验充满水,故取介质密度为3m kg 1000=ρ水,

3

2

47189.143508.123.41.24

2m

V V V =?+??=

+=π

封头筒体

充液质量为: kg 7.1302447189.1410009.03=??==V m 水αρ 附件质量:

人孔约重245kg ,其它接口管法兰重约12kg , 故 =4m 257kg 。 据式(2-1)设备总质量:

kg

9.1715225713024.72.124926224321=+++=+++=m m m m m

N

N Q

k 033.560328.563

8

.917152.93mg ≈=?=

=

由于每个支座承受约56.033kN 负荷,根据文献[6]

表2 A 型4号支座允许载

荷[Q]=100kN 。

kN kN Q 100033.56<= 故选用三个A 型4号支座。 得到支撑式支座尺寸如下表2-4

表2-4 支承式支座座尺寸

公称直径 DN 2100

1S 90 垫板

3b

320 允许载荷 Q/KN 100 筋板 2I

270 3δ

14 支座高度

h

500 2b 200 e

60 底板

1l

230 2δ

14 螺栓间距 L

30 1b 180 支座质量 kg 40.3 1δ

16

螺栓直径 d

M24

距中心的距离

S2

775

2.5.3 支座的安装位置

支座的安装位置图下图2-3A 和图2-3B :

图2-3A 支座安装位置主视图

图2-3B 支座安装位置左视图

根据文献[5]附录C规定,知A支座安装高度500mm(即封头与筒体连接处到地面的距离)。

则该支座标记为: JB/T 4712.4-2007,支座A4

2.6 接管、法兰、垫片和螺栓的选取

2.6.1 接管的选取

二氧化碳进气管:

进料管伸进设备内部并将管的一端切成450,为的是避免物料沿设备内壁流动以减少磨蚀和腐蚀。为了在短时间内将物料注满容器。

采用无缝钢管YB231-φ6534mm ,管的一端伸入罐切成45°,管长305 mm。配用凸面式板式平焊管法兰 HG/T 20592 法兰 PL 65-2.5 RF Q235A 二氧化碳出气管:

在化工生产中,需要将液体介质运送到与容器平行的或较高的设备中去,并且获得纯净无杂质的物料。

采用可拆的压出管φ6534mm,配用凸面式板式平焊管法兰 HG/T 20592 法兰PL 65-2.5 RF Q235A

排污管:

在清洗贮罐式,为了能够将废液完全排除贮罐外,2

CO介质会微量腐蚀罐壁而出现沉淀,故需在筒体底部安设排污管一个。

在罐的最底部设个排污管,规格是φ2534mm,管端焊有与截止阀相配的管法兰 HG/T 20592 法兰 PL 25-2.5 RF Q235A

压力表接管:

压力表接口管由最大工作压力决定, ,因此选用采用φ1533.5mm无缝钢管,管法兰采用 HG/T 20592 法兰 PL 15-2.5 RF Q235A

安全阀接口管:

安全阀是通过阀的自动开启排出气体来降低容器内过高的压力。为了操作的安全,因此安设一安全阀。安全阀接口管尺寸由安全阀泄放量决定。

本贮罐选用φ5734mm的无缝钢管, 管法兰HG/T 20592 法兰 PL 57-2.5 RF Q235A

接口管中,其选择的条件均在不需要补强的条件之内,因此,以上接口管在筒体上的开孔不需要补强。

2.6.2 法兰的选取

如图2-4:板式平焊钢制管法兰:

图2-4 板式平焊钢制管法兰

查文献[12]中表8.2.2-1至8.2.1-5 PN2.5板式平焊钢制管法兰,选取各管口公称直径,查得各法兰的尺寸。

查文献[13]中附录D中表D-5,得各法兰的质量。

查文献[14]中表3.2.2,法兰的密封面均采用RF(突面密封)。

得求得接管法兰尺寸见下表:

表2-5 接管法兰尺寸表

名称公称

直径

DN 钢管外径

1

A

法兰

外径

D

螺栓

孔直

径L

螺栓

孔数

量n

(个)

螺栓

Th

法兰

厚度

C

法兰内径

B1

A B

A B

压力表口15 21.3 18 80 11 4 M10 12 22.5 19 进气口65 76.1 76 160 14 4 M12 14 77.5 78 安全阀口50 60.3 57 140 14 4 M12 14 61.5 59 出气口65 76.1 76 160 14 4 M12 14 77.5 78 排污口25 33.7 32 100 11 4 M10 14 34.5 33

2.6.3 垫片的选取

查文献[15],垫片尺寸见表2-6:

表2-6 垫片尺寸(mm )

符号 管口名称 公称直径 包覆层内径 D1 包覆层内径

D3 垫片外径

D4 型号 a 人孔 450 480 528 528 B b 压力表口 15 22 40 44 A c 进气口 65 77 110 116 A d 安全阀口 50 61 92 96 A e 出气口 65 77 110 116 A f

排污口

25

34

60

64

A

注:1:聚四氟乙烯包覆层材料应符合QB/T 3625中规定的FSB-2和QB/T 3626的规定。 2:填充材料为有机非石棉纤维橡胶板。

3:垫片厚度除人孔垫片厚度为4外,其他均为3。

2.6.4 螺栓的选取

地脚螺栓(g)选用Q235-A (钢材标准GB 700),选得材料的许用应力

a 345s MP =σ,屈服极限MPa 235s =σ

查文献[16]中表5.0.7-2和附录中表A.0.1 ,得螺柱的长度见下表2-7:

表2-7 六角头螺栓螺柱及垫片(未注明单位:mm)

公称直径 螺纹 六角头螺栓螺柱

d

2

d

H a 450 M20 120ZR L

21 38 4 b 15 M10 40SR L 11 20 2 c 65 M12 50SR L 13 24 2.5 d 50 M12 50SR L 13 24 2.5 e

65

M12

50

SR L

13

24

2.5

f 25 M10 45

SR L 11 20 2 g

20

M24

165SR L

25

44

4

注:1.紧固件质量为每1000件的近似质量;

