当前位置:文档之家› 污泥干化机和污泥干化设备的工艺流程及分类

污泥干化机和污泥干化设备的工艺流程及分类

污泥干化机和污泥干化设备的工艺流程及分类
污泥干化机和污泥干化设备的工艺流程及分类

世界上最早将热干燥技术用于污泥处理的是英国的Bradford公司。1910年,该公司首次开发了转窑式污泥干化机并将其应用于污泥干化实践,进入80年代末期,污泥干化技术逐渐为人们所重视,污泥干燥技术的应用和推广,促进了污泥处理处置手段的改变,这种改变主要体现在:污泥填埋处置前,要将污泥进行干燥处理;污泥焚烧处置比例得到了较大提高;干污泥产品作为土地回用的肥源出售,产业规模不断扩大等。如今,污泥干化处理也得到了越来越多包括发展中国家环境工程界的重视。

在我国,随着国家经济实力的增强,国民环保意识的提高,城市污水处理行业得到迅速发展,城市污泥的产量与日俱增,污泥的处置和开发利用问题日益为人们所关注。污泥的干化处理,使污泥农用、作为燃料使用、焚烧乃至为减少填埋场地等处理方法成为可能。污泥干燥技术的完善与革新,直接推动了污泥处置手段的发展,拓展了污泥处置手段的选择范围,使之在安全性、可靠性、可持续性等方面得到越来越可靠的保证。但污泥的干化处理需要消耗大量的热源,提高了污泥的处置成本。因此,寻求一套技术成熟的设备和价格低廉的热源,是城市污泥进行综合处置和利用的关键。

自20世纪80年代末期以来,污泥干化技术在欧、美等发达国家应用广泛。例如欧盟在20世纪80年代初只有数家污水处理厂采用污泥热干化设备处理污泥,但到1994年底已有约180家污泥干化处理厂,并且还在逐年增加;在欧洲未来十年内,采用热处理的污泥量将翻一番;英联邦在未来十年内污泥热处理厂的数量将增加10倍;美国自1995年来,设计或安装了至少28座新的污泥干化装置。

污泥干化技术同时也得到了越来越多发展中国家环境工程界的重视,为我国污泥处置提供了宝贵的经验。

1、污泥干化设备的分类

按热介质和污泥接触方式可分为:

(1)直接加热式:将燃烧室产生的热气与污泥直接进行接触混合,使污泥得以加热,水分得以蒸发并最终得到干污泥产品,是对流干化技术的应用;

(2)间接加热式:将燃烧炉产生的热气通过蒸气、热油介质传递,加热器壁,从而使器壁另一侧的湿污泥受热、水分蒸发,是传导干化技术的应用;

(3)“直接2间接”联合式干化:即“对流2传导”技术的结合。

按设备形式分可分为:转鼓式、转盘式、带式、螺旋式、离心式干化机、喷淋式多效蒸发器、流化床、多重盘管式、薄膜式、浆板式等多种形式。

按干化设备进料方式和产品形态分可分:

(1)干料返混系统:湿污泥在进料前先与一定比例的干泥混合,然后才进入干燥机,产品为球状颗粒,是干化、造粒结合为一体的工艺;

(2)湿污泥直接进料,产品多为粉末状。

2、污泥干化设备工作原理和工艺流程

直接加热转鼓干化技术

自20世纪40年代以来,日本、欧洲和美国就采用直接加热式转鼓干燥机来干化污泥。目前主要有四家设备供应商:澳大利亚的AndritzAG,美国的BioGro,英国的SwissCombi和日本的Okawara。除了Okawara工艺之外,其余各厂家的工艺在干化前,均需用干物料与污泥混合形成含固率达60%~70%的小球状物,这样可产生在转鼓里随意转动的小球颗粒;Okawara公司生产的干燥机,则用转鼓里的高速刮削刀刮泥饼,以形成随意移动的产物。

最初所有转鼓式干燥机都使用一次性通过空气系统,能量利用效率低,且产生大量需要除臭的气体。后来大部分供应商采用密闭循环式干燥机,节省了能源,减少了剩余空气排放量。

Andritz开发的新一代密闭式、带返料、直接加热转鼓式干化系统流程:脱水后的污泥

从污泥漏斗进入混合器,按比例充分混合部分已经被干化的污泥,使干湿混合污泥的含固率达60%~70%,然后经螺旋输送机运到三通道转鼓式干燥机中。在转鼓内与同一端进入的流速为112~113m/s,温度为700℃左右的热气流接触混合集中加热,经25min左右的处理,烘干后的污泥被带计量装置的螺旋输送机送到分离器,在分离器中干燥机排出的湿热气体被收集进行热力回用,带污染的恶臭气体则被送到生物过滤器处理以达到符合环保要求的排放标准;从分离器中排出的干污泥其颗粒度可以被控制,再经过筛选器将满足要求的污泥颗粒送到贮藏仓等候处理。干化的污泥干度达92%以上或更高。干化的污泥颗粒直径可控制在1~4mm,这主要考虑了把干化的污泥用作肥料或园林绿化的可能性。细小的干化污泥被送到混合器中与湿污泥混合后,送入转鼓式干燥机(可使用沼气、天然气或热油等为燃料)。分离器将干化的污泥和水汽进行分离,水汽几乎携带了污泥干化时所耗用的全部热量,需要充分回收利用。水汽要经过冷凝器(冷凝器冷却水入口温度为20℃,出口温度为55℃),被冷却的气体送到生物过滤器中处理,完全达到排放标准后排放。

该污泥干化系统特点是:在无氧环境中操作,不产生灰尘,干化污泥呈颗粒状,粒径可以控制,采用气体循环回用设计减少了尾气的排放和处理成本。

间接加热转鼓干化技术

美国某公司开发的湿污泥直接进料、间接加热转鼓干化系统工艺流程:脱水后的污泥输送至干化机的进料斗,经过螺旋输送器送至干化机内,螺旋输送器可变频控制定量输送。干化机由转鼓和翼片螺杆组成,转鼓通过燃烧炉加热,转鼓最大转速为115r/min。翼片螺杆通过循环热油传热,最大转速为015r/min。转鼓和翼片螺杆同向或反向旋转,污泥可连续前移进行干化,转鼓沿长度方向分布为三个燃烧炉温度区域,分别为370℃,340℃和85℃。

翼片螺杆内的热油温度为315℃。转鼓经抽风控制其内部为负压,水汽和尘埃无法外逸。污泥经转鼓和翼片螺杆推移和加热被逐步烘干并磨成粉末状,在转鼓后端低温区经过S形空气止回阀由干泥螺杆输送器送至储存仓。污泥蒸发出的水汽通过系统抽风机送至冷凝和洗涤吸附系统。

