当前位置:文档之家› 污染物扩散模型

污染物扩散模型

污染物扩散模型
污染物扩散模型

该模块采用突发性水污染扩散模型,利用一维水质模型,通过对河段长度与扩散时间进行微分,后利用四点隐式差分格式进行模型的数值求解。详解如下:

1.模型推导:污染物在全断面混和后,其迁移转化过程可用一维模型来描述,基本控制方程为:S S h A KAC x c E D A x x AUC t AC r x x ++-??+??=??+??])([)()( 其中:C 为污染物质的断面平均浓度,U 为断面平均流速,A 为断面面积,h 为断面平均水深,x D 为湍流扩散系数,K 为污染物降解系数。x E 为纵向扩散系数r S 为河床底泥释放污染物的速率,S 为单位时间内,单位河长上的污染物排放量。

实践证明,水的纵向流速是引起污染物浓度变化的主要参数,因此河流各断面的污染物浓度变化主要由这一项引起。因此该模型可以简化。不考虑湍流扩散,河床底泥释放污染物以及沿河其他污染物排放的影响,水污染模型的基本方程为:

AKC x

C AE x AUC t AC -??=??+??22)()( 2.模型求解:采用有限差分法中的四点隐式差分格式对上式进行数值求解:

)(2121121111111j i j i j i j i j i j i j i j i j i C C K x

C C C E x C C U t C C -++-++--++-?+-=?-+?- 整理可得: 其中

2x E a i ?-=;2212K x E t i +?+?=β;2

x E i ?-=γ;)2()1(1K x U C x U t C j i j i i -?+?-?=-δ 将上游边界条件带入上式得:

将下游边界条件带入,得:

从而组成方程组,利用追赶法求解出j i C ;

3:具体实现:本模块通过的含酚污染物污染扩散情况作为实验典型代表来粗略模拟实现扩散过程。系统默认提供河流参数等数据。设置K 为2/d ,U 为流速为10m/s 。x E 为1d km /2。t ?为100s ,x ?为1000m ;根据上述参数计算出方程组的参数。定义二维数组M[i,j]表示在i 断面j 时刻的浓度。通过距离量算来确定排污口与测量点的距离,计算测量点的浓度,并得到污染物在河道断面上的扩散规律。

大气污染物扩散模式

第四章 大气扩散浓度估算模式 第一节 湍流扩散的基本理论 一 湍流 1.定义:大气的无规则运动 风速的脉动 风向的摆动 2.类型: 按形成原因 热力湍流:温度垂直分布不均(不稳定)引起,取决于大气稳定度 机械湍流:垂直方向风速分布不均匀及地面粗糙度引起 3.扩散的要素 风:平流输送为主,风大则湍流大 湍流:扩散比分子扩散快105~106倍 二 湍流扩散理论(主要阐述湍流与烟流传播及湍流与物质浓度衰减的关系) 1.梯度输送理论 通过与菲克扩散理论类比建立起来的(菲克定律:单位时间内通过单位断面上的物质的数量与浓度梯 度呈正比) 类比于分子扩散,污染物的扩散速率与负浓度梯度成正比 x C k F ??-= 式中,F — 污染物的输送通量 k — 湍流扩散系数 C — 污染物的浓度 X — 与扩散截面垂直的空间坐标(扩散过程的长度) x C ??— 浓度梯度 要求得各种条件下某污染物的时、空分布,由于边界条件往往很复杂,不能求出严格的分析解,只能是在特定的条件下求出近似解,再根据实际情况进行修正。 2.湍流统计理论 泰勒首先将统计理论应用在湍流扩散上 图4-1显示:从原点O 放出的粒子,在风沿着x 方向吹的湍流大气中扩散。粒子的位置用y 表示,则结论为: ①y 随时间变化,但其变化的平均值为零 ②若从原点放出很多粒子,则在x 轴上粒子的浓度最高,浓席分布以x 轴为对称轴,并符合正态分布。 萨顿实用模式:解决污染物在大气中扩散的实用模式 高斯模式:应用湍流统计理论得出正态分布假设下的扩散模式 3.相似理论 第二节 高斯扩散模式 一 坐标系的建立—右手坐标系

1.原点O :无界点源或地面源,O 为污染物的排放点 高架源,O 为污染物的排放点在地面上的投影点 补充:点源 高架源 连续源 固定源 线源 地面源 间歇源 流动源 面源 2.x 轴:正向为平均风向,烟流中心线与x 轴重合 3.y 轴:垂直于x 轴 4.z 轴:垂直于xoy 平面 二 高斯模式的有关假定 1.污染物浓度在y 、z 轴上的分布为正态分布; )2exp(21 )(22 y y y y f σπ σ-= )2exp(21 )(22 z z z z f σπ σ-= y σ,z σ— 分别为污染物在y 和z 方向上分布的标准差,m 2.全部高度风速均匀稳定,即风速u 为常数; 3.源强是连续均匀稳定的,源强Q 为定值; 4.扩散中污染物是守恒的,不考虑转化,即烟云在扩散过程中没有沉降、化合、分解及地面吸收、吸附作用发生; 0=??t C 5.在x 方向上,输送作用远远大于扩散作用,即 )(x C k x x C u x ????>>??; 6.地面足够平坦。