表2-8 附件质量

2.紧固件长度未计入垫片厚度。

a b c d e f g 质量kg

228

37

60

60

60

45

534

第三章 强度设计与校核

3.1 圆筒强度设计

其焊接系数已知为85.0=φ。材料的许用应力[]MPa t 170=σ,屈服极限

MPa s 345=σ。根据GB/T 9019-2001选得容器公称直径为mm D DN i 2100==。

设计压力MPa p c 81.1=,利用中径公式(3-1)计算筒体壁厚: []mm p D p c

t

i c 2.1381

.185.01702210081.12=-???=

-=

φσδ (3-1)

查标准文献[5]

表7-2知,钢板厚度负偏差为mm C 8.01=。并已知腐蚀裕量

mm 1C 2=。

筒体设计厚度:mm C d 2.1412.132=+=+=δδ (3-2) 筒体名义厚度:mm C C n 1518.02.1321=++=++≥δδ (3-3) 由于钢板厚度范围为mm 16~6,圆整后保守取mm n 16=δ。

筒体的有效厚度mm C C n e 2.1418.01621=--=--=δδ (3-4)

3.2 封头强度设计

查标准文献[7]中表1,选取公称直径mm

D DN i 2100==,

封头,型号代号为EHA ,取5252/=i i h D ,则mm h i 525=查标准文献[6]中表2,取直边长h=40mm 。该容器取其焊接系数为85.0=φ。材料的许用应力MPa t 170][=σ,屈服极限MPa s 345=σ。根据椭圆形封头计算式(3-1)计算:

[]mm p D p c

t

i

c 2.1381

.15.085.017022100

81.15.02=?-???=

-=φσδ

查标准文献

[18]

表7-1知,钢板厚度负偏差为mm C 8.01=。并已知腐蚀裕量

mm 1C 2=。

据式(3-2)计算封头厚度:

mm C d 2.1412.132=+=+=δδ 据式(3-3)计算封头名义厚度:

mm C C n 1518.02.1321=++=++≥δδ

由于钢板厚度范围为mm 16~6,圆整后取与筒体相同的名义厚度

mm n 16=δ 。

据式(3-4)计算筒体的有效厚度:

mm C C n e 2.1418.01621=--=--=δδ

则封头标记为:EHA MnR 16162100-? 4746T /JB 。

3.3 人孔补强设计

为了满足各种工艺和结构上的要求,不可避免的要在容器的筒体或封头上开孔并安装接管。开孔后,壳壁因除去了一部分承载的金属材料而被削弱,而出现应力集中现象。为保证容器安全运行,对开孔必须采取适当的措施加以补强,以降低峰值应力。这里采用补强圈补强,因其结构简单、制造方便、使用经验丰富。另外,还要考虑人孔补强,确定补强圈尺寸,由于人孔的筒节不是采用无缝钢管,故不能直接选用补强圈标准。本设计所选用的人孔筒节内径为mm d i 450=,壁厚

m δ=12mm

查表得人孔的筒体尺寸为Φ480312,由标准[7]

A 型查得补强圈尺寸为: 内径D i =484mm ,外径D o =760mm 。 开孔补强的有关计算参数如下: 据式(3-1)计算筒体的壁厚:

[]mm

p D p c

t

i

c 2.1381

.185.01702210081.12=-???=-=

φ

σ

δ

计算开孔所需补强的面积A :

开孔直径: mm C d d i 6.453)18.0(24502=+?+=+=

补强面积: 252.59872.136.453mm d A =?=?=δ (3-5) 有效宽度:

mm d B 2.9076.45322=?=?=

mm m n d B 6.5091221626.45322=?+?+=?+?+=δδ 取最大值 B=907.2mm 有效高度: 外侧高度: mm d h m 78.73126.4531=?=

?=

δ

或 mm 2501==接管实际外伸高度h

两者取较小值mm h 78.731= 内侧高度mm d h m 78.73126.4532=?=

?=

δ

或mm h 02==接管实际内伸高度

两者取较小值0mm

立式储罐课程设计说明书

立式贮罐设计 前言 玻璃钢罐分为立式、卧式机械缠绕玻璃钢储罐、运输罐、反应罐、各种化 工设备,玻璃钢卧式罐、立式贮罐、运输罐、容器及大型系列容器、根据所用(贮存或运输)介质选用环氧呋喃树脂、改性或聚酯树脂、酚醛树脂为粘结剂, 由高树脂含量的耐腐蚀内衬层、防渗层、纤维缠绕加强层及外表保护层组成。 玻璃钢具有耐压、耐腐蚀、抗老化、使用寿命长、重量轻、强度高、防渗、 隔热、绝缘、无毒和表面光滑等特点。机械缠绕玻璃钢容器可以通过改变树脂 系统或采用不同的增强材料来调整产品的物理化学性能以适应不同介质和工 作条件需要,通过结构层厚度、缠绕角和壁厚设计制不同压力,是纤维缠绕复 合材料的显著特点。 由于有以上的特点,玻璃钢贮罐可广泛应用于石油、化工、纺织、印染、 电力、运输、食品酿造、给排水、海水淡化、水利灌溉及国防工程等行业。储 存各种腐蚀性介质可以耐多种酸、碱、盐和有机溶剂,主要应用于石油、化工、 制药、印染、酿造、给排水、运输等行业,适应于盐酸、硫酸、硝酸、醋酸、 双氧水、污水、次氯酸钠等多种产品的贮存、运输,也可作地下油槽、保温储槽、运输槽车等[1]。 本设计为容积180,贮存质量分数为的硫酸,使用温度为90℃的立式贮罐,设计中分别从造型、性能、结构、工艺、零部件、防渗漏、安装、检验等八个方面做了说明、计算和设计,整体介绍了立式贮罐的设计流程、方法及主要事项,最终设计出了满足设计要求的立式贮罐。

