当前位置:文档之家› 污染物扩散模型

污染物扩散模型

污染物扩散模型
污染物扩散模型

污染物扩散模型

一、问题分析

题目要求利用马氏链模型来解决该问题.由题目条件知,要让各城市污染物浓度在无论时间有多大都要小于某一个特定值,可将各城市下一刻点污染物浓度与目前的污染物浓度表示出来,得到一个关于污染物浓度变化的递推公式,对该公式进行利用递推法可得到污染物浓度的表达式,令其小于题目中给出的特定即可实现对问题的求解.

二、模型假设

1.各城市污染物浓度仅与浓度扩散的转移概率有关.

2.扩散到给出城市之外的污染物不会再回来.

三、符号约定

不同的城市

污染物从扩散到的概率

时间点城市的污染物浓度

城市的污染源排出的污染物数量

各城市污染物浓度最大限度

四、模型建立与求解

根据题目条件可知,各城市下一刻的污染物浓度是在目前污染物浓度在各个城市之间转移后的浓度再加上这一时刻该城市污染源排出的污染物量,即

⑴其中为由各地区污染物浓度组成的维向

量,为由排除污染物组成的维向量.

下面对⑴式进行递推:

由⑴式可得到

⑶将⑶式带入到⑵式中有

同理可得

依次类推,可得个城市污染物浓度的表达式为

⑷将这个城市以及城市中的污染物看做一个系统,如果个城市的污染物浓度视为该系统的个状态,并增加一个状态表示污染物扩散到个城市之外将不再回来,污染物扩散的无后效性表明可用马氏链模型描述其变化过程,那么污染物在个状态间的转移矩阵可表示为

其中第一行对应状态,由污染物一旦离开这个城市将不会再回来可知状态是一个吸收状态,现假设各地区均对应于非吸收状态,并且由这些状态出发最终可到达

状态,从而形成一个吸收链,由于可逆,并且有

因此可得到当时间时,有.这样在⑷式中令可得

⑸题目中给出当时间充分大时必有

⑹⑹式可以表示为

⑺结合⑺式与⑸式有

⑻由

可以得出

将上式以及代入到⑻式中即

⑼式可表示为

由上面的不等式组可以看出:

对于,只要就可满足题目要求.

综上知,当污染物排出量满足时可以时整个系统内的污染物浓度控制在给定范围之内.

大气污染物扩散模式

第四章 大气扩散浓度估算模式 第一节 湍流扩散的基本理论 一 湍流 1.定义:大气的无规则运动 风速的脉动 风向的摆动 2.类型: 按形成原因 热力湍流:温度垂直分布不均(不稳定)引起,取决于大气稳定度 机械湍流:垂直方向风速分布不均匀及地面粗糙度引起 3.扩散的要素 风:平流输送为主,风大则湍流大 湍流:扩散比分子扩散快105~106倍 二 湍流扩散理论(主要阐述湍流与烟流传播及湍流与物质浓度衰减的关系) 1.梯度输送理论 通过与菲克扩散理论类比建立起来的(菲克定律:单位时间内通过单位断面上的物质的数量与浓度梯 度呈正比) 类比于分子扩散,污染物的扩散速率与负浓度梯度成正比 x C k F ??-= 式中,F — 污染物的输送通量 k — 湍流扩散系数 C — 污染物的浓度 X — 与扩散截面垂直的空间坐标(扩散过程的长度) x C ??— 浓度梯度 要求得各种条件下某污染物的时、空分布,由于边界条件往往很复杂,不能求出严格的分析解,只能是在特定的条件下求出近似解,再根据实际情况进行修正。 2.湍流统计理论 泰勒首先将统计理论应用在湍流扩散上 图4-1显示:从原点O 放出的粒子,在风沿着x 方向吹的湍流大气中扩散。粒子的位置用y 表示,则结论为: ①y 随时间变化,但其变化的平均值为零 ②若从原点放出很多粒子,则在x 轴上粒子的浓度最高,浓席分布以x 轴为对称轴,并符合正态分布。 萨顿实用模式:解决污染物在大气中扩散的实用模式 高斯模式:应用湍流统计理论得出正态分布假设下的扩散模式 3.相似理论 第二节 高斯扩散模式 一 坐标系的建立—右手坐标系

1.原点O :无界点源或地面源,O 为污染物的排放点 高架源,O 为污染物的排放点在地面上的投影点 补充:点源 高架源 连续源 固定源 线源 地面源 间歇源 流动源 面源 2.x 轴:正向为平均风向,烟流中心线与x 轴重合 3.y 轴:垂直于x 轴 4.z 轴:垂直于xoy 平面 二 高斯模式的有关假定 1.污染物浓度在y 、z 轴上的分布为正态分布; )2exp(21 )(22 y y y y f σπ σ-= )2exp(21 )(22 z z z z f σπ σ-= y σ,z σ— 分别为污染物在y 和z 方向上分布的标准差,m 2.全部高度风速均匀稳定,即风速u 为常数; 3.源强是连续均匀稳定的,源强Q 为定值; 4.扩散中污染物是守恒的,不考虑转化,即烟云在扩散过程中没有沉降、化合、分解及地面吸收、吸附作用发生; 0=??t C 5.在x 方向上,输送作用远远大于扩散作用,即 )(x C k x x C u x ????>>??; 6.地面足够平坦。

