当前位置:文档之家› 高中数学必修5--数列经典例题集锦

高中数学必修5--数列经典例题集锦

高中数学必修5--数列经典例题集锦
高中数学必修5--数列经典例题集锦

高中数学必修5数列题目精选精编

【典型例题】

(一)研究等差等比数列的有关性质 1. 研究通项的性质

例题1. 已知数列}{n a 满足

1

111,3(2)n n n a a a n --==+≥. (1)求32,a a ;

(2)证明:

312n n a -=

. 解:(1)2

1231,314,3413a a a =∴=+==+=Q .

(2)证明:由已知1

13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ

1

2

1313

3

312n n n a ---+=++++=L , 所以证得312n n a -=

.

例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥

(Ⅰ)求{

}n a 的通项公式;

(Ⅱ)等差数列{

}n b 的各项为正,

其前n 项和为n T ,且315T =,又112233

,,a b a b a b +++成等比数列,求n T .

解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,

两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,

又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列

∴1

3n n a -=

(Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,

由题意可得2

(51)(59)(53)d d -+++=+,解得122,10d d ==

∵等差数列{}n b 的各项为正,∴0d > ∴2d =

∴2(1)

3222n n n T n n n -=+

?=+

例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++

128n n a n -+=对任意的*N n ∈都成立,数列{}

n n b b -+1是等差数列.

⑴求数列{

}n a 与{}n b 的通项公式;

⑵是否存在N k *

∈,使得(0,1)k k b a -∈,请说明理由.

点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,

可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.

解:(1)已知212322a a a +++…

1

2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2)

128(1)n n a n --+=-(n ∈*N )②

①-②得,1

28n n a -=,求得42n n a -=,

在①中令1n =,可得得41

182a -==,

所以42

n

n a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,

∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n n

b b +-=2)1(4?-+-n 26n =-,

121321()()()n n n b b b b b b b b -=+-+-++-L

(4)(2)(28)n =-+-++-L 2714n n =-+(n ∈*N ).

(2)k k b a -=2714k k -+-42k

-,

当4k ≥时,

277

()()24f k k =-+-42k

-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k

-≥, 又(1)(2)(3)0f f f ===,

所以,不存在k ∈*N ,使得(0,1)k k b a -∈.

例题 4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:

2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②

∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1

+n b 得:

212+++=n n n b b b , ∴

}{n b 为等差数列

∵ b 1 = 2 , a 2 = 3 ,

29,22122=

=b b b a 则 ,

∴ 2)1(),1(22)229)(1(22

+=

∴+=--+=n b n n b n n ,

∴当n ≥2时,

2)

1(1+=

=-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=

n n a n

2. 研究前n 项和的性质 例题5.

已知等比数列}{n a 的前n 项和为

2n

n S a b =?+,且13a =.

(1)求a 、b 的值及数列}{n a 的通项公式;

(2)设

n n n b a =

,求数列}{n b 的前n 项和n T . 解:(1)2≥n 时,a S S a n n n n ?=-=--1

12.而}{n a 为等比数列,得a a a =?=-1112, 又31=a ,得3=a ,从而1

23-?=n n a .又123,3a a b b =+=∴=-Q .

(2)

1

32n n n n n b a -=

=?, 21123(1)3222n n n T -=++++L

231111231(2322222n n n n n T --=+++++L ) ,得2111111(1)232222n n n n

T -=++++-L , 1

1

1(1)2412[

](1)13232212n n n n n n n T +?-=-=---.

例题6. 数列{}n a 是首项为1000,公比为1

10的等比数列,数列{b }n 满足

121

(lg lg lg )k k b a a a k =+++L

*

()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '

.

解:(1)由题意:410n

n a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1

-的等差数列,

12(1)lg lg lg 32k k k a a a k -+++=-

L ,∴1(1)7[3]22n n n n

b n n --=-=

由100n n b b +≥??≤?,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为

67212S S ==.

(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,

∴当7n ≤时,212731132(

)244n n n S b b b n n n -+

'=+++==-+L

当7n >时,

12789n n

S b b b b b b '=+++----L L 2712113

2()2144n S b b b n n =-+++=-+L

∴22113

(7)4411321(7)44n n n n S n n n ?-+≤??'=?

?-+>??.

例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若

12

log n n n

b a a =,12n n S b b b =+++L 求使

1230n n S n ++?>成立的n 的最小值.

解:(1)设等比数列的公比为q (q >1),由

a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12

(舍)

∴a n =2·2

(n -1)

=2n

(2) ∵12log 2n

n n n b a a n ==-?,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.

例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*

1,1N n a ∈=. 函数3()log f x x =.

(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足

1

(3)[()2]n n b n f a =

++,记数列{}n b 的前n 项和为T n ,试比较

52512312n n T +-

的大小. 解:(I )11,,n n S a +-Q 成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,1

3.n n

a a +∴

=

当n =1时,由①得112221S a a ∴==-, 又11,

a =2

21

3,3,a a a ∴=∴

=

{}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=

(II )∵()x log x f 3=,1

33()log log 31n n n f a a n -∴===-,

11111

()

(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,

1111111111111()

224354657213n T n n n n ∴=-+-+-+-++-+-+++L

11111()22323n n =+--++525,122(2)(3)n n n +=-

++

比较

52512312n n T +-

与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-

∵*,N n ∈∴当*

19N n n ≤≤∈且时,

525

2(2)(3)312,;12312n n n n T +++<<-即 当10n =时,

525

2(2)(3)312,;

12312n n n n T +++==-即 当*

10N n n >∈且时,

525

2(2)(3)312,12312n n n n T +++>>-即.