1.造型设计 1.1设计要求 立式玻璃设计,容积为140,贮存质量分数为的醋酸,使用温度为常温,拱形顶盖设计。 1.2贮罐构造尺寸确定 贮罐容积V140,取公称直径为D3800, 则贮罐高度为(式1.1)初定贮罐结构尺寸为D H 1.3拱形顶盖尺寸设计 与锥形顶盖相比,其结构简单、刚性好、承载能力强,是立式贮罐广为使用的一种形式。为取得罐顶和罐壁等强度,罐顶的曲率半径与贮罐直径差值不超过20%。即 (式1.2)式中——拱顶球面曲率半径,; ——贮罐内径,,等于。 取罐顶高为h,r为转角曲率半径,r小则h小,一般取此时[1]。 所以 1.4贮罐罐底设计 罐体和罐底的拐角处理,对贮罐设计极为重要。尤其是立式贮罐底部附近的受力较为复杂,应引起足够的重视。一般在拐角处都应设计成一定的圆弧过渡区,圆弧半径不应小于38。如果罐壳和罐底分开制造,则应注意在罐壳和罐底的结合处内外进行有效的补强。拐角区域的最小厚度等于壳壁和底部的组合厚度。拐角区

油罐课程设计说明书

目录 1 设计总说明 (1) 1.1适用范围 (1) 1.2设计制造遵循的主要指标与规范 (1) 1.3 罐体规格尺寸范围 (1) 1.4 罐顶盘梯及平台 (1) 1.5 罐体的防腐 (1) 1.6 油罐附件 (2) 1.7 接口 (2) 1.8 液位指示计口 (2) 1.9 消防设施 (2) 1.10 避雷及防静电 (2) 1.11油罐基础 (2) 1.12罐体保温 (2) 1.13罐体外壁涂漆 (3) 1.14选用说明 (3) 1.15油罐的制造、检验及验收 (3) 1.16原始数据 (3) 1.17开口说明 (4) 1.18技术要求 (4)

1 设计说明书 1.1 适用范围 此设计中油罐储存介质为柴油及不易挥发的相类似油品。 设计条件 设计压力正压:1960Pa 负压:490Pa 设计温度-19℃≤t≤90℃ 基本风压686 Pa 雪载荷441 Pa 抗震设防烈度8度(近震) 场地土类型Ⅱ类 储液密度≤1000kg/m3 腐蚀裕量1mm 当介质腐蚀性较强,腐蚀速率超过0.1mm/a时,应根据介质对碳钢腐蚀速率确定适当的腐蚀裕量,并相应增加油罐壁板及油罐底版的厚度或采取其它防腐措施。 1.2 设计、制造遵循的主要指标规范 SH3046《石油化工立式圆筒形钢制焊接储罐设计规范》 GBJ128《立式圆筒形钢制焊接油罐施工及验收规范》 SH3048《石油化工钢制设备抗震设计规范》 GB50205《钢结构工程施工质量验收规范》 1.3 罐体规格尺寸范围 4.1.3.1 公称容积:1000m3 4.1.3.2 公称直径:DN 11500 mm 1.4 罐顶盘梯及平台 此设计中所有油罐均采用45°升角的螺旋盘梯。盘梯均按左旋布置,用户可根据实际情况自行改动。 1.5 罐体的防腐 此设计中对油罐内壁防腐未做具体规定,当用户根据介质情况需要对油罐做内防腐时,选用者可根据具体要求确定防腐级别,并提出相应的技术要求。 一般防腐可采用刷二遍底漆,二遍面漆。

10立方米液化石油气储罐设计_课程设计

10立方米液化石油气储罐设计 目录 目录 (1) 前言 (3) 课程设计任务书 (4) 第一章工艺设计 (6) 1.1液化石油气参数的确定 (6) 1.2设计温度 (6) 1.3设计压力 (6) 1.4设计储量 (7) 第二章机械设计 (8) 2.1筒体和封头的设计: (8) 2.1.1筒体设计 (8) 2.1.2封头设计 (8) 第三章结构设计 (10) 3.1液柱静压力 (10) 3.2圆筒厚度的设计 (10) 3.3椭圆封头厚度的设计 (11) 3.4开孔和选取法兰分析 (11) 3.5安全阀设计 (13) 3.6液面计设计 (16) 3.7接管,法兰,垫片和螺栓的选择 (17) 3.7.1接管和法兰 (17) 3.7.2垫片的选择 (18) 3.7.3螺栓(螺柱)的选择 (19) 3.8人孔的设计 (20) 3.8.1人孔的选取 (20) 3.8.2人孔补强圈设计 (21) 3.9鞍座选型和结构设计 (24) 3.9.1鞍座选型 (24) 3.9.2鞍座位置的确定 (25) 3.10焊接接头的设计 (26) 3.10.1筒体和封头的焊接 (26) 3.10.2接管与筒体的焊接 (26)

第四章强度校核 (28) 结束语 (43) 参考文献 (44)

前言 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, 焊接工作量大, 故安装费用较高。一般贮存总量大于500m 3或单罐容积大于200m 3时选用球形贮罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, 所以在总贮量小于500m 3, 单罐容积小于100m 3时选用卧式贮罐比较经济。圆筒形贮罐按安装方式可分为卧式和立式两种。在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站内地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。液化石油气呈液态时的特点。(1) 容积膨胀系数比汽油、煤油以及水等都大, 约为水的16倍, 因此, 往槽车、贮罐以及钢瓶充灌时要严格控制灌装量, 以确保安全;(2) 容重约为水的一半。因为液化石油气是由多种碳氢化合物组成的, 所以液化石油气的液态比重即为各组成成份的平均比重, 如在常温20℃时, 液态丙烷的比重为0. 50, 液态丁烷的比重为0. 56 0. 58, 因此, 液化石油气的液态比重大体可认为在0. 51左右, 即为水的一半。卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等

液氨储罐课程设计分析

课程设计任务书 课程设计任务书 1. 设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规范进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据: 1

3. 工艺条件图 4. 计算及说明部分内容(设计内容): 第1章绪论: (1)液氨储罐的设计背景 (2)液氨贮罐的分类及选型; (3)主要设计参数的确定及说明。 第2章材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍座的选择确定。 第3章工艺尺寸的确定 第4章设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; (6)选择液位计; (7)选配工艺接管。 设计小结 参考文献 5.绘图部分内容: 总装配图一张(A1图纸) 2