城市空气质量模式研究进展

城市空气质量模式研究进展 大气污染物扩散模式的应用受到物理化学特征、污染源特征等多种因素的制约,综述了不同的大气污染物扩散模式适用的范围,分别阐述了ISC、AERMOD、ISCST、ADMS等适用于中小尺度的和CALPUFF等应用于大尺度的不同大气污染扩散模式的研究进展。 标签:大气污染;扩散模式;空气质量 1 引言 工业污染源的排放对大气环境质量有直接的影响,同时也直接影响了周围居民的身体健康及生活。但由于高成本和相关实验的难度,对污染物浓度进行准确的动态分布监测不是十分可行,因此大气污染物扩散模式被广泛用来模拟预测污染物的扩散分布情况,评估大气环境质量。 大气污染物扩散模式结合污染物浓度和气象资料定量分析污染物在大气中输送、扩散特征。最初,模式的研究理论核心是高斯扩散理论,应用范围是小尺度。随着研究的逐渐深入和计算机的发展,开始利用计算机进行数值计算,突破了高斯扩散理论均匀平稳湍流的限制,可以求解非均匀、非定常的污染物扩散问题,且模式的适用范围向中尺度、大尺度扩展。目前,数值计算已经成为研究的主流方法,研究范围也在逐步扩大。 大气污染物扩散模式的应用受到地形、气象、大气污染物的物理化学特征、污染源特征等多种因素的制约,不同的扩散模式都有各自不同的考虑因素和适用范围,选择恰当的扩散模式能够较为准确地模拟污染物的扩散及分布,用于城市环境空气质量预报。目前,己经有许多发展成熟的污染物扩散模式应用于不同尺度的污染物扩散研究,其中不少模式经过验证都获得了较好的结果,国内的相关研究中尤其以高斯类模式的应用最为广泛。 2 大气污染物扩散模式的类型 近年来针对工业点源的大气污染物扩散模式的应用,结合模式的理论核心以及应用特征,目前常用的扩散模式以高斯公式、拉格朗日方法、欧拉方法为基础。高斯模式是半经验型扩散模式,假定下风向的污染物浓度符合正态分布,是很多实用模式发展的基础。基于高斯理论的大气污染扩散模式被广泛应用于各种尺度的研究区域,其中适用于中小尺度的有ISC(Industrial Source Complex Model)、AERMOD (AMS/EPA Regulatory Model)、ISCST (Industrial Source Complex Short Term Model)、ADMS (Advanced Dispersion Modeling System)、ADMS-Urban等,应用于大尺度的有CALPUFF等。拉格朗日方法是用来跟随流体移动的粒子来描述污染物浓度及其变化。它是一种描述污染物分布的自然方式。在基于拉格朗日方法的大气污染物扩散模式中,适用于中小尺度的有LS (Lagrangian Stochastic Model)、TAPM (the Air Pollution Model)、LPM

新技术扩散的传染病模型及实证分析_胡中功

第20卷 第2期 1998年6月武 汉 工 业 大 学 学 报JOURNAL OF WUH A N UNIVERSITY OF TEC HNOLOGY V ol.20 N o.2 J un.1998 新技术扩散的传染病模型及实证分析 胡中功 叶春生 (武汉化工学院)  摘 要: 介绍了适用于新技术扩散的传染病模型,实际分析了工业和农业技术扩散数据,并与文[1]中的扩散模型进 行了比较,得出了一些具有实际意义的结论。 关键词: 传染病; 技术扩散; 模型; 参数估计 中图法分类号: O 23 收稿日期:1997-12-15. 胡中功:男,1965年生,讲师;武汉:武汉化工学院自动化系(430073). 长期以来,经济学家和社会学家们一直关注着如何在行业中推广技术改造和革新,如工业新技术、新产品的推广,农业新技术、新品种的推广等。一旦一家企业采用了一项技术革新,那么该行业中其它企业将以怎样的速度接受这项革新?哪些因素决定着他们跟上来的速度?目前国际上关于技术扩散理论仍然以S 型曲线理论为基础,即新技术的扩散呈现S 型增长趋势(Davies ,1979;Dix on ,1980,姜彦福,1994;胡瑞发,1996;林毅夫,1991、1994)。 事实上,新技术的扩散过程类似于传染病的流行,本文在新技术扩散的传染病模型基础上,以“同步电动机失步保护及不减载自动再整步”(简称SBZ )技术和湘、川两省的杂交水稻种植为实例,研究了新技术的扩散过程及主要影响因素,通过两个模型的比较分析得出一些有意义的结论。 1 技术扩散的传染病模型 设n m 为全社会所有人口对疾病无免疫力(即可被传染)的人数,n t 为时间t 时被传染的人数,g (t )为接触并可能传染的频率,Z t 为未受传染的人与已染病人的接触机会,可表示为n t /n m ,其大小取决于当时染病者人数。因此,每个人在时间t 接触到疾病并被传染的机会取决于g (t )、Z t 及n m -n t 的大小。n t 的增长速率及其解可用下列公式表示: d n t /d t =g (t )Z t (n m -n t )(1) n t =n m 1+e -∫t 0g (t )d t =n m 1+e -G (t )(2)其中G (t )>0,该曲线形状呈S 型,即发病人数是随时间历程按S 型曲线增长的。特别地令G (t )=c +bt ,则(2)式可变换成: n t =n m 1+a e (3)(3)式即为本文采用的传染病扩散模型,它实际上也就是被广泛应用的Lo gistic 函数,式中n m ,a ,b 为待估参数;b 表示疾病扩散随时间而调节的速度,a 与基期的传染人数有关,截距n m /(1+a )表示最初的染病人数。由于新技术扩散过程类似于传染病流行过程,所以将此模型应用于描述技术扩散过程,则相应地n m 代表新技术采用者的最大可能值,b 表示新技术的扩散随时间而调节的速度,a 与基期的新技术采用水平有关,截距n m /(1+a )表示最初的新技术采用者人数。 2 实证分析 2.1 湘、川两省杂交水稻种植扩散 以杂交水稻技术开始扩散年份(1976)的技术扩散年龄为1,根据两省的实际种植扩散资料(见表1),分别建立(3)式模型,得各估计参数及由模型所算的估算值均列于表1。由表1结果可看出,所建立的传染病扩散模型适合于该技术扩散的描述,估计值与实际值吻合较好。湖南省杂交稻扩散截距大于四川省的截距说明湖南先于四川采用该技术,而由于湖南省在1980、1985、1989年三次减少种植面积,因而导致该技术在湖南的扩散有些波动,主要是由于行政因素和种子质量等原因(林毅夫,1994),截止90年扩散值只占最大可能推广面积的70.8%,而四