泄漏源及扩散模式

第六章泄漏源及扩散模式 很多事故是由于物料的泄漏引起的。 因泄漏而导致事故的危害,很大程度上取决于有毒有害,易燃易爆物料的泄漏速度和泄漏量。物料的物理状态在其泄漏至空气中后是否发生改变,对其危害范围也有非常明显的影响,泄漏物质的扩散不仅由其物态、性质所决定,又为当时气象条件、当地的地表情况所影响。 6.1常见泄漏源 泄漏源分为两类: 一是小孔泄漏:通常为物料经较小的孔洞,长时间持续泄漏。如反应器、管道、阀门等出现小孔或密封失效; 二是大面积泄漏:在短时间内,经较大的孔洞泄漏大量物料。如管线断裂、爆破片爆裂等。 为了能够预测和估算发生泄漏时的泄漏速度、泄漏量、泄漏时间等,建立如下泄漏源模型,描述物质的泄漏过程: 1.流体流动过程中液体经小孔泄漏的源模式; 2.储罐中液体经小孔泄漏的源模式; 3.液体经管道泄漏的源模式; 4.气体或蒸汽经小孔泄漏的源模式; 5.闪蒸液体的泄漏源模式; 6.易挥发液体蒸发的源模式。 针对不同的工艺条件和泄漏源情况,应选用相应的泄漏源模式进行泄漏速度、泄漏量、泄漏时间的求取。 6.2 流体流动过程中液体经小孔泄漏的源模式 系统与外界无热交换,流体流动的不同能量形式遵守如下的机械能守恒方程: (6—1)式中:P——压力,Pa; ρ——流体密度,kg/m3; α——动能校正因子,无因次;α≈1 U ——流体平均速度,m/s; g ——重力加速度,g = 9.81 m/s2; z ——高度,m; F ——阻力损失,J/kg; W s ——轴功率,J; m ——质量,kg。 对于不可压缩流体,密度ρ恒为常数,有:

(6—2)泄漏过程暂不考虑轴功率,W s =0,则有: (6—3)液体在稳定的压力作用下,经薄壁小孔泄漏,如图6.1所示。 容器内的压力为p1,小孔直径为d,面积为A,容器外为大气压力。此种情况,容器内液体流速可以忽略,不考虑摩擦损失和液位变化,可得到: 式中,Q为单位时间内流体流过任一截面的质量,称为质量流量,其单位为kg/s。 考虑到因惯性引起的截面收缩以及摩擦引起的速度减低,引入孔流系数C0,则经小孔泄漏的实际质量流量为: kg /s(6—7) 式中:Q——质量流量,kg / s; A——泄漏孔面积,m2; C0——孔流系数; p1——容器内的压力,Pa; ρ——流体密度,kg / m3。 C0的取值: 1、薄壁小孔( 壁厚≤d / 2 ),Re > 105C0 = 0.61 2、厚壁小孔( d / 2 < 壁厚≤4d ),或在孔处伸有一段短管(见图6.3 ) C0 = 0.81 3、修圆小孔( 见图6.2 ) C0 = 1