课程设计任务书 6.设计期限:1周( 2013 年 06月 24 日~ 2013 年 07 月 05 日) 7、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 8.参考资料: (一)国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998; (二)国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999 (三)《金属化工设备·零部件》第四卷 (四)中华人民共和国化学工业部,中华人民共和国待业标准《钢制管法兰、垫片、紧固件》,1997 (五)《化工设备机械基础课程设计指导书》(图书馆借阅书号:TQ 05/51) (六)刁玉纬王立业,《化工设备机械基础》,大连理工大学出版社,2003年第五版; (七)李多民俞惠敏,《化工过程设备机械基础》,中国石化出版社,2007; (八)董大勤,《化工设备机械基础》,化学工业出版社,1994年第二版; (九)汤善甫朱思明,《化工设备机械基础》,华东理工大学出版社,2004年第二版; 发给学生(签名):指导教师: 年月日 (注:此任务书应附于所完成的课程设计说明书封面后) 3

机电工程学院空气储罐设计

齐齐哈尔大学设备设计课程设计题目名称:空气储罐设计 学院:机电工程学院 专业班级:过控102 学生姓名:王国涛 指导教师:刘岩 完成日期: 2013-12-20

目录 摘要3 绪论..................................................................4 第一章压缩空气的特性5 第二章设计参数的选择6 第三章容器的结构设计7 3.1圆筒厚度的设计7 3.2封头厚度的计算7 3.3筒体和封头的结构设计8 3.4人孔的选择9 3.5接管,法兰,垫片和螺栓(柱)9 3.6鞍座选型和结构设计12 第四章开孔补强设计15 4.1补强设计方法判别15 4.2有效补强范围15 4.3有效补强面积16 4.4补强面积17 第五章强度计算18 5.1水压实验应力校核18 5.2圆筒轴向弯矩计算18 5.3圆筒轴向应力计算及校核20 5.4切向剪应力的计算及校核22 5.5圆筒周向应力的计算和校核23 5.6鞍座应力计算及校核25 第六章归纳总结28 参考文献29

摘要 本说明书为《3.0m3空气储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关规范,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计技术方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

大型储罐施工方案.

§1施工方案

§1.1 总体施工方案 1、液压提升倒装自动焊工艺 a、本工程二台20000m3内浮顶罐采用液压提升倒装自动焊工艺进行施工,施工工艺流程图 如后图所示。 b、罐底板、罐壁板在本部生产基地进行深度工厂化预制,利用进口的龙门自动切割机,切割 下料和坡口加工一次成型。 c、油罐纵缝和环缝外口采用CO2气体保护自动焊,内口采用CO2气体保护半自动焊;油罐 底板采用埋弧焊+碎丝焊。 2、液压提升倒装自动焊施工工艺流程图

§1.2 油罐预制方案 1、罐底预制 a、罐底预制主要是弓形边缘板和中幅板的切割。罐底中幅板、边缘板采用净料预制技术, 用龙门自动切割机切割钢板的直边和坡口,罐底边缘板弧线采用半自动火焰切割机切割。 b、罐底板预程序如下: c、底板预制前应绘制排板图,并应符合下列规定 ●罐底的排板直径,宜按设计直径放大0.1%-0.2%; ●边缘板沿罐底半径方向的最小尺寸,不得小于700mm; ●弓形边缘板的对接接头,宜采用不等间隙,外侧间隙宜为6-7mm;内侧间隙宜为8-12mm; ●中幅板的宽度不得小于1000mm,长度不得小于2000mm; ●底板任意相邻焊逢之间的距离不得小于200mm。 d、中幅板的尺寸允许偏差应符合下表的规定

2、壁板预制 a、壁板预制主要为板料检验、切割下料和滚圆三个过程,进行工厂化施工,壁板预制工艺 流程如下: b、壁板预制前,根据设计要求、施工规范及钢板实际到货规格绘制排板图,报设计及监理 单位批准,并应符合下列要求: ●底圈壁板纵缝,宜向同一方向逐圈错开,其间距不得小于500mm; ●底圈壁板纵向焊缝与罐底边缘板的对接缝之间的间距不得小于200mm; ●罐壁开孔接管或开孔接管补强板外缘与罐壁纵向焊缝之间的距离,不得小于200 mm; 与环向焊缝之间的距离,不得小于100 mm; ●包边槽钢对接接头与罐板纵向焊缝之间的距离不得小于200mm; ●壁板宽度为1800mm,长度不得小于6000mm。 ●壁板尺寸的允许偏差应符合下表:

储罐课程设计

目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................. I I 第一章绪论 (1) 1.1液化石油气储罐的用途与分类 (1) 1.2液化石油气特点 (1) 1.3液化石油气储罐的设计特点 (2) 第二章工艺计算 (3) 2.1设计题目 (3) 2.2设计数据 (3) 2.3设计压力、温度 (3) 2.4主要元件材料的选择 (4) 第三章结构设计与材料选择 (5) 3.1筒体与封头的壁厚计算 (5) 3.2筒体和封头的结构设计 (6) 3.3鞍座选型和结构设计 (7) 3.4接管,法兰,垫片和螺栓的选择 (10) 3.5人孔的选择 (15) 3.6安全阀的设计 (15) 第四章设计强度的校核 (19) 4.1水压试验应力校核 (19) 4.2筒体轴向弯矩计算 (20) 4.3筒体轴向应力计算及校核 (20) 4.4筒体和封头中的切向剪应力计算与校核 (21) 4.5封头中附加拉伸应力 (22) 4.6筒体的周向应力计算与校核 (22) 4.7鞍座应力计算与校核 (23) 第五章开孔补强设计 (26) 5.1补强设计方法判别 (26) 5.2有效补强范围 (26) 5.3有效补强面积 (27) 5.4.补强面积 (28)

卧式储罐设计..

