当前位置:文档之家› 光电子成像电子能谱仪新一代DLD(延迟线检测器)系统

光电子成像电子能谱仪新一代DLD(延迟线检测器)系统

新拄木童用

光电子成像电子能谱仪新一代DLD(延迟线检测器)系统

黄惠忠

(河南大学特种功能材料重点实验室开封475001)

摘要介绍新型x射线激发光电子成像电子能谱仪配置新一代DLD光电子检测系统

优点、结构和在能谱和成像应用方面特点。

关键词成像XPS延迟线检测器(DLD)“快照”多变量成像分析(MIA)新一代x射线激发的光电子成像电子能谱仪

的出现,始于20世纪90年代。至今,成像电子能谱

仪仍然使用传统微通道板(micro-Channelplate)加荧

光屏和CCD摄像机记录系统。而DID(Delay-Line

Detector,延迟线检测器)代表新一代光电子检测系

统,实属一种位敏检测器。配置DLD后,使成像电

子能谱仪的应用水平又L一个新台阶。简而言之,

在多功能电子能谱仪上,采用DLD后,在收谱和成图2DIZ)产生的脉冲传输

像功能方面都呈现出明显的优点。在收谱方面:①谱的空间分辨力提高到≤1岬(下面说明)。

DLD有128个能量通道,因而使微区(≤159m)采谱DLD检测系统的组成包括:多块通道板(multi一时接收灵敏度比传统通道电子倍增器(Channeltron)Channel

stack),延迟线(DLD)和相应的电子控

plate

提高10倍以上;②“快照”(Snapshot)方式,可不用扫制线路(见图1、2)。前级放大器和控制处理器应用描方式收谱,因而在收谱时间上比传统扫描方式大快速时间一数字转换器(7lDc),把延迟线阳极上电大缩短。DLD收谱时间仅几十毫秒以上远不足ls,荷脉冲(d?ar殍puke)转换成数字信号。对这些信号而传统的扫描方式收谱时间至少10s以上。另一方进一步处理,使之产生能谱或图像。

面,在光电子成像方面:①DLD有256×256像素,提

高空间分辩力(<3pm);②也是独特的优点,DLD以

计数方式成像,而不是传统的荧光屏加CCD光学亮

度成像。这使从DLD的成像中可直接进行定量分

析,而后者难以直接进行定量,尤其是在光电子信号

较强时,根本无法定量。

图3用于“快照”收谱时,DLD的

X轴向工作示意图

DLD检测器有三种工作模式:(1)扫描收谱,具图1DLD示意图有高能量分辨率;(2)不扫描“快照”式收谱,快速得当然还有其他方面的优点,如DLD检测系统可到能谱(见图3,4);(3)二维(2D)模式平行成像,具大大抑制噪声,提高信噪比;由于高的成像空间分辨有高的空间分辨力(<39m)(见图5)。

率,通过从像得谱(Spectrafromi—日es)技术,可使收DLD检测系统“快照”模式特别适用于深度剖析

13 万方数据

光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

光电子学基础知识

第一章 光辐射与发光源 教学目的 1、掌握光波在各种介质中的传播特性。 2、了解光度学基本知识。 3、了解热辐射基本定律 教学重点与难点 重点:光波在电光晶体、声光晶体中的传播特性。 难点:光度学基本知识。 1.1电磁波谱与光辐射 1. 电磁波的性质与电磁波谱 光是电磁波。 根据麦克斯韦电磁场理论,若在空间某区域有变化电场E (或变化磁场 H ),在邻近区域将产生变化的磁场H (或变化电场E ),这种变化的电场和变化的磁场不断地交替产生,由近及远以有限的速度在空间传播,形成电磁波。 电磁波具有以下性质: ⑴ 电磁波的电场E 和磁场H 都垂直于波的播方向,三者相互垂直,所以 电磁波是横波。H E 、和传播方向构成右手螺旋系。 ⑵ 沿给定方向传播的电磁波,E 和H 分别在各自平面内振动,这种特性称为偏振。 ⑶ 空间各点E 和H 都作周期性变化,而且相位相同,即同时达到最大,同时减到最小。 ⑷ 任一时刻,在空间任一点,E 和H 。 ⑸ 电磁波在真空中传播的速度为c =,介质中的传播速度为 υ=

电磁波包括的范围很广,从无线电波到光波,从X射线到g射线,都属于电磁波的范畴,只是波长不同而已。目前已经发现并得到广泛利用的电磁波有波长达104m以上的,也有波长短到10-5nm以下的。我们可以按照频率或波长的顺序把这些电磁波排列成图表,称为电磁波谱,如图1所示,光辐射仅占电波谱的一极小波段。图中还给出了各种波长范围(波段)。 图1 电磁辐射波谱 2. 光辐射 以电磁波形式或粒子(光子)形式传播的能量,它们可以用光学元件反射、成像或色散,这种能量及其传播过程称为光辐射。一般认为其波长在10nm~1mm,或频率在3′1016Hz~3′1011Hz范围内。一般按辐射波长及人眼的生理视觉效应将光辐射分成三部分:紫外辐射、可见光和红外辐射。一般在可见到紫外波段波长用nm、在红外波段波长用mm表示。波数的单位习惯用cm-1。 可见光。通常人们提到的“光”指的是可见光。可见光是波长在390~770nm 范围的光辐射,也是人视觉能感受到“光亮”的电磁波。当可见光进入人眼时,人眼的主观感觉依波长从长到短表现为红色、橙色、黄色、绿色、青色、蓝色和紫色。 紫外辐射。紫外辐射比紫光的波长更短,人眼看不见,波长范围是1~390nm。细分为近紫外、远紫外和极远紫外。由于极远紫外在空气中几乎会被完全吸收,