水污染模型

基于GIS 的环境污染应急分析系统的开发重点是实现水体污染扩散模拟。目前, 国外在此方面的研究成果很多,已经进行到了三维水体污染扩散模拟,国内的起步则较晚, 至今的研究成果在一维的较多,二维和三维的较少。鉴于目前网络的发展, 有必要将互联网与系统结合起来。 一维水体污染扩散数学模型:一维水质模型是水环境模型中相对简单的一种,是河流、河口和湖泊遭受污染时,实际的断面浓度分布与断面浓度的平均值偏差不大时常采用的水污染预测模型。它主要研究污染物浓度分布沿程的变化以及各个断面上污染物浓度随时间的变化,其中河流以一维水质模型最为常见。在突发性河道水源地污染事故发生时。污染物的排放存在两种情况,即一维稳定排放和一维瞬时排放, 二维水体污染扩散数学模型:二维计算模型模拟速度快、实时而精度无需很高, 可忽略基本控制方程中的一些非主要因素,模型结构简单、实用性强。目前最为常用的有限差分数值计算方法对控制方程进行离散, 按物理分步法将二维偏微分方程化简成较简单的一维方程, 应用广为采用的ADI隐式格式联合求解水动力模型与水污染模型。算法具有编程简单、占用计算机内存较小、无条件稳定、可适当增大空间步长、计算效率高、易于实现自动化的实时模拟计算等显著优点, 适合于在应急处置中应用。并且利用GIS 的强大的空间分析、处理和表现功能, 将水力计算与GIS 结合在一起, 实现了污染模拟结果的二维可视化, 为应急处置提供一个形象、直观的表现平台, 能有效地辅助应急决策。 三维水体污染扩散数学模型:水污染三维可视化包含两方面的内容:河道地形地貌三维仿真与污染扩散可视化,二者通过地理坐标进行空间叠加形成河道污染扩散可视化展示平台,在此基础上进行各种统计分析功能。

点污染源空气污染扩散模型

8 点、中午12 点、晚上9 点都没有排放气体,该怎么算,是不是需要找到一个关于时间t的函数,来计算多长时间之后污染还剩下多少 c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); 这个函数对吗?该调用什么函数? 问题: 建立单污染源空气污染扩散模型,描述其对周围空气污染的动态影响规律。 现有河北境内某一工厂废气排放烟囱高50m,主要排放物为氮氧化物。早上9 点至下午 3 点期间的排放浓度为406.92mg/m3,排放速度为1200m3 /h;晚上10 点-凌晨4 点期间 的排放浓度为1160mg/m3,排放速度为5700m3 /h;通过你的扩散模型求解该工厂方圆51 公里分别在早上浓度8 点、中午12 点、晚上9 点空气污染分布和空气质量等级。 源代码 clear all clc [x,y]=meshgrid(0:20:5100,0:20:5100); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.^0.865014; sigz=0.0757182*x.^1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel('C'), clear all clc [x,y]=meshgrid(-5100:20:5100,-5100:20:5100); Q=1836.7; z=1.5; H=50; u=1.7; sigy=0.3914238*x.^0.865014; sigz=0.0757182*x.^1.00770; c=Q./(2*pi*sigy.*sigz*u+eps).*exp(-0.5*(y.^2)./((sigy+eps).^2)).*(exp(-0.5*(z-H).^2./((sigz+eps).^2))+exp(-0.5*(z+H).^2./((sigz+ eps).^2))); mesh(x,y,c); xlabel('X'),ylabel('Y'),zlabel('C'), 分享到: 2015-05-29 16:32 提问者采纳 clear all [x,y]=meshgrid(-51000:100:51000,-51000:100:51000); Q=135.64; z=1.5; H=50; u=1.94; sigy=0.3914238*x.^0.865014;