安徽工程大学 课程设计说明书 题目名称:卧式储罐设计 专业班级:食品122班 学生姓名:王飞腾 指导教师:季长路 完成日期: 2015-09-24

目录 摘要 (3) 第一章绪论 (4) 1.1设计任务: (4) 1.2设计思想: (4) 1.3设计特点: (4) 第二章材料及结构的选择与论证 (5) 2.1材料选择 (5) 2.2结构选择与论证 (5) 2.2.1 封头的选择 (5) 2.2.2容器支座的选择 (5) 2.3法兰型式 (6) 2.4液面计的选择 (6) 第三章结构设计 (7) 3.1壁厚的确定 (7) 3.2封头厚度设计 (7) 3.2.1计算封头厚度 (7) 3.2.2水压试验及强度校核 (8) 3.3储罐零部件的选取 (8) 3.3.1储罐支座 (8) 3.3.2 罐体质量 (8) 3.3.3封头质量 (9) 3.3.4液氨质量 (9) 3.3.5附件质量 (9) 第四章接管的选取 (10) 4.1液氨进料管 (10) 4.2平衡口管 (10) 4.3液位指示口管 (10) 4.4放空口管 (10) 4.5液体进口管 (11) 4.6液体出口管 (11) 第五章压力计选择 (12) 符号说明 (13) 总结 (14)

摘要 本说明书为《1.2m3液氨储罐设计说明书》。扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。 本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。 设计结果满足用户要求,安全性与经济性及环保要求均合格。 关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强

1000立方米拱顶油罐(...)

1000立方米拱顶油罐(...)

*******学院课程设计 课程名称 **** 题目 ************ 系部 **** 专业 **** 班级 **** 学生姓名 **** 学号 **** 指导教师 ****

2018年6月**日

培黎石油工程学院课程设计任务书 题目名称************** 系部************** 专业班级************** 学生姓名************** 一、课程设计的内容 此次课程设计的是拱顶罐,包括罐体材料的选择、罐壁的计算、加强圈的选择、开孔补强、罐底基础设计、罐顶的设计、油罐附件的选择。 二、课程设计的要求与数据 课程设计的要求有以下四点: 1.了解拱顶油罐的基本结构和局部构件; 2.根据给定油罐大小,查阅相关标准确定相应构件的规格尺寸; 3.学会使用AUTOCAD制图; 4.相关技术要求参考有关规范。 设计原始数据: 设计压力正压负压设计温度雪载荷 抗震设防烈度储液密度腐蚀裕量焊接接头系数 8度0.9 三、课程设计应完成的工作 1.1000拱顶油罐装配图一张;

2.1000拱顶油罐罐体图一张; 3.课程设计说明书一份; 四、课程设计进程安排 序号设计各阶段内容地点起止日期 1 拱顶罐相关资料查阅图书馆 6.4-6.5 2 课程设计大纲及各类数据的计算图书馆 6.6-6.8 3 数据的校核与检查图书馆 6.11-6.13 4 拱顶罐装配图图书馆 6.14 5 拱顶罐罐体图教室 6.15 6 课程设计初稿修订教室 6.19 7 上交课程设计说明书办公室 6.20 8 课程设计答辩教室 6.22 五、应收集的资料及主要参考文献 [1] 潘家华,郭光臣,高锡祺等.油罐及管道强度设计[M].北京:石油工业出版社,1986. [2] GB 50205-2001 钢结构工程施工质量验收规范[S].北京:中国标准出版社,2001. [3]王立业.《罐体开口补强设计》[M]GB150-1998.116-118. [4] 郭光臣. 油库设计与管理[M].山东:石油大学出版社.1990. 指导教师:年月日 系部主任:年月日 教学院长:年月日

《压力容器与管道安全》课程设计.

湖南大学 《压力容器与管道安全》课程设计 专业安全工程 姓名刘恶 学号023412229 课程名称压力容器与管道安全 指导教师杨有豪马莲 市政与环境工程学院 2019年12月

目录 1. 目的与任务 (2) 2. 储罐的设计要求 (2) 2.1 设计题目 (2) 2.2 设计要求 (2) 3. 卧式液氨储罐的结构设计 (3) 3.1储罐主要结构的设计 (3) 3.1.1筒体和封头的结构选择 (3) 3.1.2用方案一计算筒体和封头的厚度 (4) 3.1.3用方案二计算筒体和封头的厚度 (5) 3.1.4两种方案的比较 (6) 3.2计算鞍座反力 (7) 3.3支座及其位置选取 (8) 3.3.1鞍座数量的确定 (8) 3.3.2鞍座安装位置的确定 (8) 3.3.3鞍座标准的选用 (10) 3.4储罐应力校核 (10) 3.4.1筒体轴向应力校核 (10) 3.4.2筒体和封头切向剪应力校核 (12) 3.4.3筒体周向应力校核 (12) 3.4.4鞍座有效断面的平均应力校核 (13) 3.5 入孔设计 (13) 3.6开孔补强计算 (14) 3.7接管与法兰联结设计 (16) 参考文献 (19)

1. 目的与任务 本课程设计是在学完《压力容器与管道安全》之后综合利用所学知识完成一个压力容器设计。该课程设计的主要任务 1.是通过解决一、两个实际问题,巩固和加深对压力容器的结构、原理、特性的认识和基本知识的理解,提高综合运用课程所学知识的能力。 2.培养根据课题需要选学参考书籍,查阅手册、图表和文献资料的自学能力。通过独立思考,深入钻研有关问题,学会自己分析解决问题的方法。 3.通过实际设计方案的分析比较,设计计算,元件选择等环节,初步掌握工程中压力容器设计方法。 4.培养严肃认真的工作作风和科学态度。通过课程设计实践,逐步建立正确的生产观点、经济观点和全局观点,获得初步的应用经验,为以后从事生产和科研工作打下一定的基础。 2. 储罐的设计要求 2.1 设计题目 某厂需添置一台液氨贮罐,设计原始数据:设计压力P=1.9Mpa,设计温度T=43℃,容器内径D=1230mm,容积V=3.1m3,设备充装系数0.9。采用鞍式支座。试设计该设备。 2.2 设计要求 根据已知的条件,按照以下顺序进行设计: 1.主要结构设计—筒体、封头、接管、法兰密封、鞍座及其位置。 2.主要材料—焊缝和探伤 3.筒体和封头的厚度计算 4.计算鞍座反力