3. 研究生成数列的性质

例题9. (I ) 已知数列{}n c ,其中n

n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;

(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是

等比数列.

解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +

1-p (2n +3n )]2

=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -

1)], 即[(2-p )2n +(3-p )3n ]2

=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -

1],

整理得61

(2-p )(3-p )·2n ·3n =0,

解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证2

2c ≠c 1·c 3.

事实上,2

2c =(a 1p +b 1q )2=2

1a p 2+2

1b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)=

21a p 2+21b q 2+a 1b 1(p 2+q 2).

由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,

因此≠2

2c c 1·c 3,故{c n }不是等比数列.

例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成

等比数列,并且所有公比相等已知a 24=1,

163,814342=

=a a 求S=a 11 + a 22 + a 33 + … + a nn

解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q

则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -

1

依题意得:???

?

??

???

=+==+==+=163)2(81)(1)3(3

1143

3

11

421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,

∴a 11 = d = q = 21 , ∴a kk = k

k

2

n

n S 212132122132?++?+?+=Λ,

1432212132122121+?++?+?+=n n S Λ,

两式相减得:n n n S 22121

-

-

=-

例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记

()*3,.f n n a n N =∈

(1)求数列}{n a 的通项公式;

(2)设n n n n

n b b b T a b +++==

Λ21,2,若)(Z m m T n ∈<,求m 的最小值;

(3)求使不等式1

2)1

1()11)(11(21+≥+++n p a a a n

Λ对一切*N n ∈均成立的最大实数p .

解:(1)由题意得???=+=+2)5(log 1)2(log 33b a b a ,解得???-==12b a ,

)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==- (2)由(1)得

n n n b 212-=, n

n n n n T 2122322523211321-+-++++=∴-Λ ① 1132212232252232121+--+-+-+++=n n n n n n n T Λ ② ①-②得

)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++=ΛΛ1n 1n 1n 21n 2212321n 2+-+---=--.

n n 2n n 23n 2321n 2213T +-

=---=∴-, 设*

,232)(N n n n f n ∈+=

,则由 1512132121)32(252232252)

()1(1<+≤++=++=++=++n n n n n n f n f n n 得*

,232)(N

n n n f n ∈+=随n 的增大而减小 +∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m

(3)由题意得*

21)11()11)(11(121N n a a a n p n ∈++++≤对Λ恒成立

)

1

1()11)(11(1

21)(21n a a a n n F ++++=

Λ,则

()()

1

1n 21n 2)

1n ()1n (4)1n (2)

3n 2)(1n 2(2n 2)

a 1

1()a 11)(a 11(1

n 21)a 11)(a 11()a 11)(a 11(3n 21

)n (F )

1n (F 2n 211n n 21=++>

+-++=

+++=

+++++++++=++ΛΛ

)(),()1(,0)(n F n F n F n F 即>+∴>Θ是随n 的增大而增大

)(n F 的最小值为

332)1(=

F ,332≤∴p ,即332max =p .

(二)证明等差与等比数列 1. 转化为等差等比数列.

例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*

N n ∈. ⑴求数列{}n a 的通项公式;

⑵设||||||21n n a a a S +++=Λ,求n S ;

⑶设n b =1

(12)n n a -**

12(),()N N n n n T b b b n ∈=+++∈L ,是否存在最大的整数m ,使得

对任意*

N n ∈,均有>n T 32m

成立?若存在,求出m 的值;若不存在,请说明理由.

解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+?=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤Λ时

21281029,2n n

a a a n n n +-=+++=

?=-L

6n ≥时,n n a a a a a a S ---+++=ΛΛ76521

2555()2940n n S S S S S n n =--=-=-+

?????+--=40n 9n n n 9S 22

n 56n n ≤≥ (3)

11111

()

(12)2(1)21n n b n a n n n n ===--++Q , ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+L .2(1)n n =+ 若

32n m T >对任意*N n ∈成立,即116n m n >+对任意*

N n ∈成立, *()1N n n n ∈+Q

的最小值是21,1,162m ∴

即存在最大整数,7=m 使对任意*

N n ∈,均有

.32n m T >

例题13. 已知等比数列{}n b 与数列{}n a 满足3,n a

n b n =∈N *.

(1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=L 求.

解:(1)设{}n b 的公比为q ,∵3n a

n b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=?=?-。

所以{}n a 是以3log q 为公差的等差数列.

(2)∵813,a a m +=所以由等差数列性质可得120813,a a a a m +=+=

123a a a +++…

12020()20

102

a a a m +?+=

=?

1220()10122033a a a m b b b +++==L L

2. 由简单递推关系证明等差等比数列

例题14. 已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >

,n b =*n ∈N ), 且{}n b 是以q 为公比的等比数列.