推荐-基于修正高斯扩散模型的城市表层土壤重金属污染探究 精品

基于修正高斯扩散模型的城市表层土壤重金属污染探究 (标题,3号黑体) 摘要(4号黑体) (小4号宋体)本文基于修正的高斯扩散模型,针对城市表层土壤重金属污染问题,考虑到重金属的传播特征,建立了一系列逐步完善和精确化的数学模型,很好地解决了重金属污染物分布、污染程度评价及污染源确定的问题。 对于问题一,首先利用MATLAB软件分别做出了8种重金属污染物浓度的等高线空间分布图。然后综合使用内梅罗单因子和综合因子指数法评价该城区不同功能区域的污染程度。具体过程如下:先对每个取样点使用内梅罗单因子指数法确定其污染程度,再按功能区域的划分将监测点分为5类,对每一类都使用内梅罗综合指数法便可得到各区域综合污染指数,其中综合指数的大小反映了污染程度的轻重。结果显示该城区5个功能区域的污染程度从重到轻的排序依次为:工业区>交通区>生活区>公园绿地区>山地区。 对于问题二,使用主因子分析法研究各功能区的重金属污染原因。通过使用SPSS 软件处理数据我们可以得到如下结论:对于工业区来说造成土壤重金属污染的主要原因是工业生产过程中排放的废气、废水和废渣;对于交通区来说造成区内土壤重金属污染的主要原因是汽车排放的气;对于生活区来说造成其重金属污染的主要原因是生活垃圾的废弃及来自工业区和交通区的废气污染;对于公园绿地区来说造成其重金属污染的主要原因是来自工业区与交通区的废气污染以及植物 对重金属的富集作用;山地区域污染较轻气污染主要原因是工业废气和汽车尾气。对于问题三,首先分析重金属污染物的传播特征,得到了重金属有如下几种基本运动方式:随介质迁移的传播运动、分散运动、被环境介质吸收或降解、沉积、传播中转化。其次考虑到重金属污染物传播过程与流体介质的不同,对适用于流体的高斯模型进行了修正,得到了能反映本题要求的修正后的高斯扩散模型。接着对修正后的高斯扩散模型微分方程组进行了求解,得到了3个主要污染源的位 对于问题四,首先评价问题三中所建立模型,模型的优点是充分考虑了重金属的传播特征,对求出污染源非常有效;缺点在于未能考虑当地降雨及常年风向等影响重金属污染传播的因素,对污染的预测不能很好反映。鉴于此,在改进模型时增加收集当地降水及常年风向这两项信息。最后在改进模型时给原微分方程组增加降水和风向两个控制因子,通过求解改进后的微分方程组,相信会得到更加贴近实际的结果。 关键字:内梅罗指数法主因子分析修正高斯扩散模型

技术扩散模型

技术扩散模型 一、贝叶斯模型 (一)、提出理论 托马斯?贝叶斯(Thomas Bayes) ,英国数学家.1702年出生于伦敦,做过神甫。1742年成为英国皇家学会会员。1763年4月7日逝世。贝叶斯在数学方面主要研究概率论。他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数、统计推断、统计的估算等做出了贡献.1763年发表了这方面的论著,对于现代概率论和数理统计都有很重要的作用。贝叶斯的另一著作《机会的学说概论》发表于1758年。贝叶斯所采用的许多术语被沿用至今。 (二)、模型的主要内容及假设 贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。 贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。 贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率信息的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。 贝叶斯决策法是最常见的以期望为标准的分析方法。它是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。 贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设H[,1],H[,2]…互斥且构成一个完全事件,已知它们的概率P(H[,i],i=1,2,…,现观察到某事件A与H[,1],H[,2]…相伴随而出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。 1、重点 是一种以动态模型为研究对象的时间序列预测方法,在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。

大气污染扩散模型

第一节大气污染物的扩散 一、湍流与湍流扩散理论 1. 湍流 低层大气中的风向是不断地变化,上下左右出现摆动;同时,风速也是时强时弱,形成迅速的阵风起伏。风的这种强度与方向随时间不规则的变化形成的空气运动称为大气湍流。湍流运动是由无数结构紧密的流体微团——湍涡组成,其特征量的时间与空间分布都具有随机性,但它们的统计平均值仍然遵循一定的规律。大气湍流的流动特征尺度一般取离地面的高度,比流体在管道内流动时要大得多,湍涡的大小及其发展基本不受空间的限制,因此在较小的平均风速下就能有很高的雷诺数,从而达到湍流状态。所以近地层的大气始终处于湍流状态,尤其在大气边界层内,气流受下垫面影响,湍流运动更为剧烈。大气湍流造成流场各部分强烈混合,能使局部的污染气体或微粒迅速扩散。烟团在大气的湍流混合作用下,由湍涡不断把烟气推向周围空气中,同时又将周围的空气卷入烟团,从而形成烟气的快速扩散稀释过程。 烟气在大气中的扩散特征取决于是否存在 湍流以及湍涡的尺度(直径),如图5-7所示。 图5-7(a)为无湍流时,烟团仅仅依靠分子 扩散使烟团长大,烟团的扩散速率非常缓慢, 其扩散速率比湍流扩散小5~6个数量级;图5 -7(b)为烟团在远小于其尺度的湍涡中扩散, 由于烟团边缘受到小湍涡的扰动,逐渐与周边 空气混合而缓慢膨胀,浓度逐渐降低,烟流几乎呈直线向下风运动;图5-7(c)为烟团在与其尺度接近的湍涡中扩散,在湍涡的切入卷出作用下烟团被迅速撕裂,大幅度变形,横截面快速膨胀,因而扩散较快,烟流呈小摆幅曲线向下风运动;图5-7(d)为烟团在远大于其尺度的湍涡中扩散,烟团受大湍涡的卷吸扰动影响较弱,其本身膨胀有限,烟团在大湍涡的夹带下作较大摆幅的蛇形曲线运动。实际上烟云的扩散过程通常不是仅由上述单一情况所完成,因为大气中同时并存的湍涡具有各种不同的尺度。 根据湍流的形成与发展趋势,大气湍流可分为机械湍流和热力湍流两种形式。机械湍流是因地面的摩擦力使风在垂直方向产生速度梯度,或者由于地面障碍物(如山丘、树木与建筑物等)导致风向与风速的突然改变而造成的。热力湍流主要是由于地表受热不均匀,或因大气温度层结不稳定,在垂直方向产生温度梯度而造成的。一般近地面的大气湍流总是机械湍流和热力湍流的共同作用,其发展、结构特征及强弱决定于风速的大小、地面障碍物形成的粗糙度和低层大气的温度层结状况。 2. 湍流扩散与正态分布的基本理论 气体污染物进入大气后,一面随大气整体飘移,同时由于湍流混合,使污染物从高浓度区向低浓度区扩散稀释,其扩散程度取决于大气湍流的强度。大气污染的形成及其危害程度在于有害物质的浓度及其持续时间,大气扩散理论就是用数理方法来模拟各种大气污染源在