城市空气质量模式研究进展

城市空气质量模式研究进展 大气污染物扩散模式的应用受到物理化学特征、污染源特征等多种因素的制约,综述了不同的大气污染物扩散模式适用的范围,分别阐述了ISC、AERMOD、ISCST、ADMS等适用于中小尺度的和CALPUFF等应用于大尺度的不同大气污染扩散模式的研究进展。 标签:大气污染;扩散模式;空气质量 1 引言 工业污染源的排放对大气环境质量有直接的影响,同时也直接影响了周围居民的身体健康及生活。但由于高成本和相关实验的难度,对污染物浓度进行准确的动态分布监测不是十分可行,因此大气污染物扩散模式被广泛用来模拟预测污染物的扩散分布情况,评估大气环境质量。 大气污染物扩散模式结合污染物浓度和气象资料定量分析污染物在大气中输送、扩散特征。最初,模式的研究理论核心是高斯扩散理论,应用范围是小尺度。随着研究的逐渐深入和计算机的发展,开始利用计算机进行数值计算,突破了高斯扩散理论均匀平稳湍流的限制,可以求解非均匀、非定常的污染物扩散问题,且模式的适用范围向中尺度、大尺度扩展。目前,数值计算已经成为研究的主流方法,研究范围也在逐步扩大。 大气污染物扩散模式的应用受到地形、气象、大气污染物的物理化学特征、污染源特征等多种因素的制约,不同的扩散模式都有各自不同的考虑因素和适用范围,选择恰当的扩散模式能够较为准确地模拟污染物的扩散及分布,用于城市环境空气质量预报。目前,己经有许多发展成熟的污染物扩散模式应用于不同尺度的污染物扩散研究,其中不少模式经过验证都获得了较好的结果,国内的相关研究中尤其以高斯类模式的应用最为广泛。 2 大气污染物扩散模式的类型 近年来针对工业点源的大气污染物扩散模式的应用,结合模式的理论核心以及应用特征,目前常用的扩散模式以高斯公式、拉格朗日方法、欧拉方法为基础。高斯模式是半经验型扩散模式,假定下风向的污染物浓度符合正态分布,是很多实用模式发展的基础。基于高斯理论的大气污染扩散模式被广泛应用于各种尺度的研究区域,其中适用于中小尺度的有ISC(Industrial Source Complex Model)、AERMOD (AMS/EPA Regulatory Model)、ISCST (Industrial Source Complex Short Term Model)、ADMS (Advanced Dispersion Modeling System)、ADMS-Urban等,应用于大尺度的有CALPUFF等。拉格朗日方法是用来跟随流体移动的粒子来描述污染物浓度及其变化。它是一种描述污染物分布的自然方式。在基于拉格朗日方法的大气污染物扩散模式中,适用于中小尺度的有LS (Lagrangian Stochastic Model)、TAPM (the Air Pollution Model)、LPM

水污染模型

基于GIS 的环境污染应急分析系统的开发重点是实现水体污染扩散模拟。目前, 国外在此方面的研究成果很多,已经进行到了三维水体污染扩散模拟,国内的起步则较晚, 至今的研究成果在一维的较多,二维和三维的较少。鉴于目前网络的发展, 有必要将互联网与系统结合起来。 一维水体污染扩散数学模型:一维水质模型是水环境模型中相对简单的一种,是河流、河口和湖泊遭受污染时,实际的断面浓度分布与断面浓度的平均值偏差不大时常采用的水污染预测模型。它主要研究污染物浓度分布沿程的变化以及各个断面上污染物浓度随时间的变化,其中河流以一维水质模型最为常见。在突发性河道水源地污染事故发生时。污染物的排放存在两种情况,即一维稳定排放和一维瞬时排放, 二维水体污染扩散数学模型:二维计算模型模拟速度快、实时而精度无需很高, 可忽略基本控制方程中的一些非主要因素,模型结构简单、实用性强。目前最为常用的有限差分数值计算方法对控制方程进行离散, 按物理分步法将二维偏微分方程化简成较简单的一维方程, 应用广为采用的ADI隐式格式联合求解水动力模型与水污染模型。算法具有编程简单、占用计算机内存较小、无条件稳定、可适当增大空间步长、计算效率高、易于实现自动化的实时模拟计算等显著优点, 适合于在应急处置中应用。并且利用GIS 的强大的空间分析、处理和表现功能, 将水力计算与GIS 结合在一起, 实现了污染模拟结果的二维可视化, 为应急处置提供一个形象、直观的表现平台, 能有效地辅助应急决策。 三维水体污染扩散数学模型:水污染三维可视化包含两方面的内容:河道地形地貌三维仿真与污染扩散可视化,二者通过地理坐标进行空间叠加形成河道污染扩散可视化展示平台,在此基础上进行各种统计分析功能。

点污染源空气污染扩散模型

8 点、中午12 点、晚上9 点都没有排放气体,该怎么算,是不是需要找到一个关于时间t的函数,来计算多长时间之后污染还剩下多少 c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); 这个函数对吗?该调用什么函数? 问题: 建立单污染源空气污染扩散模型,描述其对周围空气污染的动态影响规律。 现有河北境内某一工厂废气排放烟囱高50m,主要排放物为氮氧化物。早上9 点至下午 3 点期间的排放浓度为406.92mg/m3,排放速度为1200m3 /h;晚上10 点-凌晨4 点期间 的排放浓度为1160mg/m3,排放速度为5700m3 /h;通过你的扩散模型求解该工厂方圆51 公里分别在早上浓度8 点、中午12 点、晚上9 点空气污染分布和空气质量等级。 源代码 clear all clc [x,y]=meshgrid(0:20:5100,0:20:5100); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.^0.865014; sigz=0.0757182*x.^1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel('C'), clear all clc [x,y]=meshgrid(-5100:20:5100,-5100:20:5100); Q=1836.7; z=1.5; H=50; u=1.7; sigy=0.3914238*x.^0.865014; sigz=0.0757182*x.^1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel('C'), 分享到: 2015-05-29 16:32 提问者采纳 clear all [x,y]=meshgrid(-51000:100:51000,-51000:100:51000); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.^0.865014;