(I )证明:2

2n n a a q +=;

(II )若2122n n n c a a -=+,证明:数列{}n c 是等比数列; (III )求和:1234

212111111n n a a a a a a -++++++

L . 解法1:(I )证:由1

n n b q b +=

q ==,∴()*N n q a a 2n 2n ∈=+.

(II )证:∵2

2n n q a a -=,

22221231n n n a a q a q ---∴===L ,2n 2222n 2n 2q a ...q a a --===, 22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.

{}n c ∴是首项为5,公比为2q 的等比数列.

(III )解:由(II )得2221

1

1

1n n q a a --=

,222211n

n q a a -=,于是

1221321242111111111

()()n n n a a a a a a a a a -+++=+++++++L L L

242224221211111111

(1)(1)n n a q q q a q q q --=

+++++++++L L

21223111(1)2n q q q -=++++L .

当1q =时,242212

21113111

(1)2n n a a a q q q -+++=++++L L 32n

=. 当1q ≠时,24221221113111

(1)

2n n a a a q q q -+++=++++L L

2231()21n q q ---=-222231[]2(1)n n q q q --=-.

故21222223

121111[ 1.(1)n n n n q q a a a q q q -?=??

+++=?

3

-?≠?2-?L , ,],

解法2:(I )同解法1(I ).

(II )证: 222*1212221221221222()22N n n n n n

n n n n n

c a a q a q a q n c a a a a +++---++===∈++,又11225c a a =+=,

{}n c ∴是首项为5,公比为2q 的等比数列.

(III )由解法1中(II )的类似方法得2222

21212()3n n n n a a a a q q ---+=+=,

34212121221234212111

n n n n n a a a a a a a a a a a a a a a --++++++=+++L L ,

2222212442123322k k k k k k k a a q q

a a q --+---+==Q ,1

2k n =L ,,,. ∴()

2

n 22n 221q ...q 123a 1...a 1a 1+--+++=+++.

例题15. 设数列0,1,)1(,}{-≠-+=λλλ其中且项和为的前n n n n a S S n a (1)证明:数列}

{n a 是等比数列;

(2)设数列}

{n a 的公比()q f λ=,数列{}n b 满足1b =,b n =f (b n -1)(n ∈N *,n ≥2),

求数列

}

{n b 的通项公式;

(3)设1λ=,1

(1)n n n

C a b =-,求数列{}n C 的前n 项和Tn . (1)证明:由11(1)(1)(2)n n n n S a S a n λλλλ--=+-?=+-≥

相减得:1

1,(2),1n n n n n a a a a n a λ

λλλ

--=-+∴=≥+∴数列{}n a 是等比数列 (2)解:

1{}n b ∴是首项为112b =,公差为1的等差数列,∴1

2(1)1n n n b =+-=+. 11

n b n ∴=+. (3)解:1λ=时11

111,(),(1)()22

n n n n n n a C a n b --=∴=-=

21111

12()3()()222

n n T n -∴=++++L ①

②①-②得:

n

n

n2

1

n

2

1

1

2

T

2

1

?

?

?

?

?

-

?

?

?

?

?

?

?

?

?

?

?

?

?

-

=

所以:

11

4(1())2()

22

n n

n

T n

=--.

例题16. OBC

?的各个顶点分别为(0,0),(1,0),(0,2),设

1

P为线段BC的中点,

2

P为线段OC的中点,3P为线段1

OP的中点. 对每一个正整数

3

,

n

n P

+

为线段

1

n n

P P

+

的中点. 令n P的坐标为

(,)

n n

x y,

12

1

2

n n n n

a y y y

++

=++.

(1)求3

2

1

,

,a

a

a

,()

N

n

a n*

∈;

(2)证明:

4

1,()

4

N

n

n

y

y n*

+

=-∈

(3)记

444

,()

N

n n n

b y y n*

+

=-∈,证明:}

{

n

b是等比数列.

(1)解:因为y1=y2=y4=1,y3=

1

2

,y5=

3

4

,所以得a1=a2=a3=2.

又由1

32

n n

n

y y

y+

+

+

=,对任意的正整数n有

a n+1=

123

1

2n n n

y y y

+++

++=1

12

1

22

n n

n n

y y

y y+

++

+

++=

12

1

2n n n

y y y

++

++=a n

恒成立,且a1=2,所以{a n}为常数数列,a n=2,(n为正整数)

(2)证明:根据12

42

n n

n

y y

y++

+

+

=,及

12

1

2n n n

y y y

++

++=a n=2,易证得y n+4=1-

4

n

y

(3)证明:因为b n+1=4

n

4

8

n

4

y

y

+

+

-=(1-44

4

n

y

+)-(1-4

4

n

y

)=

1

4n

b

-,

又由b1=4

8

y

y-=1-4

4

y

-y4=

1

4

-,

所以{b n}是首项为

1

4

-

,公比为

1

4

-

的等比数列.

【模拟试题】

一、填空题

1. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于= .

2. 已知数列的通项52n a n =-+,则其前n 项和n S = .

3. 首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是 .

4. 在等比数列}{n a 中,3a 和 5a 是二次方程 2

50x kx ++= 的两个根,则642a a a 的值为 .

5. 等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n= .