该污泥干化系统的特点是:流程简单,污泥的干度可控制,干化器终端产物为粉末状。

离心干化技术即脱水干化一体技术

Humboldt公司开发的离心干化机系统工艺流程:稀污泥自浓缩池或消化池进入离心干化机,干化机内的离心机对污泥进行脱水,经机械离心脱水后的污泥呈细粉状从离心机卸料口高速排出,高热空气以适当的方式引入到离心干化机的内部,遇到细粉状的污泥并以最短的时间将其干化到含固率80%左右。干化后的污泥颗粒经气动方式以70℃的温度从干化机排出,并与湿废气一起进入旋流分离器进行分离。一部分湿废气进入洗涤塔中冷凝析出大部分水分,净化后的废气以40℃的温度离开洗涤塔。因为污泥不需要储存,整个系统可以迅速的启动和关闭,而且干化和运输在几秒钟内即可完成,故在污泥进入系统后不久干化污泥颗粒就可从排料阀排出。与循环气体混在一起的燃料废气和低氧含量的干燥废气需要连续不断地通过洗涤塔排气立管排出。

其特点是:流程简单,省去了污泥脱水机及从脱水机至干化机的存储、输送、运输装置。

间接式多盘干燥技术(珍珠工艺)

20世纪70年代以来,间接加热圆盘式干燥机被应用于污泥干燥,主要设备供应商有StordInternationalBussAG,Bepex,KomlineSanderson和Seghers等公司。Seghers公司开发的新一代间接式多盘干燥工艺的流程,又称珍珠工艺。机械脱水后的污泥(含固率25%~30%)送入污泥缓冲料仓,然后通过污泥泵输送至涂层机,在涂层机中再循环的干污泥颗粒核与输入的脱水污泥混合,干颗粒核的外层涂上一层湿污泥后形成颗粒,这个涂敷过程非常重要,内核是干的(含固率>90%),外层是一层湿污泥,涂覆了湿污泥的颗粒被送入硬颗粒造粒机(多盘干燥机),然后倒入造粒机上部,均匀地散在顶层圆盘上。通过与中央旋转主轴相连的耙

臂上的耙子的作用,污泥颗粒在上层圆盘上做圆周运动。污泥颗粒从造粒机的上部圆盘由重力作用直至造粒机底部圆盘,颗粒在圆盘上运动时直接和加热表面接触干化。污泥颗粒逐盘增大,最终形成坚实的颗粒。干燥后的污泥颗粒温度90℃,粒径1~4mm,离开干燥机后由斗式提升机向上送至分离料斗,一部分被分离出再循环回涂层机,同时剩余的颗粒进入冷却器冷却至40℃送入颗粒储料仓。污泥干化过程所需的能量由热油传递,温度介于260~230℃的热油在干燥机内中空的圆盘内循环,从干燥机排出的接近115℃的蒸汽冷凝,经热交换器冷凝后的热水温度为50~60℃。间接式多盘干燥机也叫造粒机,立式布置多级分布,间接加热。

其特点是:干燥和造粒过程氧气浓度<2%,避免了着火和爆炸的危险性。颗粒呈圆形,坚实、无灰尘且颗粒均匀,具有较高的热值,可作为燃料,尾气经冷凝、水洗后送回燃烧炉,将产生臭味的化合物彻底分解,所以其尾气能满足很严格的排放标准。

流化床污泥干化技术

维奥技术瓦巴格德国有限公司开发的流化床污泥干化系统工艺流程:脱水污泥送至污泥计量储存仓,然后用污泥泵将污泥送至流化床污泥干燥机中的进料口并将污泥进行分配。流化床污泥干燥机从底部到顶部基本由三部分组成,在干燥机的最下面是风箱,用于将循环气体分送到流化床装置的不同区域,其底部装有一块特殊的气体分布板,用来分送惰性流化气体。在中间段,用于蒸发水的热量将通过加热热油送入流化床内。最上部为抽吸罩,用来使流化的干颗粒脱离循环气体,而循环气体带着污泥细粒和蒸发的水分离开干燥机。在干燥机内干燥温度85℃,产生的污泥颗粒被循环气体流化并产生激烈的混合。由于流化床内依靠其自身的热容量,滞留时间长和产品数量大,因此,即使供料的质量或水分有些波动也能确保干燥均匀,用循环的气体将污泥细粒和灰尘带出流化层,污泥颗粒通过旋转气锁阀送至冷却器,冷凝到低于40℃,通过输送机送至产品料仓。灰尘、污泥细粒与流化气体在旋风分离器分离,灰尘、污泥细粒通过计量螺旋输送机,从灰仓输送到螺旋混合器。在那里灰尘与脱水污泥混合并通过螺旋输送机再送回到流化床干燥机。干燥机系统和冷却器系统的流化气体均保持在一个封闭气体回路内。循环气体将污泥细粒和蒸发的水分带离流化床干燥机。污泥细粒在旋风分离器内分离,而蒸发的水分在一个冷凝洗涤器内采用直接逆流喷水方式进行冷凝。蒸发的水分以及其它循环气体从85℃左右冷却为60℃,然后冷凝,冷凝下来的水离开循环气体回流到污水处理区,冷凝器中干净而冷却的流化气体又回到干燥机,干化污泥由冷却回路气体冷却到低于40℃。

该污泥干化系统的特点是:无返料系统,间接加热,污泥干燥机本身无动部件,故几乎无需维修,但干化颗粒的粒径无法控制。

污泥干化设备行业调研分析报告

污泥干化设备行业调研分析报告 摘要—— 该污泥干化设备行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类污泥干化设备企业895家,从业人员44750人。截至2017年底,区域内污泥干化设备产值156802.72万元,较2016年141149.27万元增长11.09%。产值前十位企业合计收入68441.51万元,较去年61075.77万元同比增长12.06%。 ...... 中国的制造业正面临着第三次工业革命。第三次工业革命是由于人工智能、数字制造和工业机器人等基础技术的成熟和成本下降,以数字制造和智能制造为代表的现代制造技术对既有制造范式的改造以及基于现代制造技术的新型制造范式的出现,其核心特征是制造的数字化、智能化和网络化。

第一章宏观环境分析 一、宏观经济分析 1、优化环境是振兴实体经济的前提保障。把实体经济确定为国民经济之本,就要让政策、资金、技术、人才等要素不断汇聚过来,实现实体经济、科技创新、现代金融、人力资源协同发展。其一,使科技创新在实体经济发展中的贡献份额不断提高,就要加快构建国家制造业创新体系,包括完善以企业为主体、需求为导向、产学研深度融合的技术创新体系,建成一批高水平制造业创新中心,培育一批创新型领军企业等。其二,使现代金融服务实体经济的能力不断增强,就要落实好中央出台的金融支持实体经济相关政策,运用大数据、互联网等新型技术改善融资服务,积极发展多层次资本市场,增强金融服务实体经济能力。其三,使人力资源支撑实体经济发展的作用不断优化,就要落实好新时期产业工人队伍建设改革方案和制造业人才发展规划指南,培养一大批具有创新精神和国际视野的企业家人才、专家型人才和高级经营管理人才,建设知识型、技能型、创新型的劳动者大军。尤需强调的是,对实体经济伤害最大的“脱实向虚”现象,很大程度上反映了市场的盲目性,通过加强宏观调控发挥“有形之手”的作用格外重要。这方面,不仅要强化金融监管治理、促其回归本源,