大型立式储油罐结构设计复习进程

大型立式储油罐结构 设计

课程设计任务书

1 储罐及其发展概况 油品和各种液体化学品的储存设备—储罐是石油化工装置和储运系统设施的重要组成部分。由于大型储罐的容积大、使用寿命长。热设计规范制造的费用低,还节约材料。 20世纪70年代以来,内浮顶储油罐和大型浮顶油罐发展较快。第一个发展油罐内部覆盖层的施法国。1955年美国也开始建造此种类型的储罐。1962年美国德士古公司就开始使用带盖浮顶罐,并在纽瓦克建有世界上最大直径为187ft(61.6mm)的带盖浮顶罐。至1972年美国已建造了600多个内浮顶罐。 1978年国内3000m3铝浮盘投入使用,通过测试蒸发损耗标定,收到显著效果。近20年也相继出现各种形式和结构的内浮盘或覆盖物[1]。 世界技术先进的国家,都备有较齐全的储罐计算机专用程序,对储罐作静态分析和动态分析,同时对储罐的重要理论问题,如大型储罐T形焊缝部位的疲劳分析,大型储罐基础的静态和动态特性分析,抗震分析等,以试验分析为基础深入研究,通过试验取得大量数据,验证了理论的准确性,从而使研究具有使用价值。 近几十年来,发展了各种形式的储罐,尤其是在石油化工生产中大量采用大型的薄壁压力容器。它易于制造,又便于在内部装设工艺附件,并便于工作介质在内部相互作用等。

2 设计方案 2.1 各种设计方法 2.1.1 正装法 此种方法的特点是指把钢板从罐底部一直到顶部逐块安装起来,它在浮顶罐的施工安装中用得较多,即所谓充水正装法,它的安装顺序是在罐低及二层圈板安装后,开始在罐内安装浮顶,临时的支撑腿,为了加强排水,罐顶中心要比周边浮筒低,浮顶安装完以后,装上水除去支撑腿,浮顶即作为安装操作平台,每安装一层后,将上升到上一层工作面,继续进行安装。 2.1.2倒装法 先从罐顶开始从上往下安装,将罐顶和上层罐圈在地面上安装,焊好以后将第二圈板围在第一罐圈的外围,以第一罐圈为胎具,对中点焊成圆圈后,将第一罐圈及罐顶盖部分整体吊至第一、二罐圈相搭接的位置,停于点焊,然后在焊死环焊缝。用同样的方法把下面的部分依次点焊环焊,直到罐底板的角接焊死即成。 2.1.3卷装法 将罐体先预制成整幅钢板,然后用胎具将其卷筒,在运至储罐基础上,将其卷筒竖起来,展成罐体装上顶盖封闭安装而建成。 2.2 各种方法优缺点比较 2.2.1正装法 这种装焊方法需要采用多种设备和装配夹具,大多数装配焊接都要搭脚手架,此外,装配工作在吊架吊台上工作,不仅操作不方便,不宜保证焊接

课程设计液氨储罐设计

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1) 二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2)

3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 设计参数的确定 (3) 筒体壁厚的设计 (3) 刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 液压试验压力的确定 (3) 液压试验的强度校核 . (3) 压力表的量程、水温的要求 (3) 液压试验的操作过程 (3) 4、罐体的气压试验 (4) 气压试验压力的确定 (4) 气压试验的强度校核 (4) 、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计 算 ..................................4 、开孔

补强的有关计算参数 .......................5 、补强圈的 设计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7) 2、液氨出料管 (7) 3、排污管 (7) 4、安全阀接口管 (7) 5、压力表接口管 (8) 七、设计结果一览表 (9) 八、液氨储罐装配图(见附图)............................... 一、设计任务书 试设计一液氨储罐,其公称容积、储罐内径、罐体(不包括封头)长度见下表。使用地点:家乡--湖北省十堰市竹溪县。 技术特性表

储罐设计

《化工容器设计》课程设计说明书 题目: 学号: 专业: 姓名: I 目录 1 设计 (1) 1.1工艺参数的设定 (1) 1.1.1设计压力 (1) 1.1.2筒体的选材及结构 (1) 1.1.3封头的结构及选材 (2) 1.2 设计计算 (2) 1.2.1 筒体壁厚计算 (2) 1.2.2 封头壁厚计算 (3)

1.3压力实验 (4) 1.3.1水压试验 (4) 1.3.2水压试验的应力校核: (4) 1.4附件选择 (4) 1.4.1 人孔选择及人孔补强 (4) 2.4.3 进出料接管的选择 (6) 1.4.4 液面计的设计 (8) 1.4.5 安全阀的选择 (8) 1.4.6 排污管的选择 (8) 1.4.7 鞍座的选择 (8) 1.4.8鞍座选取标准 (9) 1.4.9鞍座强度校核 (10) 1.4.10容器部分的焊接 (11) 1.5 筒体和封头的校核计算 (11) 1.5.1 筒体轴向应力校核 (11) 1.5.2 筒体和封头切向应力校核 (13) 2 液氨储罐的泄漏及处理方法............................................................. 错误!未定义书签。 2.1 液氨泄漏的危害 .............................................................................. 错误!未定义书签。 2.2 泄漏的危害 ...................................................................................... 错误!未定义书签。 2.2 .1 生产运行过程中危险性分析······································错误!未定义书签。 2.2.2 设备、设施危险性分析 ············································错误!未定义书签。 2.3液氨储罐泄漏事故的应急处置措施 .............................................. 错误!未定义书签。