6. 等差数列{a n }的前m 项和为30,前2m 项的和为100,求它的前3m 项的和为________

7. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n

A n

B n +=

+,77

b a = ,若n n

b a 为正整数,n 的取值个数为___________。

8. 已知数列{

}n a 对于任意*

p q ∈N ,,有p q p q a a a ++=,若

11

9a =

,则36a = .

9. 记数列}{n a 所有项的和为)1(S

,第二项及以后各项的和为)2(S ,第三项及以后各项的

和为

Λ

,)3(S ,第n 项及以后各项的和为

)

(n S ,若

2

)1(=S ,

1)

2(=S ,

(3)1,2S =L , ()2

1,2n n S -=

L

,则n a 等于 .

10. 等差数列}{n a 共有21n +项,其中奇数项之和为319,偶数项之和为290,则其中间项

为_____.

11. 等差数列}{n a 中,0≠n a ,若1>m 且012

1=+-+-m m m a a a ,2138m S -=,则m 的值为 .

12. 设n S 为等差数列}{n a 的前n 项和. 已知6636,324,144(6)n n S S S n -===>,则n 等于 .

13. 已知函数)(x f 定义在正整数集上,且对于任意的正整数x ,都有(2)2(1)f x f x +=+ ()f x -,且(1)2,(3)6f f ==,则(2005)f =__ __.

14. 三个数c b a ,,成等比数列,且(0)a b c m m ++=>,则b 的取值范围是 . 15. 等差数列{}n a 中,前n 项和为n S ,首项194,0a S ==. (1)若10n n a S +=-,求n (2) 设2

n

a n

b =,求使不等式122007n b b b +++>L 的最小正整数n 的值.

点拨:在等差数列中d n S a n n ,,,知道其中三个就可以求出另外一个,由已知可以求出首项1a 与公差d ,把n n S a ,分别用首项1a 与公差d ,表示即可. 对于求和公式1()

2

n n n a a S +=

,1(1)

2

n n n S na d -=+

采用哪一个都可以,但是很多题目要视具体情况确定采用哪一个可能更简单一些. 例如:已知9109100,0,0,a a a a ><+>判断171820,,S S S 的正负. 问题2在思考时要注

意加了绝对值时负项变正时,新的数列首项是多少,一共有多少项. 16. 等差数列{n a }的前n 项和为n S

,11a =+

39S =+ (I )求数列{n a }的通项n a 与前n 项和为n S ; (II )设

n

n S b n =

(*

N n ∈),求证:数列{n b }中任意不同的三项都不可能成为等比数列.

17. 在直角坐标平面上有一点列111222(,),(,),(,)n n n P

x y P x y P x y L L ,对一切正整数n ,点n P 位于函数

13

34y x =+

的图象上,且n P 的横坐标构成以52-

为首项,1-为公差的等差数列{}n x .

⑴求点n P 的坐标;

⑵设抛物线列ΛΛ,,,,,321n c c c c 中的每一条的对称轴都垂直于x 轴,第n 条抛物线n c 的

顶点为n P ,且过点

2

(0,1)n D n +,设与抛物线n c 相切于n D 的直线的斜率为n k ,求:12231111n n k k k k k k -+++L .

⑶设{}{}|2,,1,|4,1N n n S x x x n n T y y y n ==∈≥==≥,等差数列{n a }的任一项

T S a n ?∈,其中1a 是S T ?中的最大数,10265125a -<<-,求{n a }的通项公式.

18. 已知数列{}n a 满足

*

111,21()N n n a a a n +==+∈, (1)求数列{}n a 的通项公式;

(2)若数列{}n a 满足1

2

111*

444(1)()N n

n

b b b b n a n ---=+∈L (n ∈N *),证明:{}n b 是等差

数列.

【试题答案】

1. 42

2. (51)2n n +-

3. 8(,3]3

4. ±

5. 10

6. 210

7.

8.5;5个

解法一:点拨 利用等差数列的求和公式

1()2n n a a n

S +=

及等差数列的性质

“若2,,,N m p q m p q *

=+∈,则

2

q

p m a a a +=

解析:77b a =11313113

13()

13

172()13

22a a A b b B +?==+?

解法2: 点拨 利用“若{n a }为等差数列,那么

bn an S n +=2

”这个结论,根据条件 找出n a 和n b 的通项.

解析:可设(745)n A kn n =+,(3)n B kn n =+,则1(1438)n n n a A A k n -=-=+,

(22)n b k n =+,则77b a =

(14738)17

(272)2k k ?+=

?+ 由上面的解法2可知n n a b =(1438)127(22)

1k n k n n +=+

++,显然只需使121n +为正整数即可, 故1,2,3,5,11n =,共5个.

点评:对等差数列的求和公式的几种形式要熟练掌握,根据具体的情况能够灵活应用. 反思:解法2中,若是填空题,比例常数k 可以直接设为1. 8. 4 9. 解:

()(1)2

11111222n n n n n n a S S +---=-=

-

=

.

10. 解:依题意,中间项为1+n a ,于是有

11(1)319290

n n n a na +++=??

=?解得129n a +=.

11. 解:由题设得m m m m a a a a 2112

=+=+-,而0m a ≠,2m a ∴=,又2138m S -=Q ,

121()(21)2(21)

382(21)

22m m a a m a m m -+--∴=

==-,10m =.