全封闭污泥干化技术与设备

全封闭污泥干化技术与设备 一、污泥干燥焚烧 污泥焚烧工艺依照焚烧方式又分为直截了当焚烧和干燥焚烧两种。 污泥的直截了当焚烧是将高湿污泥在辅助燃料作为热源的情形下直截了当在焚烧炉内焚烧。由于污泥的含水量大、热值低,只有加入辅助燃料(煤、重油、柴油等)的情形下,污泥才能燃烧,耗费大量能源。由于污泥含水量大,焚烧后的尾气量也比较大,后续尾气处理需要庞大的设备,操作操纵难度大,相应造成后续喷淋塔、除雾塔等设备处理量大大增加,同时使设备投资和系统运行费用大大提高。 为了降低污泥处理运行费用和提高污泥焚烧效率,将污泥的直截了当焚烧改造为污泥经干燥后焚烧,因此需要配套污泥干燥设备系统。 污泥的干燥焚烧目的是高效、安全的实现污泥的完全矿化。在焚烧工艺前面采纳污泥干燥工艺的目的是实现污泥的减量化,节约后续焚烧处置的费用。污泥中大量的水分在干燥时期被除去,后续的焚烧炉将比直截了当燃烧时的体积减小,尾气处理系统在设备体积减小的同时,由于水蒸气含量的减少,处理难度会降低而效率会增加。 污泥干燥焚烧把污泥中的水分进行干燥处理后,配以适当比例的煤灰,焚烧产生热能发电。尽管一次性投资稍高,但由于它具有其它工艺不可代替的优点,专门在污泥量的消减上,卫生化,最终出路上,处置占地面积上,都有其他工艺无法比拟的优势,是一种污泥最终出路的解决方法,在污泥的最终处置方面将有着广泛的前景。 污泥的干燥最早是在二十世纪四十年代开发的,通过几十年的进展,污泥干燥的优点正逐步显现出来:干燥后的污泥与湿污泥相比,能够大幅度减小体积,从而减小了储存空间,以含水的湿污泥为例,干燥至含水30%时,体积能够减小;形成颗粒或粉状的稳固产品,使污泥形状大大改善;最终产品无臭且无病原体,减轻了污泥的有关负面效应,使处理的污泥更容易被同意;干化后的高热值污泥也能够替代能源,实现变废为宝。 1、污泥干燥的机理 干燥是为了去除水分,水分的去除要经历两个要紧过程: (1)蒸发过程:物料表面的水分汽化,由于物料表面的水蒸气压低于介质(气体)中的水蒸气分压,水分从物料表面移入介质。 (2)扩散过程:是与汽化紧密相关的传质过程。当物料表面水分被蒸发掉,形成物料表面的湿度低于物料内部湿度,现在,需要热量的推动力将水分从内部转移到表面。 上述两个过程的连续、交替进行,差不多上反映了干燥的机理。

污泥干化焚烧技术介绍

污泥干化焚烧技术介绍 一、技术背景 城市污泥的产量巨大并且成分复杂,如何对城市污泥处置与利用已成为人们所关注的问题。污泥的处理处置应该以“减量化、稳定化、无害化”为最终目的,在此原则下应选择经济性较好的技术。城市污泥的处理方法主要有填埋、用于农作肥和焚烧。 由于填埋侵占大量土地、处理费用日益提高、以及随着环保标准的提高和回收利用政策的实施,填埋法将不是可持续发展的途径。污泥作为农田肥是一种较好的出路,但污泥中的重金属和有机污染物将会使该应用受到一定的限制。污泥焚烧处理具有其它处理方法所不具备的一些优点:污泥焚烧减容量大;有机物热分解彻底等,尤其适合与发电厂等锅炉机组联合使用。 二、技术原理 技术原理: 利用燃煤电厂锅炉空预器前的高温烟气对市政污水处理厂产生的污泥等进行干燥,将干燥后的污泥送入锅炉进行焚烧,焚烧后的灰渣混合在锅炉灰渣里进行排放。利用完的低温烟气送回到锅炉烟气后处理装置(如静电除尘器入口、脱硫塔入口等)进行处理净化后排出。 技术路线: 1.污泥脱水:污水处理厂污泥浓浆(含水率99%)使用脱水机脱水至含水率60%出厂或经简单脱水处理后脱水至含水率80%出厂; 2.污泥运输:采用封闭运输方式将脱水出厂污泥送至电厂干化车间,存入污泥池; 3.污泥干化:以锅炉的中温烟气为热源,采用干燥器将污泥干化至含水率30%以下; 4.资源化利用:将干化污泥作为燃料同煤按照比例掺烧。

污泥干化焚烧系统流程 三、技术特点 1.采用燃煤锅炉高温烟气作为干燥介质,将干化后的污泥送至锅炉燃烧,内在热值得到充分利用,可以提供一部分热量,降低干化成本; 2.不影响锅炉运行及锅炉灰渣品质; 3.最大限度的达到污泥处置的:“减量化、无害化、稳定化和资源化”要求,没有二次污染。 四、主要的性能指标及适用范围 污泥干燥前水分:70~90%; 污泥干燥后水分:20~45%; 污泥热量来源:燃煤锅炉空预器前的高温烟气; 适用的污泥种类:城市污水处理厂污泥、造纸污泥、印染污泥、化纤污泥、制药污泥、发酵污泥等各种污泥; 适用的场所:适用具有烟气余热的燃煤锅炉的工厂; 型号规格:50t/d、100d/d、120t/d、150t/d、200t/d。 五、工程案例 以100t/d的污泥处理量为例,主要参数如下: 1、湿污泥量:100t/d 2、湿污泥含水率:80% 3、干化后干污泥含水率:30% 4、高温烟气温度:340℃

增加污泥干化协同焚烧工艺的技术方案分析

增加污泥干化协同焚烧工艺的技术方案分析摘要:成都市目前已投运的规模最大的垃圾焚烧发电厂——成都市万兴环保发电厂拟实施增加污泥干化-协同焚烧工艺技改,结合该厂现有的垃圾焚烧系统工艺条件和需协同处理污泥的泥质特点,分析了该厂新增的污泥干化工艺设计、污泥入炉掺烧工艺参数设计、新建配套辅助工艺设计和改造现有辅助工艺设施的技术方案。 近些年来,随着成都市经济快速增长,城镇人口不断增多,生活垃圾和污水的产生量也逐年增加。当前,成都市一方面面临“垃圾围城”的压力,现有的生活垃圾无害化处理设施处理能力已不能满足成都市生活垃圾产生量的要求;另一方面,成都市污水处理设施建设加快推进,成都市中心城区已运营的污水处理设施污泥产生量急剧增长,现有污泥处理设施处理能力已不能满足实际污泥产生量的需要。利用垃圾焚烧发电厂的蒸汽干化污泥,将干化后的污泥进入垃圾焚烧发电厂协同焚烧,该技术已成熟并在国内有多处工程案例,此类项目整合了各固体废弃物处理过程中二次能源资源协同利用和二次污染物的协同处理环节,发挥产业协同、以废治废、上下游资源循环利用作用,是解决城市“垃圾围城”和“污泥围城”双重困境的有利之举。成都市相关规划已将垃圾焚烧发电厂协同处理污泥作为近期重点规划的城市固废处理方案,其中,已投运的万兴环保发电厂实施协同处理