市场分析方法LV3 巴斯扩散模型

针对创新产品、技术的采用和扩散,美国管理心理学家弗兰克·巴斯提出的巴斯扩散模型及其扩展理论,常被用作市场分析工具,对新产品、新技术需求进行预测。作为诸多市场工具中的一种,巴斯扩散模型的主要功能是对新开发的消费者耐用品的市场购买数量进 行描述和预测。 许多创新经验已经显示,新方法、新概念的市场扩散过程完全可以用巴斯公式来表达: 巴斯扩散模型的参数 巴斯扩散模型引入三个参量来预测Nt(消费者在第n期购买该 产品的数量): ?m=市场潜力,即潜在需求总数。 ?p=创新系数(外部影响),即尚未使用该产品的人,受到大众传媒或其他外部因素的影响,开始使用该产品的可能性。 ?q=模仿系数(内部影响),即尚未使用该产品的人,受到使用者的口碑影响,开始使用该产品的可能性。 请参考右侧标准巴斯曲线图(p、q值分别为0.03和0.38)。 巴斯扩散模型的运用

巴斯扩散模型简明易了,且足以适用于初次评估,初次评估的时候,往往没有必要运用那些复杂的市场模型。当然,需要注意的是,巴斯扩散模型仅仅是扩散技术模型中的一种,而且,巴斯扩散模型的许多变形业已被开发出来,用以满足某些特殊情形的精确需求。 当对内部或外部的新技术投资进行评估时,创新动力曲线的运动变化规律,以及新技术(或者说新技术应用)的市场扩散特征是非常有用的分析工具。在投资的初期阶段,或企业内部新产品刚刚上马的时候,了解掌握新技术的市场扩散情况是非常重要的。但是没有哪一种工具模型能够准确测试现实,对资金、时间、市场以及机会的判断,都有可能是错误的。巴斯扩散模型的优势在于能够有效评估投资新技术的益处。 巴斯扩散模型的的局限性 巴斯模型给出的是购买者数量,而不是企业的产品销售量,但是销售量可以根据顾客的使用频率间接估计。巴斯模型的意义在于它提出市场动态变化的规律,为企业在不同时期对市场容量及其变化趋势做出科学有效的估计。 其只适用于已经在市场中存在一定时期的新产品的市场预测,而往往新产品上市的时候,其质量和性能对顾客来讲相当陌生,企业无法对巴斯模型中的创新系数和模仿系数做出可靠的估计。

污染物扩散模型-深圳数学建模

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): C 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名):温州医科大学 参赛队员 (打印并签名) :1. 章成俊 2. 杨超 3. 谢锦 指导教师或指导教师组负责人 (打印并签名): 日期:年月日

赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 编号专用页 送全国评阅统一编号(由赛区组委会填写): 全国评阅随机编号(由全国组委会填写):

对垃圾处理厂污染的动态监控及居民补偿 摘要 城市垃圾处理问题是一个世界性难题。目前垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。本论文构根据题目设置的垃圾处理厂规模,建立了环境动态监控体系,并根据潜在污染风险对周围居民进行了合理经济补偿的设计。 对于问题(1),为了实现对垃圾焚烧厂烟气排放及相关环境影响状况的动态监控,本论文在高斯烟羽模型的基础上进行改进,引入温度、降雨对污染物扩散的影响,建立了新的污染物扩散模型。本论文创新性的提出了风雨影响指数M,用来衡量风向、降雨对颗粒物扩散的影响。本论文将抽象的污染物含量形象化,利用空气污染指数API描述具体的污染程度及其给周围居民带来的影响。并且从不同角度给出了模型检验,验证了所建模型的准确性。 对于问题(1)具体赔偿方案的制定,在综合考虑了不同方位风向频率、受污染时间、受污染程度的基础上,本论文使用了层次分析法,并且进行了一致性检验,使得赔偿方案具有说服力。通过MATLAB编程,计算出当政府和垃圾处理厂共支付风险赔偿金为N时,得出居住地的每位居民应得的赔偿金额计算公式。对于监测点的设置,经计算共需21个,具体布置情况见后文。 对于问题(2),在题目所述的发生事故的情况下,对污染物的具体含量进行了合理的预测与假设。模拟出酸性物质与颗粒物的影响范围,并根据具体的污染程度设置不同的污染区。对每个污染区的不同情况设置更改监测点的设置,并且在问题(1)的基础上对居民的经济补偿进行合理修改。 关键词:高斯烟羽模型,层次分析法,空气污染指数,烟气抬升公式 一、问题重述 “垃圾围城”是世界性难题,在今天的中国显得尤为突出。数据显示,目前全国三分之二以上的城市面临“垃圾围城”问题,垃圾堆放累计侵占土地75万亩。因此,垃圾焚烧正逐步成为中国垃圾处理的主要手段之一。然而,由于政府监管不力、投资者目光短浅等多方面的原因,致使前些年各地建设的垃圾焚烧电厂在运营中出现了环境污染问题,给垃圾焚烧技术在我国的推广造成了很大阻力,许多城市的新建垃圾焚烧厂选址都出现因居民反对而难以落地的局面。在垃圾焚烧厂运行监管方面,目前主要是在垃圾焚烧厂内进行测量监控,缺少从周边环境视角出发的外围动态监控,因而难以形成为民众所信服的全方位垃圾焚烧厂环境监控体系。 深圳市某地点计划建立一个中型的垃圾焚烧厂,计划处理垃圾量1950吨/天(设置三台可处理垃圾650吨/天的焚烧炉,排烟口高度80米,每天24小时运转)。从构建环境动态监控体系、并根据潜在污染风险对周围居民进行合理经济补偿的需求出发,有关部门希望能综合考虑垃圾焚烧厂对周围带来环境污染以及其他危害的多种因素(例如,焚烧炉的污染物排放量、居住点离开垃圾焚烧厂的距离、风力和风向及降雨等气象条件、地形地貌以及建筑物的遮挡程度等等),在进行科学定量分析的基础