中北大学--玻璃钢卧式储罐课程设计

概述 在当前已经开发的复合材料制品中,玻璃纤维增强树脂基复合材料(俗称玻璃钢)的贮罐占有相当的比重。玻璃钢贮罐有较好的耐腐蚀性和承载能力,与金属贮罐相比,制造工艺比较简单且容易修补,所以,在石油,化工等部门已有逐步替代金属贮罐的趋势。近几年来,我国生产的玻璃钢贮罐已由中小吨位向大吨位发展,最大的玻璃钢贮罐容积已达到3 m 1500。 目前玻璃钢贮罐的设计方法有两种,一种是以强度为标准,在已经的安全系数下,使贮罐的应力小于材料的许用应力;另一种是以变形为标准,使贮罐的应变不超过规定值。在实际产品设计中,由于材料强度极限的数据积累较充分,而且能方便的使用最大应力失效准则及相应的设计标准,所以第一种方法较通用,而应变设计方法在变形需严格控制时才使用。 玻璃贮罐按使用功能与放置场地的不同,可以有多种结构形式。按使用压力不同,有压力贮罐和常压贮罐之分;按形状不同有圆柱形、球形、箱形等结构形式;按置于地面或运输车上有静置贮罐和运输贮罐之分。 由于玻璃钢贮罐具有耐腐蚀性、质量轻、强度高、易制造、运输安装费用低等特点,已广泛应用与化工、石油,造纸、医药、食品、冶金、粮食、饲料等领域。 (1)玻璃钢贮罐化学应用:贮存酸、碱、盐及各类化学用品。 (2)玻璃钢地下油罐:用于汽车加油站代替钢油罐。 (3)玻璃钢运输贮罐:分为汽车运输和火车运输贮罐两种。 & 本文着重讨论了卧式玻璃钢贮罐的造型设计、性能设计、结构设计、工艺设计、安装、及检 验等各方面。 {

2.性能设计 原材料的选择原则 ()比强度,比刚度高的原则 ()材料与结构的使用环境相适应的原则 】 ()满足结构特殊性能的原则 ()满足工艺要求的原则 ()成本低效益高的原则 树脂基体的选择 树脂的选择按如下要求选取: ()要求基体材料能在结构使用温度范围内正常工作; ()要求基体材料具有一定的力学性能; ()要求基体材料的断裂伸长率大于或者接近纤维的断裂伸长率; ( ()要求基体材料具有满足使用要求的物理、化学性能; ()要求基体材料具有一定的公益性。 玻璃钢制品所用的树脂原料有:聚酯、环氧、酚醛、呋喃树脂及改性树脂等。目前可供选择的的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺是指、酚醛树脂和聚酯树脂。连一类为热塑性树脂,如聚醚醚酮、尼龙、聚苯乙烯、聚醚酰亚胺等。 目前树脂基复合材料中用得较多的基体是热固性树脂,它们有较高的力学性能,但工作温度低。对于需耐高温的复合材料,主要是用聚酰亚胺作为基体材料,目前较新的树脂基体有双马来酰胺、聚醚醚酮等,能满足一般高温的要求,且韧性好,有较大的复合材料强度许用值。 贮罐储存质量分数的硫酸,根据耐酸性,力学性能和经济效益综合考虑,可选用酚醛树脂。 增强材料的选择 目前已有多种纤维可作为复合材料的增强材料,如加各种玻璃纤维、凯夫拉纤维、氧化铝纤维、硼纤维、碳纤维等,有些纤维已经有多种不同性能的品种。 选择纤维类别,是根据结构的功能选取能满足一定的力学、物理和化学性能的纤维。

液氨储罐设计说明书

学号:11014020817 《化工机械基础》 课程设计说明书 设计题目:液氨储罐机械设计 学院化学与环境工程学院专业化学工程与工艺班级化工11-8 学生白涛指导教师陈华豪 完成时间2013年06月24日至2013年06月30日 课程设计任务书 1.设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规范进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据:

4. 计算及说明部分内容(设计内容): 1 绪论 1.1 液氨储罐的设计背景 1.2 液氨储罐的分类及选型 2 材料及结构的选择与论证 2.1 工艺参数的设定 2.1.1设计压力 2.1.2筒体的选材及结构 2.1.3封头的结构及选材 3 设计计算 3.1 筒体壁厚计算 3.2 封头壁厚计算 3.3 压力试验 4 附件的选择 4.1 人孔的选择 4.2 人孔补强的计算 4.3 进出料接管的选择 4.4 液面计的设计 4.5 安全阀的选择 4.6 排污管的选择 4.7 真空表选择 4.8 鞍座的选择 4.8.1 鞍座结构和材料的选取 4.8.2 容器载荷计算 4.8.3 鞍座选取标准 4.8.4 鞍座强度校核 5 容器焊缝标准 5.1 压力容器焊接结构设计要求 5.2 筒体与椭圆封头的焊接接头 5.3 管法兰与接管的焊接接头 5.4 接管与壳体的焊接接头 6 筒体和封头的校核计算

课程设计液氨储罐设计精编WORD版

课程设计液氨储罐设计精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级 12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1)

二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2) 3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 1.1设计参数的确定 (3) 1.2筒体壁厚的设计 (3) 1.3刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 3.1液压试验压力的确定 (3) 3.2液压试验的强度校核 . (3) 3.3压力表的量程、水温的要求 (3) 3.4液压试验的操作过程 (3) 4、罐体的气压试验 (4)

4.1气压试验压力的确定 (4) 4.2气压试验的强度校核 (4) 4.4、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计算 ..................................4 2.1、开孔补强的有关计算参数 .......................5 2.2、补强圈的设 计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7)

苯-甲苯筛板精馏塔课程设计

河西学院 Hexi University 化工原理课程设计 题目: 苯-甲苯筛板式精馏塔设计学院:化学化工学院

专业:化学工程与工艺 学号: 姓名: 指导教师: 2014年12月6日 目录 化工原理课程设计任务书 1.概述 (5) 1.1序言 ....................................................................................................................... 5 1.2再沸器?5 1.3冷凝器?5 2.方案的选择及流程说明?6 3.塔的工艺计算?6 3.1原料及塔顶塔底产品的摩尔分率?7 3.2原料液及塔顶、塔底产品的平均摩尔质量 (7) 3.3物料衡算?7 4.塔板数的确定 (7) 4.1理论塔板数T N (7)

4.2最小回流比及操作回流比?8 4.3精馏塔的气、液相负荷?8 4.4操作线方程 .............................................................................. 错误!未定义书签。 4.5图解法求理论塔板数 (9) 4.6实际板层数?9 5.精馏塔的工艺条件及有关物性数据................................................. 错误!未定义书签。 5.1操作压力?9 5.2操作温度?10 10 5.3平军摩尔质量? 5.4平均密度?11 5.5液体平均表面张力 ........................................................................................... 12 5.6液体平均黏度 ..................................................................................................... 12 13 6.精馏塔的塔体工艺尺寸? 6.1塔径 (13) 6.2空塔气速 (13) 6.3实际空塔气速 (14) 6.4精馏塔有效高度?错误!未定义书签。 7.踏板主要工艺尺寸的设计......................................................................................... 157.1塔板布置 .......................................................................................................... 18 7.2.塔板布 置………………………………………………………………………….18