污泥的相关技改也被纳入规划项目之一。 1成都市万兴环保发电厂项目概况 成都市万兴环保发电厂是成都市第4座垃圾焚烧发电厂,也是目前成都市已投运规模最大的垃圾焚烧发电厂,由成都市兴蓉再生能源有限公司投资运营。万兴环保发电厂于2017年1月正式投运,设计处理能力2400t/d,配置4台600t/d机械炉排炉,4台中温中压卧式余热锅炉,2台25MW 凝汽式汽轮发电机组。该项目采用了目前国际上先进的焚烧工艺技术,关键设备一焚烧炉排为日立造船公司的INOVA式L型炉排,焚烧线整体设计水平达到业内一流。 2增加污泥干化协同焚烧工艺技改要点和难点 2.1焚烧物料性质分析 目前,万兴环保发电厂处理对象主要是来自成都市中心城区的生活垃圾。其在收运过程中经转运站压缩后进人垃圾焚烧厂垃圾储坑,再经数天堆酵后,生活垃圾中的部分水分已沥出,人炉垃圾热值波动不大。白2017年1月,该厂人炉垃圾热值为6000~8 000 kJ/kg,一般无需添加辅助燃料。 万兴环保发电厂拟掺烧的污泥包括该厂所在固废处理产业园区2座垃圾渗沥液厂的脱水后污泥和成都市中心城区污水处理厂的脱水后污泥。污泥泥质和万兴环保发电厂入炉垃圾性质和元素分析见表1。 1.jpg

造纸污泥干化设备印染污泥烘干机案例

项目概述: 为延续污泥在安全性、可靠性、绿色化的优质性能,始终走在污泥处理技术前列的常州豪迈,在融合国际生产工艺与本土化现状后,经过多年砥砺,自主研发出空心桨叶干燥机。上述负责人进而指出,空心桨叶干燥机,即一种以热传导为主的卧式搅拌型连续干燥设备。因搅拌叶片形似船桨,故得名如斯。 作为一款倡导节能环保特色的制造设备,常州豪迈的空心桨叶干燥机自是“不甘人后”。因运作过程中主要倚赖热传导间接加热,故而大量留存的热量利用率将会令该设备效能得以高效提升。同时,随着搅拌、混合会使物料剧烈翻动,空心桨叶干燥机可获得更高传热系数,占地面积小的特质便随之而来。 此外,由于独特的桨叶结构,物料在干燥过程中不断受到交替的挤压与松弛,使得干燥室内的填充率远超80%。尔后,通过调节加料速度、搅拌轴转速、物料充满度等参数,常州豪迈的空心桨叶干燥机将力促污泥脱水与干化达至指定效果。目前,该设备已运用于市政污泥、印染污泥、造纸污泥、电镀污泥等重点行业,并凭借连续生产、高效动能、合理成本赢收获了诸多市场赞誉。 可以说,污泥烘干设备的广泛应用,为破局城市污泥处理困境,提升污水处理行业的供给品质,构建水杯民生的战略体系奠定了坚实基础。无疑,改革已箭在弦上,而常州豪迈所坚持的就是顺应时代命题,满足市场需求,奉献出“豪迈制造”的燎原星火。

造纸污泥干化设备|印染污泥烘干机的作用 污泥没干化前含水量很高,剩余污泥含水量达99.2%~99.5%,经过浓缩池后的污泥含水量为95~97%,压滤后的含水量在80%左右,之所以要降低含水率以及污泥干化,一是污水厂污泥产量都比较大,必须降低污泥体积,以便后续运输、处理方便,二是国内污泥处理很多都是以填埋的方式运往垃圾填埋厂,减少体积可以也可以为填埋厂节约空间,三是污泥要经过一些处理后,干化才可以作为肥料、建筑材料使用。 造纸污泥干化设备|印染污泥烘干机工艺流程: 第一阶段为污泥浓缩,主要目的是使污泥初步减容,缩小后续处理构筑物的容积或设备容量;第二阶段为污泥消化,使污泥中的有机物分解;第三阶段为污泥脱水,使污泥进一步减容;第四阶段为污泥处置,采用某种途径将最终的污泥予以消纳。造纸污泥干化设备|印染污泥烘干机工艺技术设计: 1、污泥来源:市政污泥工厂污泥 2、全干化:来泥含水率80-85%(湿基)干化后含水率10%(湿基) 3、半干化:来泥含水率80-85%(湿基)干化后含水率40%(湿基)

关于污泥干化技术的总结

每年我国城市污水处理厂产生的污泥超过6000万吨(含水率80%),每万吨污水产80%污泥量约为3-8吨,由于长期存在“重水轻泥”的问题,污泥处理处置形势越来越严峻。污泥处理主要遵循“无害化、稳定化、减量化、资源化”四个原则,其中无害化是基础,稳定化、减量化是原则,资源化是主要发展方向。污泥干化技术多种多样,有自然干化、热力干化、高干脱水等。本文主要谈谈污泥干化技术的及其的运用。 一、污泥干化技术 1、自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,目前运用不多,以处理自来水厂污泥等为主。 2、热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处理适用性好和灵活性高等优点。污泥热力干化工艺通常可以将污泥含水率降低至40%或以下,干化后污泥多进行焚烧处理。

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

污泥干化操作规程

污泥干化设备操作规程 一、开车 1、检查各部件完整,无破损。已添加润滑油脂,满足开车条件。 2、检查电源、物料、蒸汽等具备开车条件。 3、开车顺序:①开动电动机 ②开轴承降温冷却水 ③开启加热或冷却介质阀门和冷凝水阀 ④开启进料阀 二、停车 1、通知上、下工段,准备停车。 2、停车顺序:①停止进料 ②维持适当的排料延续时间,直至保持箱体内允许的 最少存料量 ③停止热源供应,关闭相应阀门 ④停止电动机运转 ⑤关闭相应轴承降温冷却水阀门

污泥干化设备操作注意事项 1、注意观察电流是否在电机额定值内,否则应立即找出原因并予以 解决。 2、对不同的物料,应注意控制进料速度,以确保运行平稳,尤其是 不可强制大量加入物料。 3、物料装填量即出料料位高度可利用出料调节机构进行调节。调好 后,一般不得随意变动位置。 4、注意轴承体的温度不可高于70℃,应适时加注高质量润滑脂。 5、打开轴承体上的视孔盖,观察各处密封是否有泄漏。填料密封处 如有泄露可压紧填料压盖或更换填料。 6、齿轮啮合部位应及时涂抹润滑脂,并注意防尘和加盖防尘罩。 7、不允许超压或超负荷运行。 8、设备首次使用一周后,将减速机内润滑油放尽,重新更换同型号 新油。 9、停机时要将机内物料清理干净。 10、冬季停车时,需放净机内存水。