12. 解:661()6()36(324144)216n n n S S S a a -+-=+=+-=, 136n a a +=,

1()

3242n n n a a S +=

=. ∴18n =。

13. 解:由(2)()2(1)f x f x f x ++=+知函数*

()()N f x x ∈当x 从小到大依次取值时对应的一系列函数值组成一个等差数列,(1),(3),,(2005)f f f L 形成一个首项为2,公差为4的

等差数列,(2005)2(10031)44010f =+-?=.

14. 解:设,b a c bq q ==,则有1,0,1b m b bq m b q q

q b ++=≠∴++=

Q . 当0q >时,113m q b q =++≥,而0b >,

03m b ∴<≤

; 当0,0<∴b ,则0m b -≤<,

[,0)(0,]

3m

b m ∈-?. 15. 解:(1)由919360S a d =+=,得:1,5n d a n =-=-,

又由(1)

10,4(1)(1)4(1)102

n n n n a S n n -+=-+--++

?-=-. 即27300n n --=,得到10n =. (2)由n

n b -=52

若n ≤5,则12n b b b +++L ≤12531b b b +++=L ,不合题意

故n >5,5122(21)

31200721

n n b b b --++=+>-L

即52989n ->,所以n ≥15,使不等式成立的最小正整数n 的值为15

16. 解答:(I

)由已知得111339a a d ?=??

+=+?

?,2d ∴=,

故21(n n a n S n n =-+=+.

(Ⅱ)由(Ⅰ)得

n

n S b n n =

=

假设数列{}n b 中存在三项,,p q r b b b (p q r ,,互不相等)成等比数列,则2q

p r b b b =.

即2

((q p r +=.

2()(20q pr q p r ∴-+--

p q r *∈N Q ,,,

2020q pr q p r ?-=∴?--=?,, 22()()02p r pr p r p r +∴=-=∴=,,.

与p r ≠矛盾.

17. 解:(1)

53(1)(1)22n x n n =-+-?-=--

13535

33,(,3)

4424n n n y x n P n n ∴=?+=--∴----

(2)n c Θ的对称轴垂直于x 轴,且顶点为n P . ∴设n c 的方程为:

223125(),24n n y a x ++=+

- 把)1,0(2+n D n 代入上式,得1=a ,n c ∴的方程为:22

(23)1y x n x n =++++.

32|0'+===n y k x n ,11

1111

()

(21)(23)22123n n

k k n n n n -∴

=

=-++++

12231111n n k k k k k k -∴

+++L 1111111[()()()]257792123n n =-+-++-++L =11111()25231046n n -=-

++.

(3){|(23),,1}N S x x n n n ==-+∈≥,

{|(125),,1}N T y y n n n ==-+∈≥{|2(61)3,,1}N y y n n n ==-+-∈≥ ,S T T ∴=I T 中最大数117a =-.

设}{n a 公差为d ,则10179(265,125)a d =-+∈--,由此得

*248

12,12()9N n d a T d m m -

<<-∈∴=-∈Q 又

*24,724()N n d a n n ∴=-∴=-∈

18. (1)解:

*

121(),N n n a a n +=+∈Q 112(1),n n a a +∴+=+ {}1n a ∴+是以112a +=为首项,2为公比的等比数列.

12.n n a ∴+= 即 21(*)N n n a n =-∈.

(2)证:12111

44 (4)

(1).n n k k k k n a ---=+Q 12(...)42.n n k k k n nk +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ②

②-①,得112(1)(1),n n n b n b nb ++-=+-

即1(1)20,n n n b nb +--+=③ 21(1)20.n n nb n b ++-++=④

③-④,得 2120,n n n nb nb nb ++-+=

即 2120,n n n b b b ++-+= *

211(),N n n n n b b b b n +++∴-=-∈

{}

n b ∴是等差数列.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学必修5经典题型

高中数学必修5经典题型 时量:120分钟 班级: 姓名: 计分: (说明:《必修5》共精选13题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修 5》精选) 1. 在△ABC 中,若cos cos a A b B =,判断△ABC 的形状. (☆P 6 3) 2. 在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,且a 2+b 2=c 2 ab . (1)求C ; (2)若 tan 2tan B a c C c -=,求A . (☆P 6 8) 3. 如图,我炮兵阵地位于A 处,两观察所分别设于C ,D ,已知△ACD 为边长等于a 的正三角形.当目标出现于B 时,测得∠CDB =45°,∠BCD =75°,试求炮击目标的距离AB . (☆P 8 8) 4. 已知数列{}n a 的第1项是1,第2项是2,以后各项由12(2)n n n a a a n --=+>给出. (1)写出这个数列的前5项; (2)利用上面的数列{}n a ,通过公式1n n n a b a +=构造一个新 的数列{}n b ,试写出数列{}n b 的前5项. (◎P 34 B3) 5. 已知数列{}n a 的前n 项和为212 n S n n =+ ,求这个数列的通项公式. 这个数列是等差数列 吗?如果是,它的首项与公差分别是什么?(◎P 44 例3) 6.(09年福建卷.文17)等比数列{}n a 中,已知142,16a a ==. (☆P 38 8) (1)求数列{}n a 的通项公式; (2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和 n S . 7. 若一等比数列前5项的和等于10,前10项的和等于50,那么它的前15项的和等于多少?(◎P 58 2)