大气污染物扩散高斯模型模拟

大气污染物扩散的高斯模型模拟:可视化模拟点源大气污染的扩散Gaussian Atmospheric Dispersion Model 突发性大气污染事故时有发生,对大气污染扩散进行模拟和分析,有利于减小事故的危害,减轻人员伤亡和财产损失。高斯扩散模型是国际原子能机构(IAEA)推荐使用于重气云扩散模拟的数学模型,该模型在非重气云扩散的应用日益广泛。高斯扩散模型是描述大气对有害气体的输移、扩散和稀释作用的物理或数学模型,是进行灾害预测和救援指挥的有力手段之一。 高斯扩散模型 高斯模型又分为高斯烟团模型和高斯烟羽模型。大气污染物泄漏分为瞬时泄漏和连续泄漏,瞬时泄漏是指污染物泄放的时间相对于污染物扩散的时间较短如突发泄漏等的情形,连续泄漏则是指污染物泄放的时间较长的情形。瞬时泄漏采用高斯烟团模型模拟,而连续泄漏采用高斯模型烟羽模型模拟。高斯模型适用于非重气云气体,包括轻气云和中性气云气体。要求气体在扩散过程中,风速均匀稳定。 在高斯烟团模型中,选择风向建立坐标系统,即取泄漏源为坐标原点,x轴指向风向,y轴表示在水平面内与风向垂直的方向,z轴则指向与水平面垂直的方向,具体公式见式: (mg/s); x、y、z轴上的扩散系数,需根据大气稳定度选择参数计算得到(m);x、y、z表示x、y、z上的坐标值(m);u 表示平均风速(m/s);t表示扩散时间(s);H 表示泄漏源的高度(m)。 同理,高斯烟羽模型的表达式如: 技术方法 若用高斯模型算出空间每一个点在一个时刻的污染浓度,这个计算量是很大的。因此所设计的系统一般都是采用先进行图层网格化,由高斯模型计算出有限个网格点的上的污染物浓度,在进行空间内插得到面上每一个点的污染物浓度,并由此得到污染物浓度的等值线。整个过程的示意图如图所示

重金属污染

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2012 年 8 月15 日赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文运用Matlab、SPSS及Excel软件,综合分析该城区各区重金属污染程度及其重金属污染的主要原因,并根据重金属的传播特征建立数学模型,寻找出污染源,同时更进一步修改模型以更好研究城市地质环境的演变模式。 针对问题一,利用Matlab作出各重金属浓度空间分布图,可看出重金属浓度大多呈高浓度向外逐步扩散现象。同时,利用单因素污染指数公式及污染等级规则,通过模糊综合评价模型,得出各类区域重金属污染程度如下: 针对问题二,利用SPSS软件对各重金属变量进行R型聚类分析,将重金属污染分为四类:Cr、Ni、Cu为一类,Cd、Pb、Zn为一类,而As、Hg各为一类。并计算出各区域各单金属污染指数进行对照分析,说明该城区重金属污染主要来源于工业活动及其生产品和交通主干道污染。 针对问题三,我们根据重金属物质在土壤中扩散的特点,利用有衰减的扩散模型,构造出浓度与坐标的关系,并利用matlab编程,多次试验,合理筛选数据,通过回归分析的方法,求解参数,从而得到不同重金属的不同污染源。 针对问题四,由于问题三求解的局限性,我们在模型三的基础上,增加了时间、水文、人类活动等因素,得出一个更为具体并符合实际的模型。有利于计算土壤中重金属的浓度。 关键词单因素污染指数模糊综合评价 R型聚类分析有衰减的扩散模型扩散规律