推荐-基于修正高斯扩散模型的城市表层土壤重金属污染探究 精品

基于修正高斯扩散模型的城市表层土壤重金属污染探究 (标题,3号黑体) 摘要(4号黑体) (小4号宋体)本文基于修正的高斯扩散模型,针对城市表层土壤重金属污染问题,考虑到重金属的传播特征,建立了一系列逐步完善和精确化的数学模型,很好地解决了重金属污染物分布、污染程度评价及污染源确定的问题。 对于问题一,首先利用MATLAB软件分别做出了8种重金属污染物浓度的等高线空间分布图。然后综合使用内梅罗单因子和综合因子指数法评价该城区不同功能区域的污染程度。具体过程如下:先对每个取样点使用内梅罗单因子指数法确定其污染程度,再按功能区域的划分将监测点分为5类,对每一类都使用内梅罗综合指数法便可得到各区域综合污染指数,其中综合指数的大小反映了污染程度的轻重。结果显示该城区5个功能区域的污染程度从重到轻的排序依次为:工业区>交通区>生活区>公园绿地区>山地区。 对于问题二,使用主因子分析法研究各功能区的重金属污染原因。通过使用SPSS 软件处理数据我们可以得到如下结论:对于工业区来说造成土壤重金属污染的主要原因是工业生产过程中排放的废气、废水和废渣;对于交通区来说造成区内土壤重金属污染的主要原因是汽车排放的气;对于生活区来说造成其重金属污染的主要原因是生活垃圾的废弃及来自工业区和交通区的废气污染;对于公园绿地区来说造成其重金属污染的主要原因是来自工业区与交通区的废气污染以及植物 对重金属的富集作用;山地区域污染较轻气污染主要原因是工业废气和汽车尾气。对于问题三,首先分析重金属污染物的传播特征,得到了重金属有如下几种基本运动方式:随介质迁移的传播运动、分散运动、被环境介质吸收或降解、沉积、传播中转化。其次考虑到重金属污染物传播过程与流体介质的不同,对适用于流体的高斯模型进行了修正,得到了能反映本题要求的修正后的高斯扩散模型。接着对修正后的高斯扩散模型微分方程组进行了求解,得到了3个主要污染源的位 对于问题四,首先评价问题三中所建立模型,模型的优点是充分考虑了重金属的传播特征,对求出污染源非常有效;缺点在于未能考虑当地降雨及常年风向等影响重金属污染传播的因素,对污染的预测不能很好反映。鉴于此,在改进模型时增加收集当地降水及常年风向这两项信息。最后在改进模型时给原微分方程组增加降水和风向两个控制因子,通过求解改进后的微分方程组,相信会得到更加贴近实际的结果。 关键字:内梅罗指数法主因子分析修正高斯扩散模型

大气污染扩散模型

第一节大气污染物的扩散 一、湍流与湍流扩散理论 1. 湍流 低层大气中的风向是不断地变化,上下左右出现摆动;同时,风速也是时强时弱,形成迅速的阵风起伏。风的这种强度与方向随时间不规则的变化形成的空气运动称为大气湍流。湍流运动是由无数结构紧密的流体微团——湍涡组成,其特征量的时间与空间分布都具有随机性,但它们的统计平均值仍然遵循一定的规律。大气湍流的流动特征尺度一般取离地面的高度,比流体在管道内流动时要大得多,湍涡的大小及其发展基本不受空间的限制,因此在较小的平均风速下就能有很高的雷诺数,从而达到湍流状态。所以近地层的大气始终处于湍流状态,尤其在大气边界层内,气流受下垫面影响,湍流运动更为剧烈。大气湍流造成流场各部分强烈混合,能使局部的污染气体或微粒迅速扩散。烟团在大气的湍流混合作用下,由湍涡不断把烟气推向周围空气中,同时又将周围的空气卷入烟团,从而形成烟气的快速扩散稀释过程。 烟气在大气中的扩散特征取决于是否存在 湍流以及湍涡的尺度(直径),如图5-7所示。 图5-7(a)为无湍流时,烟团仅仅依靠分子 扩散使烟团长大,烟团的扩散速率非常缓慢, 其扩散速率比湍流扩散小5~6个数量级;图5 -7(b)为烟团在远小于其尺度的湍涡中扩散, 由于烟团边缘受到小湍涡的扰动,逐渐与周边 空气混合而缓慢膨胀,浓度逐渐降低,烟流几乎呈直线向下风运动;图5-7(c)为烟团在与其尺度接近的湍涡中扩散,在湍涡的切入卷出作用下烟团被迅速撕裂,大幅度变形,横截面快速膨胀,因而扩散较快,烟流呈小摆幅曲线向下风运动;图5-7(d)为烟团在远大于其尺度的湍涡中扩散,烟团受大湍涡的卷吸扰动影响较弱,其本身膨胀有限,烟团在大湍涡的夹带下作较大摆幅的蛇形曲线运动。实际上烟云的扩散过程通常不是仅由上述单一情况所完成,因为大气中同时并存的湍涡具有各种不同的尺度。 根据湍流的形成与发展趋势,大气湍流可分为机械湍流和热力湍流两种形式。机械湍流是因地面的摩擦力使风在垂直方向产生速度梯度,或者由于地面障碍物(如山丘、树木与建筑物等)导致风向与风速的突然改变而造成的。热力湍流主要是由于地表受热不均匀,或因大气温度层结不稳定,在垂直方向产生温度梯度而造成的。一般近地面的大气湍流总是机械湍流和热力湍流的共同作用,其发展、结构特征及强弱决定于风速的大小、地面障碍物形成的粗糙度和低层大气的温度层结状况。 2. 湍流扩散与正态分布的基本理论 气体污染物进入大气后,一面随大气整体飘移,同时由于湍流混合,使污染物从高浓度区向低浓度区扩散稀释,其扩散程度取决于大气湍流的强度。大气污染的形成及其危害程度在于有害物质的浓度及其持续时间,大气扩散理论就是用数理方法来模拟各种大气污染源在