污泥干化设备故障及排除方法 故障表现原因排除方法 电流超限轴功率增大1、物料粘性大或含水率高。 2、加料量太多。 3、轴承损坏。 4、填料压盖压的太紧。 1、返回部分干料。 2、减少加料量。 3、拆换轴承。 4、稍松一下填料压盖的螺母。 物料从填料密封处泄露1、填料损坏。 2、填料压盖压的不紧或不正。1、更换新的填料或改换其它品种合适材料的填料。 2、调整填料压盖后适当拧紧压盖螺母。 轴承体温度太高,超过70℃1、轴承损坏。 2、无润滑脂或润滑脂失效。 3、加热介质温度过高。1、更换轴承。 2、更换或加注新润滑脂。 3、降低加热介质温度。 物料干燥程度不够或干燥量偏少1、物料在设备内停留时间短。 2、热源温度不够或流量不够。 3、湿气排出不畅。 4、物料在局部滚图案滞留。1、利用出料调整机构关小出口开缝。 2、提高热源温度或加大热源流量。 3、疏通排湿气管道或采取抽吸气措施或增加热空气。 4、适当抬高设备的进料端或返回部分干料。

污泥干化详细方案

污泥干化案 1.1 总体案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因边空气的蒸汽压的不同而形成从向外的迁移(蒸发)。该法适用于气候比较干燥、占地不紧以及环境卫生条件允的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北的大中型发达城市也已难找到适当的土地。 自然干化的期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短期;但占地面积大,臭气污染重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。 1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧

化燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。 该技术是从机理、药剂、机械进行匹配。其中所加药剂不仅可以通过螯合作用除去水中的金属离子,还可以通过电中和作用、氢键作用和

污泥干化设备

一、污泥干化设备产品概述: 污泥烘干机使湿物料在叶片的搅动下,与加热载体的热表面充分接触,从而达到干燥目的,结构形式一般为卧式。热风形式即通过热载体(如热空气)直接与被干燥的物料接触并进行干燥,传导形式即热载体并不与被干燥的物料直接接触,而是热表面与物料传导接触并进行干燥。 二、污泥干化设备简介: 使湿物料在叶片的搅动下,与加热载体的热表面充分接触,从而达到干燥目的,结构形式一般为卧式。污泥烘干机分为热风式和传导式。热风形式即通过热载体(如热空气)直接与被干燥的物料接触并进行干燥,传导形式即热载体并不与被干燥的物料直接接触,而是热表面与物料传导接触并进行干燥。污泥覆盖叶片并与叶面的相对运动产生洗刷作用。 空心轴上密集排列着空心叶片,热介质经空心轴流经叶片。单位有效容积内传热面积很大(一般单台双轴桨叶面积≤200m2 左右;单台四轴桨叶面积≤400m2 左右),热介质温度从60~320℃,可以是水蒸气,也可以是液体型:如热水、导热油等。间接传导加热,热量均用来加热物料,热量损失仅为通过器体保温层和排湿向环境散热。 三、污泥干化设备机性能特点: (1) . 设备结构紧凑,污泥烘干机装置占地面积小。干燥所需热量主要是由排列于空心轴上的空心叶片壁面提供,而夹套壁面的传热量只

占少部分。所以单位体积设备的传热面大,可节省设备占地面积,减少基建投资。 (2) . 热量利用率高。污泥干燥机采用传导加热方式进行加热,所有传热面均被物料覆盖,减少了热量损失;热量利用率可达85% 以上。 (3) .叶片具有一定的洗刷能力,可提高叶片传热作用。旋转叶片的倾斜面和颗粒或粉末层的联合运动所产生的分散力,使附着于加热斜面上的污泥带有清理功能。另外,由于两轴叶片反向旋转,交替地分段压缩和膨胀搅拌功能,传热均匀,提高了传热效果。 (4).可实现连续化、全封闭作业,降低人工及粉尘排放。 (5).尾气处理方面系统一般采用常压或负压两种形式,根据不同的情况尽可能减少排气风量,从而降低尾气处理成本,对于污泥蒸发的臭味可另采用除臭系统处理后达标排放。 (6).本公司针对有毒及含有溶剂的高危化工污泥等可设计成高真空桨叶污泥干燥机,干燥进行低温干化工艺。这样不仅可以直接回收溶剂,还可以大大降低废气排放量,安全性及环保性能大大提高。 四、污泥干化设备关键技术创新点及改进设计:

污泥干化技术总结

污泥干化技术总结 污泥干化技术总结 污泥是污水处理后的产物,污泥的主要特性是含水率高(可高达99%以上),有机物含量高,容易腐化发臭,这就需要进行污泥干化处理,目前污泥处理工艺中,污泥处理的干化处理方式占比仍居前位。今天总结了一些关于污泥干化技术解答,以供大家参考。 1.干化为什么要区分间接或直接加热方式? 直接和间接加热方式的划分在于热源利用的形式区别,具体来说就是直接作为介质还是间接对换热的介质进行加热。干化是依靠热量来完成的,热量一般都是能源燃烧产生的。燃烧产生的热量存在于烟道气中,这部分热量的利用形式有两类: 1.1.间接利用: 将高温烟道气的热量通过热交换器,传给某种介质,这些介质可能是导热油、蒸汽或者空气。介质在一个封闭的回路中循环,与被干化的物料没有接触。热量被部分利用后的烟道气正常排放。间接利用存在一定的热损失。对干化工艺来说,直接或间接加热具有不同的热效率损失,也具有不同的环境影响,是进行项目环评和经济性考察的重要内容。 1.2.直接利用: 将高温烟道气直接引入干燥器,通过气体与湿物料的接触、对流进行换热。这种做法的特点是热量利用的效率高,但是如果被干化的物料具有污染物性质,也将带来排放问题,因高温烟道气的进入是持续的,因此也造成同等流量的、与物料有过直接接触的废气必须经特殊处理后排放。 2.旋风分离器的固体回收率是多少? 在许多热对流系统中,污泥干化必须将全部或部分产品通过旋风分离的方式收集起来,由于各个工艺的风量和风压不同,通过此方法进行回收的颗粒粒径和比例不同,造成其设计的千差万别。一般来说,旋风分离器的固体回收率在95-98%之间。含固率越高,产品的粒度越小,捕集的难度也就会提高。 干化包括哪些必要的工艺步骤?污泥干化的目的在于去掉湿泥中的部分水分,以适应不同的处置要求。干化意味着在单位时间里将一定数量的热能传给物料所含的湿分,这些湿分