城市表层土壤重金属污染分析数学建模国家二等奖

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

城市表层土壤重金属污染分析 摘要 本文以某城区为例,对其土壤地质环境重金属含量进行取样分析,找出取样点被污染的主要原因并寻找到取样点的污染源。为此,对于第(1)和第(2)小题我们对取样点的数据统计分析,用MATLAB 软件画出8张元素的分布图,各代表同一重金属元素在不同功能区不同含量范围内的分布点,统计出点的数目,对均值和方差进行对比得出该城区内不同区域重金属的污染程度和主要污染原因。 针对第(3)小题,我们建立了2个模型来研究,干尘扩散模型——模型一,高斯水流扩散模型——模型二。 模型一是为了求解重金属元素附着在干尘粒上的扩散方式和范围,运用烟雾扩散模型,结论是根据取样点的某金属含量程度来判断该点距污染源的距离,则污染源在以该距离为半径的圆的圆周上,在根据取样点的金属含量高低分布情况,找到污染源。 模型二是研究重金属在土壤中的扩散情况,在相间物质交换为平衡的条件下 ,可用阻滞系数来表示其影响,可得到一个微分方程 3t c ρ= ??带入参数,可以找到某金属的污染源坐标。 关键词:烟雾扩散模型 图例 统计 污染物运移 物质交换 MATLAB

城市空气污染程度的分析和预测模型

城市空气污染程度的分析和预测 摘 要 本文讨论了有关城市污染程度、污染因素及污染扩散的问题。 对于问题一,本文主要从大气污染、噪声污染和水体污染这三个面选取主要污染物,查阅北京、天津、上海、重庆和西安五座城市2007-2012年的年度平均污染数据,采用降维的思想,运用主成分分析法减少变量个数,再借助Matlab 软件计算各主成分的贡献率,分析知可选取前三个主成分作为衡量污染程度的标准,最后根据综合指标得到这五个城市的污染程度从高到低依次为:重庆、上海、北京、天津、西安。通过判断相关系数的大小,确定五个城市影响人们生活的主要污染因素是水污染,其四项指标依次为化学需氧量、总氮、总磷和氨氮。 对于问题二,以北京市大气污染为例。首先,利用GPS 记录北京市14个城区观测点的位置,并查阅2013年污染指标2SO 、2CO 、5.2PM 与10PM 的污染数据,绘制出相应的空间浓度分布图,估计这四种污染物的大致污染源位置依次为:)100,110(附近、)83,130(附近,)85,125(附近和)80,132(附近;其次,根据污染扩散原理和方式,建立Cauchy 污染传播模型,根据各地区空气污染物的浓度分布,运用Matlab 软件对数据非线性拟合,得出扩散模型各参数的值,计算得出各项污染指标的污染源位置依次为:)3.97,5.115(,)3.85,2.128(,)8.80,1.129(和)6.87,5.125(;最后,比较污染物位置的计算值与实际值,发现误差相差较小,故模型建立较为合理。 对于问题三,分析西安市的主要污染——大气污染。收集西安市2014年4.1-7.31日的空气污染数据,根据时间序列的平稳性特点及AIC 定阶准则选取 合适的时间序列模型)11(ARMA , ,利用Matlab 软件对序列模型的各项参数进行估计并检验模型的合理性,并将模型用于数据预报。利用时间序列模型预测西安市未来10天的空气污染状况总体等级为良。 对于问题四,基于问题一、二、三对污染因素的分析和污染扩散的特点,主要从减少污染物的产生和治理净化已产生的污染物两方面,针对大气污染、水体污染和噪声污染为相关部门提供合理化防治建议。 关键词 主成分分析;Cauchy 污染传播模型;时间序列模型;Matlab 软件

巴斯扩散模型

巴斯扩散模型 针对创新产品、技术的采用和扩散,Frank M. Bass提出的巴斯扩散模型(Bass Diffusion Model)及其扩展理论,常被用作市场分析工具,对新产品、新技术需求进行预测。作为诸多市场工具中的一种,巴斯扩散模型的主要功能是对新开发的消费者耐用品的市场购买数量进行描述和预测。 许多创新经验已经显示,新方法、新概念的市场扩散过程完全可以用巴斯公式来表达: 巴斯扩散模型的参数 巴斯扩散模型引入三个参量来预测Nt(消费者在第n期购买该产品的数量): ?m = 市场潜力,即潜在使用者总数。 ?p = 创新系数(外部影响),即尚未使用该产品的人,受到大众传媒或其他外部因素的影响,开始使用该产品的可能性。 ?q = 模仿系数(内部影响),即尚未使用该产品的人,受到使用者的口碑影响,开始使用该产品的可能性。 请参考右侧标准巴斯曲 线图(p、q值分别为0.03 和0.38)。 巴斯扩散模型的运用 巴斯扩散模型简明易了, 且足以适用于初次评估, 初次评估的时候,往往没 有必要运用那些复杂的 市场模型。当然,需要注意的是,巴斯扩散模型仅仅是扩散技术模型中的一种,而且,巴斯扩散模型的许多变形业已被开发出来,用以满足某些特殊情形的精确需求。 当对内部或外部的新技术投资进行评估时,创新动力曲线的运动变化规律,以及新技术(或者说新技术应用)的市场扩散特征是非常有用的分析工具。在投资的初期阶段,或企业内部新产品刚刚上马的时候,了解掌握新技术的市场扩散情况是非常重要的。但是没有哪一种工具模型能够准确测试现实,对资金、时间、市场以及机会的判断,都有可能是错误的。巴斯扩散模型的优势在于能够有效评估投资新技术的益处。