气体泄漏及扩散计算

学号: 07412225 常州大学 毕业设计(论文) (2011届) 题目重气泄漏扩散模拟及应急救援 学生薛云龙 学院环境与安全工程学院专业班级安全072班 校内指导教师王新颖专业技术职务讲师 校外指导老师专业技术职务 二○一一年六月

重气泄漏扩散模拟及应急救援 摘要:重气泄漏扩散事故是经常发生且危害较大的一种事故形式,由于重气的密度大于空气,因此重气往往沿地面扩散,泄放物质进入人体将引起中毒事故,若泄放物质被点燃或引爆将引起大规模的燃烧爆炸事故。虽然人们对重气泄漏扩散所造成的危害十分重视,但由于缺乏足够有效的数据来提供人们作风险评估及预防改善措施,因此采用数学模型进行模拟是必要的。应在生产过程中,加强管理,强化生产者的安全生产教育。分析了泄漏扩散事故的七大影响因素,提取并建立了泄漏事故模式,并对各种事故模式的泄漏机理和发生条件进行了研究分析。通过试验研究得出在实际环境中大气主导风的风速,泄漏方向对气体扩散浓度分布有重大的影响,泄漏气体在下风向扩散的最快。静风时,随着时间的增加,空间各点的浓度有升高的趋势;在稳定风流中,空间各点的浓度随时间的变化不明显,可以认为是稳态的。泄漏的气体在下风向扩散的最快,在现场一旦发生天燃气泄漏,应综合考虑泄漏源的方向和该点当时的风向,风速等因素,及时准确预测泄漏气体可能扩散到危险区域,做好应对措施。 关键词:相似理论;泄漏模型;泄漏扩散模式;示踪法;重气;应急救援;

Heavy gas leak dispersion modeling and emergency rescue Abstract : As it is well-known, many industrial and domestic gases are toxic and flammable are stored in highly-pressurized vessels at liquefied state with ambient temperature. If there is by chance a sudden release, it often forms heavy-than-air vapour. The accident release and dispersion of toxic and flammable heavy gas can present a serious ris k to the public’s safety and to the environment. Disease may be caused when the flammable heavy gases are lit. Although great attention has been paid to the hazard of heavy gas dispersion, effective data of filed experiments are still insufficient to make risk assessment and precaution. Through the statistical analysis, draw a conclusion that chemical system in production, transportation and storage process, should first consideration and control of hazardous chemicals, and summarizes the characteristics of the leak diffusion process performance. Subjective factors, equipment inherent defect caused by leakage on China's chemical system is the main reason of the accident. In the process of production, should be strengthen management, strengthen the education of production safety producer. Analysis of the seven factors affecting diffusion of leakage accident, to extract and established the patterns of the leakage accident, and various and leakage accident modes mechanism and the conditions were studied and analyzed. Through the experimental study on practical environment atmosphere that dominated the wind, the wind of gas leakage direction spread concentration distribution, has enormous influence on the spread of gas leakage next wind fastest. Static, as time flies, the space increased concentration of the each point of the trend. In the stable romantic, space the concentration of each point does not change significantly over time, can be considered a steady. Leak gas diffusion next wind fastest, on the site once produce natural gas leak, should be taken into account in the direction and point source leaking the wind direction, wind speed at factors such as timely and accurate prediction leakage, gas may be spread to dangerous area, completes the countermeasures. Key words:Theory of similarity; Leakage model;Leakage diffusion mode;Trace method; heavy gas;Emergency rescue