污泥处理方案

高铁新城污水处理厂一期工程场地南部污泥处理方案 一、情况说明 高铁新城污水处理厂一期工程项目由我单位负责实施土建工程施工。项目部在2015年12月份准备清理场地南部管理用房、污泥泵房、污泥脱水机房等构筑物位置淤泥时发现该区域内淤泥含水率在80%以上,呈柔软半流体状态。静置后析出大量红色、黑色液体,并散发出刺鼻的化学气味。后项目部从渭塘镇处得知,该处场地为原苏化厂工业废渣堆放场地及渭塘污水厂部分淤泥排放场地,具有污染性,与招投标文件、清单合同、勘察报告中描述差异较大。经过现场测算结合勘察报告,估算该部分淤泥总量约5-6万m3。 二、参考依据及工艺原理 1、参考依据: 《城镇污水处理厂污泥处置—单独焚烧泥质》(CJ/T289-2008) 《城镇污水处理厂污泥处置—混合填埋泥质》(GB/T 23485-2009) 2、工艺原理: 1)、填埋:主要包括浓缩、消化、脱水、堆肥或填埋。浓缩有机械浓缩或重力浓缩,后续的消化通常是厌氧中温消化。消化产生的沼气可作为能源燃烧或发电,或用于作化工产品等。消化产生的污泥性质稳定,具有肥效,经过脱水,减少体积成饼成形,有利运输。为了进一步改善污泥的卫生学质量,污泥还可以进行人工堆肥或机械堆肥。堆肥后的污泥是一种很好的土壤改良剂。对重金属含量超标的污泥,经脱水处理后要慎重处置,一般需要将其填埋封闭起来。 2)、干化+焚烧:污泥干化是指利用热能将含水率70%以下的湿污泥干化至含水率10%的干污泥,再将其与煤掺和后送入锅炉内焚烧,实现污泥减量

化、无害化处置,并回收冷凝水和干污泥热值。燃烧后的灰分送入水泥厂等二次利用。 参照苏州工业园区污泥干化厂处理工艺图: 现场的淤泥含有化学污染物及原渭塘污水处理厂排放的污泥,如采用第一种“堆肥填埋”的方式存在耗时长、重金属超标的弊端,跟目前项目工期矛盾。第二种“干化焚烧”的方式更快捷,残留的灰分可以循环利用,无后顾之忧。拟采取第二种处理方式。 三、处理办法 1、淤泥外运 现有淤泥干化处理厂家均距离项目所在位置较远,驳船运输、管道运输均不可取。故采用车辆运输。由于淤泥含水量较大,呈柔软半流体状态,常规土方车运输会造成道路、空气等环境污染,不符合环保要求,必须采用封闭式罐车运输。 拟采取将现有淤泥按1:1比例加水稀释后经泥浆泵抽取至泥浆罐车,经罐车运输至指定堆放场地,场地必须采用硬化且四周需砌筑围护封闭,场地

关于污泥干化总体原则的规定

关于污泥干化总体原则的规定 .6.1关于污泥干化总体原则的规定。 根据国内外多年的污泥处理和处置实践,污泥在很多情况下都需要进行干化处理。 污泥自然干化,可以节约能源,降低运行成本,但要求降雨量少、蒸发量大、可使用的土地多、环境要求相对宽松等条件,故受到一定限制。在美国的加利福尼亚州,自然干化是普遍采用的污泥脱水和干化方法, 1988 年占 32%, 1998 年增加到 39%,其中科罗拉多地区超过 80%的污水处理厂采用干化场作为首选工艺。 污泥人工干化,采用最多的是热干化。大连开发区、秦皇岛、徐州等污水厂已经采用热干化工艺烘干污泥,并制造复合肥。深圳的污泥热干化工程,目前已着手开展。 7.6.2关于污泥干化场固体负荷量的原则规定。 污泥干化场的污泥主要靠渗滤、撇除上层污泥水和蒸发达到干化。渗滤和撇除上层污泥水主要受污泥的含水率、粘滞度等性质的影响,而蒸发则主要视当地自然气候条件,如平均气温、降雨量和蒸发量等因素而定。由于各地污泥性质和自然条件不同,所以,建议固体负荷量宜充分考虑当地污泥性质和自然条件,参照相似地区的经验确定。在北方地区,应考虑结冰期间干化场储存污泥的能力。 7.6.3规定干化场块数的划分和围堤尺寸。 干化场划分块数不宜少于 3 块,是考虑进泥、干化和出泥能够轮换进行,从而提高干化场的使用效率。围堤高度是考虑贮泥量和超高的需要,顶宽是考虑人行的需要。 7.6.4关于人工排水层的规定。 对脱水性能好的污泥而言,设置人工排水层有利于污泥水的渗滤,从而加速污泥干化。我国已建干化场大多设有人工排水层,国外规范也都建议设人工排水层。 7.6.5关于设不透水层的规定。 为了防止污泥水入渗土壤深层和地下水,造成二次污染,故规定在干化场的排水层下面应设置不透水层。某些地下水较深、地基岩土渗透性较差的地区,在当

低温污泥干化技术Word版

低温污泥干化技术? 2009年以来,我国环境保护部、住房和城乡建设部以及科技部等部委,纷纷颁布了《污泥处理处置及污染防治技术政策》、《污泥处理处置污染防治最佳可行技术指南》以及《城镇污水厂污泥处理处置技术规范》等多项污泥处理处置的相关政策、规范及标准。这些文件明确了污泥干化焚烧技术在我国的定位及应用条件。其中,《污泥处理处置及污染防治技术政策》(2009年)明确提出:经济较为发达的大中城市,可采用污泥焚烧工艺。鼓励污泥焚烧厂与垃圾焚烧厂合建;在有条件的地区,鼓励污泥作为低质燃料在火力发电厂焚烧炉、水泥窑或砖窑中混合焚烧。该技术政策的颁布促进了污泥干化焚烧项目的建设,据不完全统计,目前已建成的项目接近40个,主要在建项目有30个。环保部出台的《城镇污水处理厂污泥处理处置污染防治最佳可行技术指南》(2010年)则确定了两个污泥处理最佳可行技术:厌氧消化和污泥堆肥;确定了两个污泥处置最佳可行技术:土地利用和污泥干化焚烧。文件细化了单独焚烧、混烧和掺烧的排放限值,以及相关环节的污染控制策略及技术经济适用性等。之后出台的《城镇污水处理厂污泥处理处置技术指南》(2011年)给出了不同技术应用的优先序。例如,厌氧消化后污泥优先考虑土地利用;不具备土地利用条件时,采用焚烧和建材利用。综上所述,干化焚烧技术是政策标准范围内规定的一项最佳可行技术,是我国污泥处理处置的主流技术之一。

低温污泥干化技术是一种通过低温干化系统产生的干热空气在系统内循环流动对污泥进行干化的处理技术。可把经板框压滤机、带式压滤机和离心脱水机的含固量20%的污泥干燥为含固率90%的干化泥块。该技术能够将污泥体积缩减4分之1,只需要消耗电能,不需要其他辅助能源,而且能耗是常规干化设备的1/3。进料时也无需特别对污泥进行均匀分布的装置,对湿度也没有任何要求,只要外界的温度在10-35摄氏度之间,整个系统就能保持高效率的运动。这种技术所集成的全智能自动控制系统,在提高运行效率的同时也具有良好的运行环境,用于处置特别是中小型污水厂产生的各类污泥。 污泥干化焚烧热处理技术作为最快捷、最彻底实现污泥减量化、稳定化、无害化的最终处置技术,在国外已发展成为主流的成熟技术之一。而在我国,雾霾问题的日益加剧,对污泥干化焚烧热处理技术而言成为一个挑战,社会舆论也俨然已把生活垃圾焚烧妖魔化,污泥干化焚烧热处理技术着“去”和“留”的局面。 低温污泥干化技术的设备结构 污泥除湿干化=热风循环+冷凝除湿烘干(除湿热泵)。其核心过程有二。其一:污泥水份吸热(热空气)汽化=湿空气+干料(汽化);其二:★湿空气经过除湿热泵=冷凝水+干燥热空气(冷凝)