储罐 课程设计

茂名学院课程设计 目录 一、绪论 (1) 1.1设计任务、设计思想、设计特点 (1) 1.2主要设计参数的确定记说明 (1) 二、材料及结构的选择与论证 (2) 2.1 材料选择与论证 (2) 2.2 结构选择与论证 (3) 2.2.1 封头形式的确定 (3) 2.2.2 人孔的选择 (3) 2.2.3 法兰的选择 (3) 2.2.4 液面计的选择 (4) 2.2.5 鞍式支座的选择与确定 (4) 三、设计计算 (5) 3.1筒体厚度的计算 (5) 3.2封头壁厚的计算 (5) 3.3水压试验压力及其强度的计算 (6) 3.4人孔的选择及核算开孔补强 (6) 3.5鞍座的选择及核算承载能力 (8) 3.6液位计的选择 (9) 3.7选配工艺接管 (9) 四.设备总装备图(附录) (10) 五.小结 (10) 六.设计参考书目 (10)

液氨储罐机械设计 一. 绪论 1. 1 设计任务、设计思想、设计特点 (1)设计任务 按要求设计一压力容器,液氨储罐的公称直径为1400mm,罐体的公称容积为20m3,制造地点:广东省广州市。 (2)设计思想 液氨储罐通常由卧式圆柱形圆筒和两端椭圆封头组成,按照化学生产工艺的要求设置进料口,出料口,放空口,排污口,压力表,安全阀和液面计等,为了检修方便开设人孔,用鞍式支座支撑于混凝土基座上。 综合运用化工过程设备机械基础及所学的知识,联系实际,进而巩固加深和发展所学的知识,提高分析实际问题和解决问题的能力。 (3)设计特点 液氨对钢材的腐蚀作用很小,但是,至于室外的液氨储罐,其工作温度为环境温度,其工作压力为该环境温度下的饱和蒸汽压,随着气温的变化,液氨储罐的操作温度和操作压力也会变化,所以其材料的钢材必须应能承受这种变化,在我国的北方严寒地区,冬季气温很低,普通钢材就可能出现低温脆性,所以选用低温设备用钢。 ①壁厚分类———薄壁容器 工程上的容器外径和内径的比值K=D0/D i小于等于1.2的压力容器称为薄壁容器。 ②受压状况的分类——内压容器 容器器壁承受的拉应力,通过强度条件计算壁厚。 ③安装方式分类——卧式容器 在自重和内部充满液体等载荷作用下在壳体一些特殊部位产生各种局部应力,加以考虑。 ④容器工作温度的确定——常温容器 设计温度在-200C~2000C的压力容器,根据本次设计的容器的工作温度为-400C~400C,确定为常温容器。 ⑤设计压力的分类——中压容器 压力1.6MPa到10MPa的容器为中压容器,本次设计的容器工作的压力为1.55MPa,设计压力稍大于工作压力,所以为中压容器。 ⑥容器在生产中的用途和分类——贮存容器 ⑦按《压力容器安全技术监察视程》分类——第二类容器 1. 2主要设计参数的确定和说明 (1)工作温度的确定 贮罐常至于室外,在夏天经过太阳的曝晒,温度可达400C,所以工作温度应低于400C (2)工作压力的确定

万立大型储罐施工工法

10万立方米浮顶储罐内脚手架正装工法 1 前言 随着原油储备建设不断发展,作为储存原油的钢制浮顶储罐越来越向大型化发展,目前应用最为广泛的是10万立方米储罐。储罐的施工方法主要有内脚手架正装法、外脚手架正装法、液压顶升法,其中内脚手架正装法具有操作简便、施工操作面广、速度快、机械化程度高、整体质量容易控制等优点,一直以来被国内大多数施工队伍所应用。大庆油田建设集团有限责任公司从1985年开始应用内脚手架正装法进行大型浮顶储罐的施工,到目前为止我公司应用该工法已经施工了45台5万立方米储罐,54台10万立方米储罐,5台15万立方米储罐。 1992年,大庆油田建设集团有限责任公司开发的《10万立方米浮顶油罐内脚手架正装工法》获得国家级工法,编号:YGJF42-92。近年来,随着储罐施工技术的不断发展,公司对原工法进行了升级,对工法的关键技术进行创新性改进,形成了大型储罐的施工工艺及配套技 术,开发了浮船CO 2气体保护半自动焊施工技术、罐底板CO 2 气体保护半自动焊打底碎丝埋弧 焊填充盖面焊接技术以及焊缝自动打磨、等离子清根等配套技术,使储罐施工自动化水平及施工工艺不断提高和完善。 2006年《大型立式储罐自动化施工工艺及配套技术研究》荣获大庆石油管理局科技进步一等奖,等离子清根设备获得国家专利,专利号:;横焊焊剂托带获得国家专利,专利号:;2007年由大庆油田建设集团有限责任公司自主研究的储罐罐壁板控制垂直度卡具获得国家专利,专利号;浮顶组装式新型节点平台获得国家专利,专利号:;多功能壁板托架获得国家专利,专利号:。气体保护焊防风罩获得国家专利,专利号:。2008年《10万立方米浮顶储罐施工配套技术研究》荣获中国石油和化学工业协会科技进步三等奖。 2009年4月,工法的关键技术通过了中国石油和化学工业协会的科技鉴定,鉴定结论为:该技术创新成果拥有自主知识产权,达到国内领先水平,应用前景广阔。 2 工法特点 储罐的罐壁和浮顶可同时交叉施工,工效高。 罐壁板内侧搭设三层临时脚手架及劳动保护,搭设简单、速度快,施工受自然条件限制小,不受水源、大风天气的影响。

相关主题
文本预览
相关文档 最新文档