污染物扩散模型-深圳数学建模

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): C 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名):温州医科大学 参赛队员 (打印并签名) :1. 章成俊 2. 杨超 3. 谢锦 指导教师或指导教师组负责人 (打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 编号专用页 送全国评阅统一编号(由赛区组委会填写): 全国评阅随机编号(由全国组委会填写):

对垃圾处理厂污染的动态监控及居民补偿 摘要 城市垃圾处理问题是一个世界性难题。目前垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。本论文构根据题目设置的垃圾处理厂规模,建立了环境动态监控体系,并根据潜在污染风险对周围居民进行了合理经济补偿的设计。 对于问题(1),为了实现对垃圾焚烧厂烟气排放及相关环境影响状况的动态监控,本论文在高斯烟羽模型的基础上进行改进,引入温度、降雨对污染物扩散的影响,建立了新的污染物扩散模型。本论文创新性的提出了风雨影响指数M,用来衡量风向、降雨对颗粒物扩散的影响。本论文将抽象的污染物含量形象化,利用空气污染指数API描述具体的污染程度及其给周围居民带来的影响。并且从不同角度给出了模型检验,验证了所建模型的准确性。 对于问题(1)具体赔偿方案的制定,在综合考虑了不同方位风向频率、受污染时间、受污染程度的基础上,本论文使用了层次分析法,并且进行了一致性检验,使得赔偿方案具有说服力。通过MATLAB编程,计算出当政府和垃圾处理厂共支付风险赔偿金为N时,得出居住地的每位居民应得的赔偿金额计算公式。对于监测点的设置,经计算共需21个,具体布置情况见后文。 对于问题(2),在题目所述的发生事故的情况下,对污染物的具体含量进行了合理的预测与假设。模拟出酸性物质与颗粒物的影响范围,并根据具体的污染程度设置不同的污染区。对每个污染区的不同情况设置更改监测点的设置,并且在问题(1)的基础上对居民的经济补偿进行合理修改。 关键词:高斯烟羽模型,层次分析法,空气污染指数,烟气抬升公式 一、问题重述 “垃圾围城”是世界性难题,在今天的中国显得尤为突出。数据显示,目前全国三分之二以上的城市面临“垃圾围城”问题,垃圾堆放累计侵占土地75万亩。因此,垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。然而,由于政府监管不力、投资者目光短浅等多方面的原因,致使前些年各地建设的垃圾焚烧电厂在运营中出现了环境污染问题,给垃圾焚烧技术在我国的推广造成了很大阻力,许多城市的新建垃圾焚烧厂选址都出现因居民反对而难以落地的局面。在垃圾焚烧厂运行监管方面,目前主要是在垃圾焚烧厂内进行测量监控,缺少从周边环境视角出发的外围动态监控,因而难以形成为民众所信服的全方位垃圾焚烧厂环境监控体系。 深圳市某地点计划建立一个中型的垃圾焚烧厂,计划处理垃圾量1950吨/天(设置三台可处理垃圾650吨/天的焚烧炉,排烟口高度80米,每天24小时运转)。从构建环境动态监控体系、并根据潜在污染风险对周围居民进行合理经济补偿的需求出发,有关部门希望能综合考虑垃圾焚烧厂对周围带来环境污染以及其他危害的多种因素(例如,焚烧炉的污染物排放量、居住点离开垃圾焚烧厂的距离、风力和风向及降雨等气象条件、地形地貌以及建筑物的遮挡程度等等),在进行科学定量分析的基础

大气污染物扩散高斯模型模拟

大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式: (mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u 表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图所示

扩散模型

2 扩散模型 2.1 高斯模型 燃气泄漏后会在泄漏源附近形成气团,气团在大气中的扩散计算通常采用高斯模型。高斯模型的基本形式是在如下的假设条件下推导出来的[1、9]:假定燃气在扩散的过程中没有沉降、化合、分解及地面吸收的发生;燃气连续均匀地排放;扩散空间的风速、大气稳定度都均匀、稳定;在水平和垂直方向上都服从正态分布。 泄漏燃气相对密度小于或接近1的连续泄漏采用高斯烟羽模型。以泄漏点为原点,风向方向为x轴的空间坐标系中的某一点(x,y,z)处的质量浓度计算公式如下[9]: 平均风速>1m/s时: 平均风速=0.5~1m/s时: 平均风速<0.5m/s时,假设气团围绕泄漏点浓度均匀分布,则距离泄漏点r 处的燃气质量浓度为: 式中ρ d (x,y,z)——扩散燃气在点(x,y,z)处的质量浓度,kg/m3 x、y、z——x、y、z方向上距泄漏点的距离,m u a ——平均风速,m/s δ x 、δ y 、δ z ——x、y、z方向的扩散系数,m