市政污泥干化设计方案

2t/d市政生活污泥干化设计方案

第一绪论 1.1市政污泥处理工艺的发展和现状 早在20世纪40年代,日本和欧美等国家开始将干化技术用于对污泥的处理,经过几十年的发展,污泥干化技术的优点正逐渐显现出来。干化后的污泥显著减少容积;形成颗粒或粉状稳定产品,污泥性状大大改善;使干化后的污泥更易被后续处理;而其产品具有多种用途,如作肥料、土壤改良剂、替代能源等。所以无论填埋、焚烧、农业利用还是热能利用,污泥干化处理都是重要的一步。 污泥的干化分为全干化和半干化两种方式,其中全干化是将含水率大约80%脱水污泥干燥到含水率10%左右,而半干化是将含水率大约80%脱水污泥干燥到含水率40%左右。同全干化处理方式相比较,半干化方式投资和运行费用相对较低,系统运行安全可靠,干化过程中产品的含水率可以根据需要进行调整,干化后的产品用途较广。 根据调研资料,市政生活污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后再进行下一步处理。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。第二章污泥干化工艺介绍及选择 2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。 2.2热干化 污泥的大规模、工业化处理工艺中最常见的是热干化工艺。事实上,通常人们所讨论的“干化”多数是指热干化。热干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去

吨污泥干化方案

15吨污水厂污泥处置方案 一、我们推荐的污泥处理工艺技术路线 1、我们的工艺路线: 我们认为《国家城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行) 》中提出“最佳”与“可行技术”是符合目前中国污泥处置工业国情的,中国在一定时期内的技术、经济发展水平和环境管理要相适应。在经济和技术许可的条件下要因地制宜,在考虑成本和综合效益的前提下,综合整体地考虑污泥处置方案。通过技术和管理措施使污染污泥处理能够实现达标排放,同时达到高水平的整体的环境保护效果。 2、我们建议的污泥处置出处: 污泥中含有具有潜在利用价值的有机质,氮、磷、钾和各种微量元素,寄生虫卵、病原微生物等致病物质,铜、锌、铬等重金属,以及多氯联苯、二噁英等难降解有毒有害物质,如不妥善处理,易造成二次污染.我们认为处理后的污泥或污泥产品在环境中或利用过程中达到长期稳定,并对人体健康和生态环境不产生有害影响才是最终消纳方法。 对于一些污水厂所在地区的工业经济比较发达而且没有空余土地消纳污泥的可以采取对污泥进行适当处理后作为生产水泥的辅助燃料或电厂补充燃料。 3、我们推荐电渗透污泥干化方法的理由。 污水厂污泥是市政污泥,市政污泥的细胞水含量多且具有发热量,低位发热量约为2000-3400大卡/吨干污泥。如卖给发电厂做燃料每吨干泥可以产生2000-3300大卡的热量,现在5500大卡的热量的燃煤在中国买到800元/吨左右,而且用量每天很大,火电厂都有烟气和粉尘处理设施,如把干燥后的污泥(90%含固率)作为燃料送到发电厂,不仅可以产生效益,而且合理利用电厂环保设施

资源,避免投资浪费(污水厂减少处理污泥的环保投入),高效环保的最终处置了污泥,而且污泥作为燃料发挥了自身最大化的利用率,真正做到了再生能源。 并且我们认为电能是今后发展的主要能源,而且风力发电、太阳能发电、潮汐发电、水力发电等不消耗矿产资源的绿色发电方法越来越多,2020年绿色电能将占我国总发电量的40%这样许多工业企业都将利用电能这种低成本绿色可持续能源作为主要生产能源,随着电力工业发展逐渐走向一条清洁高效环保之路,电费也随之降低。所以利用电能这种经济清洁能源作为污泥转化生产能源的这条路发展方向是正确的。 4、污泥低温燃料化 解决能源危机的途径 ⑴节能 《中华人民共和国节约能源法》1997通过,2007修订,2008年4月1日实施。2007年12月《中华人民共和国能源法》征求意见稿出台。 ⑵能源综合利用 上述2个方法无法避免世界一次能源必将枯竭的局面,未来能源的出路在哪里,资源要综合、循环利用才是出路。2005通过《中华人民共和国可再生能源法》

介绍几种污泥干化技术

介绍几种污泥干化技术 1 引言 随着社会的发展和人类的进步,人们对生存环境的保护和改善意识不断加强。加之,国家对环境保护政策实施力度不断加强,使全国范围内污水处理率不断提高,各城市纷纷建设污水处理厂,大、中、小型污水处理厂已达几百座,而且还在迅速增加。各污水处理厂都面临着如何处置每天产生的大量剩余污泥的问题。在我国目前尚无妥善的最终处置方法,加之,致病菌的超标,传统上用作农肥,不能完全符合卫生标准。特别是天津市作为老工业城市,污水中工业废水的比例一直较高,污泥中含有一定比例的重金属物质长期使用会在土壤中富集,造成土地板结,因此近年来污水处理厂脱水污泥无适当出路随意堆放造成二次污染,污泥处置问题已经成为多数污水处理厂急待解决的问题,污泥处置是否妥当已关系到污水处理厂的生存。 纵观欧、美一些国家进入80年代末期,由于污泥在农用、填埋、投海上的各种限制条件和不利因素的逐渐突出,也由于污泥热干化技术在欧、美等国家一些污水处理厂的成功应用,使污泥干化技术在西方工业发达国家很快推广开来。例如:欧盟在80年代初只有数家污水处理厂采用污泥热干化设备处理污泥,但到1994年底已有110家污泥干化处理厂,并且还在逐年增加。这项技术同时也得到了越来越多发展中国家环境工程界的重视,也为我国污泥处置提供了宝贵的经验。 2 污泥干化设备的类型

2.1 按热介质与污泥接触的方式可分为: 2.1.1直接加热式:将燃烧室产生的热气与污泥直接进行接触混合,使污泥得以加热,水分得以蒸发并最终得到干污泥产品,是对流干化技术的应用; 2.1.2间接加热式:将燃烧炉产生的热气通过蒸气、热油介质传递,加热器壁,从而使器壁另一侧的湿污泥受热、水分蒸发而加以去除,是传导干化技术的应用; 2.1.3“直接一间接”联合式干燥:即是"对流一传导技术"的结合。2.2 按设备的形式分为: 转鼓式、转盘式、带式、螺旋式、离心干化机、喷淋式多效蒸发器、流化床、多重盘管式、薄膜式、浆板式等多种形式。 2.3 按干化设备进料方式和产品形态大致分为两类: 一种是采用干料返混系统,湿污泥在进料前先与一定比例的干泥混合,然后才进入干燥器,产品为球状颗粒,是干化、造粒结合为一体的工艺;另一种是湿污泥直接进料,产品多为粉末状。 3 结合在欧、美的实际考察情况,就目前西方国家主要采用的几家公司的污泥干化技术和设备,介绍其工作原理和工艺流程。 3.1 直接加热转鼓干化技术 如图1是带返料、直接加热转鼓式干化系统流程图。