高中数学必修五测试题含答案

高一数学月考试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11()2 n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 211,两数的等比中项是( ) A .1 B .1- C .1± D .12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,B C b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{}n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=, 则31 32log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知b a ρρ,满足:a ρ=3,b ρ=2,b a ρρ+=4,则b a ρρ-=( ) A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形

高中数学必修五综合测试题(卷) 含答案解析

绝密★启用前 高中数学必修五综合考试卷 第I卷(选择题) 一、单选题 1.数列的一个通项公式是() A.B. C.D. 2.不等式的解集是() A.B.C.D. 3.若变量满足,则的最小值是() A.B.C.D.4 4.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A.8B.-8C.±8D.以上都不对 5.己知数列为正项等比数列,且,则()A.1B.2C.3D.4 6.数列 1111 1,2,3,4, 24816 L前n项的和为() A. 2 1 22 n n n + +B. 2 1 1 22 n n n + -++C. 2 1 22 n n n + -+D. 2 1 1 22 n n n + - -+ 7.若的三边长成公差为的等差数列,最大角的正弦值为,则这个三角形的面积为() A.B.C.D. 8.在△ABC中,已知,则B等于( ) A.30°B.60°C.30°或150°D.60°或120° 9.下列命题中正确的是( ) A.a>b?ac2>bc2B.a>b?a2>b2 C.a>b?a3>b3D.a2>b2?a>b 10.满足条件,的的个数是( ) A.1个B.2个C.无数个D.不存在

11.已知函数满足:则应满足()A.B.C.D. 12.已知数列{a n}是公差为2的等差数列,且成等比数列,则为()A.-2B.-3C.2D.3 13.等差数列的前10项和,则等于() A.3 B.6 C.9 D.10 14.等差数列的前项和分别为,若,则的值为()A.B.C.D. 第II卷(非选择题) 二、填空题 15.已知为等差数列,且-2=-1,=0,则公差= 16.在中,,,面积为,则边长=_________. 17.已知中,,,,则面积为_________. 18.若数列的前n项和,则的通项公式____________ 19.直线下方的平面区域用不等式表示为________________. 20.函数的最小值是_____________. 21.已知,且,则的最小值是______. 三、解答题 22.解一元二次不等式 (1)(2) 23.△的角、、的对边分别是、、。 (1)求边上的中线的长;

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学必修5试卷(含答案)

数学必修5试题 (满分:150分 时间:120分钟) 一、选择题:(本大题共10小题,每小题5分,共50分) 1、数列1,-3,5,-7,9,…的一个通项公式为 ( ) A .12-=n a n B.)21()1(n a n n --= C .)12()1(--=n a n n D.)12()1(+-=n a n n 2.已知{}n a 是等比数列,4 1 252==a a ,,则公比q =( ) A .2 1- B .2- C .2 D .2 1 3.已知ABC ?中,?=∠==60,3,4BAC AC AB ,则=BC ( ) A. 13 B. 13 C.5 D.10 4.在△ABC 中,若 2sin b B a =,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 5. 在ABC ?中,若cos cos a B b A =,则ABC ?的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 6.若?ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( ) A. 14 - B. 14 C. 23 - D. 23 7.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为 48,则它的首项是( ) A .1 B .2 C .2± D .4 8.等差数列}{n a 和{}n b 的前n 项和分别为S n 和T n ,且 1 32+= n n T S n n , 则 5 5 b a =( ) A 32 B 149 C 3120 D 9 7 9.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,

(完整版)高中数学必修五第二章数列测试题

高中数学必修5 第二章数列测试题 一、选择题(每题5分,共50分) 1、{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A 、667 B 、668 C 、669 D 、670 2、在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A 、33 B 、72 C 、84 D 、189 3、如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ) A 、a 1a 8>a 4a 5 B 、a 1a 8<a 4a 5 C 、a 1+a 8<a 4+a 5 D 、a 1a 8=a 4a 5 4、已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则|m -n |等于( ) A 、1 B 、43 C 、2 1 D 、83 5、等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A 、81 B 、120 C 、168 D 、192 6、若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ) A 、4 005 B 、4 006 C 、4 007 D 、4 008 7、已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A 、-4 B 、-6 C 、-8 D 、-10 8、设S n 是等差数列{a n }的前n 项和,若35a a =9 5,则59S S =( ). A 、1 B 、-1 C 、2 D 、2 1 9、已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A 、21 B 、-21 C 、-21或2 1 D 、41 10、在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A 、38 B 、20 C 、10 D 、9 二、填空题(每题6分,12题15分,16题10分,共49分) 11、设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0) +…+f (5)+f (6)的值为 .