污染空气的扩散模型

放射性气体扩散的预估模型 摘要:由于放射性气体泄漏造成惨重损失的报道在国际屡见不鲜,近日日本福岛核电站的放射性气体的泄漏事件更让我们关注放射性气体泄漏时在环境中的浓度问题,为了今后事故发生后提供积极的补救措施, 所以对放射性气体的扩散作深入的研究是很有必要的。本文结合高斯烟羽模型、线性拟合,以及微分方程模型,运用MA TLAB软件,分析了泄漏源强度、风速、大气稳定度参数、地面粗糙度参数和计算精确度等的因素对放射性气体扩散的影响,预测了放射性气体浓度在不同时间,不同地区的浓度变化,并且本文模型中的数据可以根据不同的实际情况而加以改变,因而使本文的应用范围大大增加,可以适用于具有较强的应用性。文章首先在第一问中利用MA TLAB软件对数据进行线性拟合,采用微分方程模型得到核电站周边放射性气体在不同地区,不同时间段的浓度变化,得出随着离泄漏源距离的延伸,最终放射性物质的浓度越来越小,趋近于零,即当L趋向无穷是,C(x,y,z,t)趋向于零;当时间趋于无穷时,C(x,y,z,t)也趋于无穷。问题二,问题三中,建立以核电站周边不同地区得距离以及风速为因变量,设置各个主要因素的参考数据,同时,利用高斯烟羽模型对核电站周边地区的浓度进行预测,然后,利用MATLAB软件,将相关数据代入程序,我们得到核电站周边地区的浓度分布的等高曲线。问题四中,通过实际收集数据,集合核电站周边地区的浓度等高曲线,可以直观的看出日本福岛核电站对我国东海岸以及美国西海岸的影响。 一.问题的提出 1.1背景的介绍 目前,核电的发展给国家带来了巨大的经济效益和社会效益,但核电正常运行以及发生泄露时不可避免的会有气载放射性核素排出,这样就给周围的环境产生了一定的影响,因此,正确的测出大气中放射性物质的浓度在环境检测以及安全评估中具有重要意义。 1.2需要解决的问题 的放射性气体以匀速排出,设有一座核电站遇自然灾害发生泄漏,浓度为p 速度为m kg/s,在无风的情况下,匀速在大气中向四周扩散, 速度为s m/s. (1)请你建立一个描述核电站周边不同距离地区、不同时段放射性物质浓度的预测模型。 (2)当风速为k m/s时,给出核电站周边放射性物质浓度的变化情况。 (3)当风速为k m/s时,分别给出上风和下风L公里处,放射性物质浓度的预测模型。

最新城市表层土壤重金属污染分析

城市表层土壤重金属 污染分析

本科生毕业设计(论城市表层土壤重金属污染分析 二级学院:院 专业:数学 年级: 学号:2 作者姓名: 指导教师: 完成日期:2013年5月3日

目录 1 引言 (2) 1.1 问题由来 (2) 1.2 相关信息 (2) 1.3 问题的提出 (2) 2 基本假设 (2) 3 符号说明 (3) 4 问题分析 (4) 5 模型的准备 (4) 6 模型的建立与求解 (5) 6.1 问题1的分析与求解 (5) 6.1.1 模型的建立 (5) 6.1.2 模型的结果 (5) 6.1.3 污染程度的单项污染指数评价 (7) 6.1.4 综合污染程度的评价模型 (9) 6.2 问题2的分析与求解 (10) 6.2.1 模型的建立 (10) 6.2.2 模型的结果 (11) 6.3 问题3的分析与求解 (12) 6.3.1 土壤重金属污染物的来源 (12) 6.3.2 重金属污染物的传播特征 (13) 6.3.3基于matlab的数据处理与三维数据插值模型 (13) 6.4 问题4的分析与求解 (19) 6.4.1 模型的优点 (19) 6.4.2 数据的收集 (20) 6.4.3 模型的建立与求解 (20) 7 模型的推广 (21) 8 结语 (21) 参考文献 (22)

附录 (23)

城市表层土壤重金属污染分析 摘要:本文主要对某城市表层土壤地质环境重金属污染的情况进行分析.首先,利用MATLAB绘制出8种重金属元素在该城区的空间分布,通过内梅罗指数评价法来分析该城区内不同区域重金属的污染程度.接着,通过SPSS,用相关性分析和主成分分析,来分析重金属污染的主要原因.然后,建立三次多项式插值模型和高斯模型,确定污染源的位置.最后,运用灰色预测模型对土壤中的重金属的变化进行预测,较好地研究了城市地质环境的演变模式. 关键词:重金属污染;内梅罗指数评价法;相关性分析;主成分分析;高斯扩散模型;灰色预测模型 中图分类号:X53 Analysis of Heavy Metal Pollution of Urban Topsoil Abstract: This paper analyses the heavy metal pollution situation of urban topsoil geological environment. First,using MATLAB to draw the spatial distribution of eight heavy metals in the city, and using nemerow pollution index method for the analysis of the heavy metal pollution of the city zone in different areas. Then,by using SPSS, pollution causes of heavy metals are analyzed with correlation analysis and principal component analysis. After that, establishing cubic polynomial interpolation model and Gaussian diffusion model to confirm the pollution sources. At last, grey prediction model is set up to forecast the changes of heavy metals in the soil, preferably forecasting the evolution of the geological environment model. Key words: Pollution of heavy metals; Nemerow pollution index method ; Correlation analysis; Principal component analysis; Gaussian diffusion model;Grey prediction model.

相关主题
文本预览
相关文档 最新文档