污泥干化处理技术与设备

污泥干化处理技术与设备 一、污泥干燥焚烧 污泥焚烧工艺根据焚烧方式又分为直接焚烧和干燥焚烧两种。 污泥的直接焚烧是将高湿污泥在辅助燃料作为热源的情况下直接在焚烧炉 内焚烧。由于污泥的含水量大、热值低,只有加入辅助燃料(煤、重油、柴油等)的情况下,污泥才能燃烧,耗费大量能源。由于污泥含水量大,焚烧后的尾气量也比较大,后续尾气处理需要庞大的设备,操作控制难度大,相应造成后续喷淋塔、除雾塔等设备处理量大大增加,同时使设备投资和系统运行费用大大提高。 为了降低污泥处理运行费用和提高污泥焚烧效率,将污泥的直接焚烧改造为污泥经干燥后焚烧,因此需要配套污泥干燥设备系统。 污泥的干燥焚烧目的是高效、安全的实现污泥的完全矿化。在焚烧工艺前面采用污泥干燥工艺的目的是实现污泥的减量化,节省后续焚烧处置的费用。污泥中大量的水分在干燥阶段被除去,后续的焚烧炉将比直接燃烧时的体积减小,尾气处理系统在设备体积减小的同时,由于水蒸气含量的减少,处理难度会降低而效率会增加。 污泥干燥焚烧把污泥中的水分进行干燥处理后,配以适当比例的煤灰,焚烧产生热能发电。虽然一次性投资稍高,但由于它具有其它工艺不可代替的优点,特别在污泥量的消减上,卫生化,最终出路上,处置占地面积上,都有其他工艺无法比拟的优势,是一种污泥最终出路的解决办法,在污泥的最终处置方面将有着广泛的前景。 污泥的干燥最早是在二十世纪四十年代开发的,经过几十年的发展,污泥干燥的优点正逐渐显现出来:干燥后的污泥与湿污泥相比,可以大幅度减小体积,从而减小了储存空间,以含水的湿污泥为例,干燥至含水30%时,体积可以减小;形成颗粒或粉状的稳定产品,使污泥形状大大改善;最终产品无臭且无病原体,

卧式薄层污泥干化技术简介并于石油化工污泥的适用性探讨

卧式薄层污泥干化技术简介并于石油化工污泥的适用性探讨.txt台湾一日不收复,我一日不过4级!如果太阳不出来了,我就不去上班了;如果出来了,我就继续睡觉!本文由dandan_wzd贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 卧式薄层污泥干化技术对石油化工污水场污泥干化的适用性探讨 摘要:本篇首先介绍了德国 BUSS-SMS-CANZLER 公司的卧式薄层污泥干化工艺和石油化工污水场污泥(以下简称三泥)的最终处置现状,分析讨论了三泥干化的必要性,并得出三泥干化时最佳的干化产品含固率为 60-75%;结合三泥干化技术选择的注意要素,笔者认为卧式薄层污泥干化工艺为三泥干化的最佳选择。关键词:卧式薄层污泥干化技术石油化工污泥适用性 1.卧式薄层污泥干化技术 1.1 卧式薄层污泥干化技术简介卧式薄层干化工艺最初是由 BUSS-SMS-CANZLER 采用热传导工艺分离技术为浓缩化工行业高粘度介质、浆状介质而开发研制的。1980 年通过技术改进,成为全世界污泥干化领域的一项重要技术,经近三十年的应用,已在欧美得到了广泛的认可,业绩达 70 余座污泥干化工厂,逾 100 条生产线。目前在中国已有 4 个业绩(9 条生产线),其中第一个市政污泥干化业绩——重庆唐家沱污泥干化厂在 2009 年 11 月 20 日正式投入运行;第一个应用于石油化工污水场污泥干化的独山子石化项目目前正在建设中,预计 2010 年底投入运行。 1.2 典型的卧式薄层干化技术描述该工艺描述参照图 1.卧式薄层污泥干化工艺流程图。 图 1. 卧式薄层污泥干化工艺流程图 1.2.1 污泥接收、储存给料系统该子系统包括污泥接收料仓、污泥中转泵(有接收厂外污泥要求时选用,根据业主要求和现场实际情况配置),以及湿污泥给料料仓、给料泵组成。湿污泥给料泵变频控制,按照预设的进泥量将污泥连续输送至干化机入口。干化控制系统可自动避免过量给料情况的发生。卧式薄层干化机的技术特性决定了其可干化任何性状和含固率的污泥,对经离心机、带式或板框压滤机等脱水设备产生的污泥可采取螺杆泵、柱塞泵或螺旋输送机等灵活多变的给料方式。 1.2.2 污泥干化系统该子系统设备主要是指卧式薄层干化机。卧式薄层干化机由带加热层的圆筒形壳体、壳体内转动的转子和转子的驱动装置三部分组成。其中加热层采用内衬耐磨耐高温合金钢Naxtra 70的碳钢结构,其它与污泥接触部分采用DIN1.4404 或同等材质。 图 2. 卧式薄层干化机组成示意图进入卧式薄层干化机中的污泥被转子涂布于加热壁表面,转子上的浆叶在对加热壁表面的污泥反复翻混的同时,向前输送到出泥口。在此过程中,污泥中水分被蒸发。污泥在干化机内停留时间在10分钟左右,因此可实现快速起停和排空,对工艺控制反应迅速。卧式薄层干化机可产出任何含固率的污泥产品。其薄层干化技术可直接跨越“塑性阶段”,这意味着:不需要返混及其相应的料仓、输送设备、计量、监测和控制系统等。转子上的每片桨叶由螺栓固定,其配置可方便调整以适应来泥性状和处理量的变化。分段组合的干化机可根据需要划分为两个或多个加热区域,并可以独立控制、调整温度甚至关闭。 1.2.3 产品冷却系统自卧式薄层干化机中产出的污泥产品进入卧式线性冷却器。污泥产品通过流动于冷却器壳体内的冷却水进行冷却。当污泥干化与焚烧、热解等工艺结合时,可直接将带温污泥送入焚烧/热解系统,而省略该系统。 1.2.4 产品储运系统经干化处理,满足用户要求固含量的污泥经冷却,根据产品含固率,输送至干化产品料仓或移动储存设备,等待进行后续处理与应用。该系统设备包括单线螺旋输送机,总螺旋输送机,斗式提升机和干料仓等。简洁的工艺设备布置实现了产品储运系统的集成化。 1.2.5废汽处理及热回收系统干化机中产生的蒸汽与污泥逆向运动,由污泥进料口上方的蒸汽管口排出并进入冷凝器,在冷凝器中,水分从蒸汽中冷凝下来,不凝气体(空气,

相关主题
文本预览
相关文档 最新文档