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

高中数学必修五测试题含答案

高一数学月考试题 1.选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.已知数列{a n }中, a 1 2 , a n 1 a n 1 2 (n N ) , 则 a 101 的值为 ( ) A .49 B .50 C .51 D .52 2. 2 + 1 与 2 - 1,两数的等比中项是( ) A .1 B . - 1 C . ± 1 D . 1 2 3.在三角形 ABC 中,如果 a b c b c a 3bc ,那么 A 等于( ) A . 30 B . 60 C .120 0 D .150 0 4.在⊿ABC 中, c cos C b cos B ,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知 { a n } 是等差数列,且 a 2+ a 3+ a 10 + a 11 =48,则 a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列b n 中,若b 7b 83, 则 log 3 b 2 …… log 3 b 14 等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知 a , b 满足: a =3, b =2, a b =4,则 a b =( ) A . 3 B . 5 C .3 D 10 8.一个等比数列{a n } 的前 n 项和为 48,前 2n 项和为 60,则前 3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足 a 1=1,a n +1 =2a n +1(n ∈N + ),那么 a 4 的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a = 6 ,b =4,那么满足条件的△ABC 的形状大 小 ( ). * 0 r r r r r r r r

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

高中数学必修5测试题(基础)

朝阳教育暑期辅导中心数学必修5测试题(B 卷) 考试时间:90分钟 满分:100分 出卷人:毛老师 考生姓名: 一、选择题(每小题5分,共50分) 1.在等比数列{n a }中,已知11 = 9 a ,5=9a ,则3=a ( ) A 、1 B 、3 C 、±1 D 、±3 2.在△ABC 中,若=2sin b a B ,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0 015030或 3.在△ABC 中,若SinA :SinB :SinC=5:7:8,则B 大小为( ) A 、30° B 、60° C 、90° D 、120° 4.已知点(3,1)和(- 4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是( ) A. a <-7或 a >24 B. a =7 或 a =24 C. -7的解集是11 (,)23 -,则a b +的值是( )。 A. 10 B. 10- C. 14 D. 14- 8 1 1,两数的等比中项是( ) A .1 B .1- C .1± D . 12 9.设11a b >>>-,则下列不等式中恒成立的是 ( ) A . 11a b < B .11 a b > C .2a b > D .22a b > 10.已知{}n a 是等差数列,且a 2+ a 3+ a 8+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 二、填空题(每小题4分,共20分) 11、在△ABC 中,=2,=a c B 150°,则b = 12.等差数列{}n a 中, 259,33,a a ==则{}n a 的公差为______________。 13.等差数列{}n a 中, 26=5,=33,a a 则35a a +=_________。

必修五数列练习题带答案

1 / 36 必修五-数列 一、选择题(题型注释) 1.数列1,3,6,10,…的一个通项公式是( ) A .12+-n n B . (1)2n n + C .(1)2 n n -D . 321 -+n 2.已知数列1 是它的( ) A .第22项B .第23项C .第24项D .第28项 3.数列1,2,4,8,16,32,L 的一个通项公式是() A .21n a n =-B .1 2 n n a -=C .2n n a =D .1 2 n n a += 4.数列1,3,7,15,…的通项公式n a 等于( ) A 、n 2B 、n 2+1C 、n 2-1D 、1 2-n 5.数列 23,45-,87 ,16 9-,…的一个通项公式为() A .n n n n a 212)1(+?-=B .n n n n a 21 2)1(+?-= C .n n n n a 212)1(1+?-=+D .n n n n a 2 12)1(1+?-=+ 6.数列579 1,,,, (81524) --的一个通项公式是( ) A .1221 (1)()n n n a n N n n ++-=-∈+ B .1221 (1)()3n n n a n N n n -+-=-∈+ C .1221 (1)()2n n n a n N n n ++-=-∈+ D .1221 (1)()2n n n a n N n n -++=-∈+ 7.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11B .12C .13D .14 8.数列Λ,10,6,3,1的一个通项公式是( ) A .)1(2--=n n a n B .12-=n a n C .2)1(+= n n a n D .2 ) 1(-=n n a n 9.数列2,5,11,20,,47,x …中的x 等于( )

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

专题复习:高中数学必修5基本不等式经典例题

基本不等式 知识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则22 2b a ab +≤??(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2?(2)若* ,R b a ∈,则ab b a 2≥+?(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1 1 22-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2 a b a b a b b a b a b a +≥+≥+≤即或 ( 当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+错误! (2)y =x+错误! 解:(1)y =3x 2+1 2x 2 ≥23x 2·\f (1,2x 2) =错误! ∴值域为[错误!,+∞) (2)当x >0时,y =x+\f(1,x) ≥2错误!=2; 当x <0时, y=x+\f(1,x) = -(- x-错误!)≤-2错误!=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4x <,求函数1 4245y x x =-+-的最大值。