h——泄漏点高度,m ρ (r)——距离泄漏点r处的燃气质量浓度,kg/m3 d r——空间内任意一点到泄漏点的距离,m a、b——扩散系数,m t——静风持续时间,s,取3600的整数倍 扩散系数可查HJ/T 2.2—93《环境影响评价技术导则大气环境》得到。2.2 重气扩散模型 液化石油气密度比空气密度大,属于重气。该类气体泄漏时在重力的作用下会下沉,这时使用高斯模型计算的结果会使泄漏燃气扩散速度偏大,泄漏源附近的浓度偏小。为了解决这个问题,可以引入最早由Van Ulden提出,并由Manju Mohan等发展的箱式模型[1]。箱式模型分为两个阶段:泄漏后的重气扩散阶段和重气效应消失后的被动气体扩散阶段。 重气泄漏后首先是重气扩散阶段。在这个阶段,重气云团由于重力作用逐渐下沉并不断卷吸周围的空气,在卷吸空气的同时,气云受热,最终当重气云团与空气的密度差<0.001kg/m3时,可认为气云转变成中性状态。 随着重气的继续扩散,气云所受的重力不再是影响扩散的主要因素,而大气湍流扩散逐渐占主要地位,这时便是被动气体扩散阶段,可以应用高斯模型计算泄漏燃气的扩散。 3 结论 使用泄漏模型可以计算出燃气泄漏的理论量,此量为扩散计算提供基础数据,可以依据此量分析泄漏后的扩散范围以及预测评价事故后果。使用扩散模型可以对燃气泄漏后的危险区域进行预测。泄漏模型和扩散模型都有各自的适用条件和范围,应该根据泄漏扩散的具体情况分析选择相应模型。

重金属污染

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2012 年 8 月15 日赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文运用Matlab、SPSS及Excel软件,综合分析该城区各区重金属污染程度及其重金属污染的主要原因,并根据重金属的传播特征建立数学模型,寻找出污染源,同时更进一步修改模型以更好研究城市地质环境的演变模式。 针对问题一,利用Matlab作出各重金属浓度空间分布图,可看出重金属浓度大多呈高浓度向外逐步扩散现象。同时,利用单因素污染指数公式及污染等级规则,通过模糊综合评价模型,得出各类区域重金属污染程度如下: 针对问题二,利用SPSS软件对各重金属变量进行R型聚类分析,将重金属污染分为四类:Cr、Ni、Cu为一类,Cd、Pb、Zn为一类,而As、Hg各为一类。并计算出各区域各单金属污染指数进行对照分析,说明该城区重金属污染主要来源于工业活动及其生产品和交通主干道污染。 针对问题三,我们根据重金属物质在土壤中扩散的特点,利用有衰减的扩散模型,构造出浓度与坐标的关系,并利用matlab编程,多次试验,合理筛选数据,通过回归分析的方法,求解参数,从而得到不同重金属的不同污染源。 针对问题四,由于问题三求解的局限性,我们在模型三的基础上,增加了时间、水文、人类活动等因素,得出一个更为具体并符合实际的模型。有利于计算土壤中重金属的浓度。 关键词单因素污染指数模糊综合评价 R型聚类分析有衰减的扩散模型扩散规律

城市表层土壤重金属污染分析数学建模国家二等奖

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文以某城区为例,对其土壤地质环境重金属含量进行取样分析,找出取样点被污染的主要原因并寻找到取样点的污染源。为此,对于第(1)和第(2)小题我们对取样点的数据统计分析,用MATLAB 软件画出8张元素的分布图,各代表同一重金属元素在不同功能区不同含量范围内的分布点,统计出点的数目,对均值和方差进行对比得出该城区内不同区域重金属的污染程度和主要污染原因。 针对第(3)小题,我们建立了2个模型来研究,干尘扩散模型——模型一,高斯水流扩散模型——模型二。 模型一是为了求解重金属元素附着在干尘粒上的扩散方式和范围,运用烟雾扩散模型,结论是根据取样点的某金属含量程度来判断该点距污染源的距离,则污染源在以该距离为半径的圆的圆周上,在根据取样点的金属含量高低分布情况,找到污染源。 模型二是研究重金属在土壤中的扩散情况,在相间物质交换为平衡的条件下 ,可用阻滞系数来表示其影响,可得到一个微分方程 3t c ρ= ??带入参数,可以找到某金属的污染源坐标。 关键词:烟雾扩散模型 图例 统计 污染物运移 物质交换 MATLAB