(完整word版)高中数学必修五等差数列测试题

等差数列测试题 一、选择题(每小题5分,共40分) 1.设数列11,22,5,2,……则25是这个数列的 ( ) A.第六项 B.第七项 C.第八项 D.第九项 2.在-1和8之间插入两个数a ,b ,使这四个数成等差数列,则 ( ) A. a =2,b =5 B. a =-2,b =5 C. a =2,b =-5 D. a =-2,b =-5 3.首项为24-的等差数列,从第10项开始为正数,则公差d 的取值范围是 ( ) A.d >83 B.d >3 C.83≤d <3 D.83 <d ≤3 4.等差数列}{n a 共有n 2项,其中奇数项的和为90,偶数项的和为72,且3312-=-a a n ,则该数列的公差为 ( ) A .3 B .-3 C .-2 D .-1 5.在等差数列}{n a 中,,0,01110>,则在n S 中最大的负数为 ( ) A .17S B .18S C .19S D .20S 6.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( ) A.a 11 B.a 10 C.a 9 D.a 8 7.设函数f (x )满足f (n +1)= 2)(2n n f +(n ∈N *)且f (1)=2,则f (20)为 ( ) A.95 B.97 C.105 D.192 8.已知无穷等差数列{a n },前n 项和S n 中,S 6S 8 ,则 ( ) A .在数列{a n }中a 7最大 B .在数列{a n }中,a 3或a 4最大 C .前三项之和S 3必与前11项之和S 11相等 D .当n ≥8时,a n <0 二、填空题(每小题6分,共30分) 9.集合{}*6,,且60M m m n n N m ==∈<中所有元素的和等于_________. 10.在等差数列{}n a 中,37104118,14.a a a a a +-=-=-记123n n S a a a a =++++L ,则13S =_____

高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)

简单的线性规划问题 【知识概述】 线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题. 解决线性规划的数学问题我们要注意一下几点 1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题; 2.解决线性规划问题需要经历两个基本的解题环节 (1)作出平面区域;(直线定”界”,特“点”定侧); (2)求目标函数的最值. (3)求目标函数z=ax+by最值的两种类型: ①0 b>时,截距最大(小),z的值最大(小); ②0 b>时,截距最大(小),z的值最小(大); 【学前诊断】 1.[难度] 易 满足线性约束条件 23, 23, 0, x y x y x y +≤ ? ?+≤ ? ? ≥ ? ?≥ ? 的目标函数z x y =+的最大值是() A.1 B.3 2 C.2 D.3 2.[难度] 易 设变量,x y满足约束条件 0, 0, 220, x x y x y ≥ ? ? -≥ ? ?--≤ ? 则32 z x y =-的最大值为( ) A.0 B.2 C.4 D.6

3. [难度] 中 设1m >,在约束条件1y x y mx x y ≥??≤??+≤? 下,目标函数z x my =+的最大值小于2,则m 的取 值范围为( ) A .(1,1 B .(1)+∞ C .(1,3) D .(3,)+∞ 【经典例题】 例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =+的最大值为( ) A.5 B.4 C.1 D.8 例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤??+≥??--≤? 则2z x y =-的最大值为( ) A.4 B.3 C.2 D.1 例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥??--≤??≥≥? ,若目标函数(0,0)z abx y a b =+>>的最小 值为8,则a b +的最小值为____________. 例4. 在约束条件下0,0,,24, x y x y s x y ≥??≥??+≤??+≤?当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )

人教版高中数学必修5期末测试题及其详细答案94588

人教版高中数学必修5期末测试题及其详细答案 A. 99 D. 101 D. 3 10. —个等比数列{a n }的前n 项和为48,前2n 项和为60,则前3n 项和为() 、填空题(本题共4小题,每小题5分,共20 分) ?选择题 (本大题共10小题,每小题5分,共50分) 1?由 a ! 1 , d 3确定的等差数列a n ,当a n 298时,序号n 等于() 2. ABC 中, 若 a 1,c 2,B 60,贝U ABC 的面积为( A. 3 B 4 C. 5 D.6 2 6.不等式ax bx c 0(a 0)的解集为R ,那么() A. a 0, B. a 0, C. a 0, 0 D. a 0, 0 x y 1 7.设x, y 满足约束条件y x ,则z 3x y 的最大值为() y 2 A . 5 B. 3 C. 7 D. -8 8.在 ABC 中,a 80,b 100, A 45 ,则此三角形解的情况是() A. 一解 B 两解 C.一解或两解 D.无解 9.在△ ABC 中,如果 sinA:sinB:sinC 2:3:4,那么 cosC 等于( ) C. 96 E. 100 3.已知x A . 5 0,函数y - x B . 4 x 的最小值是( C . D . 6 4..在数列{a .}中,6=1, a n 1 a n 2 ,则a 51 的值为( A . 99 5.在等比数列中, B . 49 1 2 a 1 D . 101 C. 102 丄,a n 丄,贝U 项数n 为( 2 32 2 A.- 3 2 B.-- 3 C. -1 1 D.- 4 A 、63 B 108 C 、75 D 、83

必修5数列-单元测试卷有答案

必修5 数列 单元测试题 一、选择题(本大题共12小题,每小题5分,共60分.) 1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( ) A .是公比为2的等比数列 B .是公差为2的等差数列 C .是公比为1 2的等比数列 D .既非等差数列也非等比数列 2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A .6 B .-3 C .-12 D .-6 3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( ) A .a n -1 B .Na C .a n D .(n -1)a 4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( ) A .63 B .64 C .127 D .128 5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( ) A .-8 B .8 C .-9 8 D.98 6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( ) A .2 B .3 C .4 D .5 7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( ) A .4 B.1 4 C .-4 D .-14 8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100 D .190 9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( ) A .S 7 B .S 4 C .S 13 D .S 16 10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是

相关主题
文本预览
相关文档 最新文档