城市空气污染程度的分析和预测模型

城市空气污染程度的分析和预测 摘 要 本文讨论了有关城市污染程度、污染因素及污染扩散的问题。 对于问题一,本文主要从大气污染、噪声污染和水体污染这三个面选取主要污染物,查阅北京、天津、上海、重庆和西安五座城市2007-2012年的年度平均污染数据,采用降维的思想,运用主成分分析法减少变量个数,再借助Matlab 软件计算各主成分的贡献率,分析知可选取前三个主成分作为衡量污染程度的标准,最后根据综合指标得到这五个城市的污染程度从高到低依次为:重庆、上海、北京、天津、西安。通过判断相关系数的大小,确定五个城市影响人们生活的主要污染因素是水污染,其四项指标依次为化学需氧量、总氮、总磷和氨氮。 对于问题二,以北京市大气污染为例。首先,利用GPS 记录北京市14个城区观测点的位置,并查阅2013年污染指标2SO 、2CO 、5.2PM 与10PM 的污染数据,绘制出相应的空间浓度分布图,估计这四种污染物的大致污染源位置依次为:)100,110(附近、)83,130(附近,)85,125(附近和)80,132(附近;其次,根据污染扩散原理和方式,建立Cauchy 污染传播模型,根据各地区空气污染物的浓度分布,运用Matlab 软件对数据非线性拟合,得出扩散模型各参数的值,计算得出各项污染指标的污染源位置依次为:)3.97,5.115(,)3.85,2.128(,)8.80,1.129(和)6.87,5.125(;最后,比较污染物位置的计算值与实际值,发现误差相差较小,故模型建立较为合理。 对于问题三,分析西安市的主要污染——大气污染。收集西安市2014年4.1-7.31日的空气污染数据,根据时间序列的平稳性特点及AIC 定阶准则选取 合适的时间序列模型)11(ARMA , ,利用Matlab 软件对序列模型的各项参数进行估计并检验模型的合理性,并将模型用于数据预报。利用时间序列模型预测西安市未来10天的空气污染状况总体等级为良。 对于问题四,基于问题一、二、三对污染因素的分析和污染扩散的特点,主要从减少污染物的产生和治理净化已产生的污染物两方面,针对大气污染、水体污染和噪声污染为相关部门提供合理化防治建议。 关键词 主成分分析;Cauchy 污染传播模型;时间序列模型;Matlab 软件

污染空气的扩散模型

放射性气体扩散的预估模型 摘要:由于放射性气体泄漏造成惨重损失的报道在国际屡见不鲜,近日日本福岛核电站的放射性气体的泄漏事件更让我们关注放射性气体泄漏时在环境中的浓度问题,为了今后事故发生后提供积极的补救措施, 所以对放射性气体的扩散作深入的研究是很有必要的。本文结合高斯烟羽模型、线性拟合,以及微分方程模型,运用MA TLAB软件,分析了泄漏源强度、风速、大气稳定度参数、地面粗糙度参数和计算精确度等的因素对放射性气体扩散的影响,预测了放射性气体浓度在不同时间,不同地区的浓度变化,并且本文模型中的数据可以根据不同的实际情况而加以改变,因而使本文的应用范围大大增加,可以适用于具有较强的应用性。文章首先在第一问中利用MA TLAB软件对数据进行线性拟合,采用微分方程模型得到核电站周边放射性气体在不同地区,不同时间段的浓度变化,得出随着离泄漏源距离的延伸,最终放射性物质的浓度越来越小,趋近于零,即当L趋向无穷是,C(x,y,z,t)趋向于零;当时间趋于无穷时,C(x,y,z,t)也趋于无穷。问题二,问题三中,建立以核电站周边不同地区得距离以及风速为因变量,设置各个主要因素的参考数据,同时,利用高斯烟羽模型对核电站周边地区的浓度进行预测,然后,利用MATLAB软件,将相关数据代入程序,我们得到核电站周边地区的浓度分布的等高曲线。问题四中,通过实际收集数据,集合核电站周边地区的浓度等高曲线,可以直观的看出日本福岛核电站对我国东海岸以及美国西海岸的影响。 一.问题的提出 1.1背景的介绍 目前,核电的发展给国家带来了巨大的经济效益和社会效益,但核电正常运行以及发生泄露时不可避免的会有气载放射性核素排出,这样就给周围的环境产生了一定的影响,因此,正确的测出大气中放射性物质的浓度在环境检测以及安全评估中具有重要意义。 1.2需要解决的问题 的放射性气体以匀速排出,设有一座核电站遇自然灾害发生泄漏,浓度为p 速度为m kg/s,在无风的情况下,匀速在大气中向四周扩散, 速度为s m/s. (1)请你建立一个描述核电站周边不同距离地区、不同时段放射性物质浓度的预测模型。 (2)当风速为k m/s时,给出核电站周边放射性物质浓度的变化情况。 (3)当风速为k m/s时,分别给出上风和下风L公里处,放射性物质浓度的预测模型。

相关主题
文本预览
相关文档 最新文档