X射线光电子能谱分析

X射线光电子能谱分析(X-ray photoelectron spectroscopy analysis)1887年,Heinrich Rudolf Hertz发现了光电效应。二十年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照像平版做实验来记录宽带发射电子和速度的函数关系。待测物受X光照射后内部电子吸收光能而脱离待测物表面(光电子),透过对光电子能量的分析可了解待测物组成,XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。XPS(X射线光电子能谱)的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。被光子激发出来的电子称为光电子。可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。从而获得试样有关信息。X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。 其主要应用: 1,元素的定性分析。可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素。 2,元素的定量分析。根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度。 3,固体表面分析。包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等。 4,化合物的结构。可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息。 5,分子生物学中的应用。Ex:利用XPS鉴定维生素B12中的少量的Co。 应用举例: 1.确定金属氧化物表面膜中金属原子的氧化状态; 2.鉴别表面石墨或碳化物的碳; (一)X光电子能谱分析的基本原理: X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示:hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek。 式又可表示为:hn=Ek+Eb+Φ(10.4)Eb= hn- Ek-Φ(10.5) 仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小

X射线光电子能谱的原理和应用

【转帖】X射线光电子能谱的原理及应用(XPS) 来源:转载网络作者: tof-sims (一)X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示: hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek, 式(103)又可表示为:hn=Ek+Eb+Φ (10.4)Eb= hn- Ek-Φ (10.5) 仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。 (二)电子能谱法的特点 ( 1 )可以分析除H 和He 以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。 ( 2 )从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。 ( 3 )是一种无损分析。 ( 4 )是一种高灵敏超微量表面分析技术。分析所需试样约10 -8 g 即可,绝对灵敏度高达10 -18 g ,样品分析深度约2nm 。 (三) X 射线光电子能谱法的应用 ( 1 )元素定性分析 各种元素都有它的特征的电子结合能,因此在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H 和He 以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。

天津大学809光电子学基础考研大纲及参考书(更新)

天津大学809光电子学基础考研大纲及参考书 对于天津大学809光电子学基础考研,大家一定要人手一份自己专业课的考试大纲,从大纲中抓住复习的重点内容,但是对于第一次考研的同学来说,从大纲中读取重点和考试常出内容往往不太容易,因为大纲是比较概括的,但是大家必须在复习的时候圈定复习范围,锁定考试内容,然后有的放矢的进行复习,这时候要先看大纲,然后再根据《2018年天津大学809光电子学基础考研红宝书》来复习,其对考研指定教材中的考点内容进行深入提炼和总结,同时辅以科学合理的复习规划。天津考研网小编整理天津大学809光电子学基础考研大纲如下: 一、考试的总体要求 旨在考查考生是否具备光电子学专业的物理学基础和主要的专业课知识。其中物理学基础的考试内容为《物理光学》课程;专业课为《激光原理》课程。主要考查考生对基本概念的理解是否正确,是否具备应用物理学原理去灵活解决具体问题的能力,能否简洁、准确表达解决问题的过程和结果。 二、考试的内容及比例 与物理学基础相关的考试内容涉及《物理光学》课程; 与光电子技术相关的考试内容涉及《激光原理》课程。考试内容以大题为单元,共10道大题,任选5道大题做答,多选总分得零。每道大题30分。其中《物理光学》5道大题,《激光原理》5道大题。每门课程的详细考试大纲见附录。每道大题可以是若干小题的集合,或若干关联的小问题。主要考查考生对基本概念的理解是否正确,是否具有应用原理灵活解决具体问题的能力,能否简洁、准确表达解题过程和结果。 三、考试的题型及比例 共10道大题,任选5道大题做答,多选总分得零。每道大题可以是若干小题的集合,或若干关联的小问题。题型包括基本概念考查题,分析论证推导题,数值估算题等。原则上概念题比例较大,约占70~80%。 四、考试形式及时间 考试形式为笔试,考试时间为3小时(或以研究生院公布的为准)。 附录:《激光原理》部分 1.激光的基本原理(《激光原理》,(第6版),周炳琨编著,国防工业出版社,第一章) 光的受激辐射基本概念;激光的特性。

第27讲 光电子能谱仪工作原理

第27讲 教学目的:使学生了解光电子能谱的实验技术及其应用 教学要求:了解光电子能谱仪的构造、工作原理及制样;熟悉光电子能谱的应用领域 教学重点:XPS实验技术;X射线光电子能谱分析方法的原理及应用 教学难点:XPS谱图能量校正 第2节光电子能谱仪工作原理 以X射线为激发源的光电子能谱仪主要由激发源、样品分析室、能量分析器、电 子检测器、记录控制系统和真空系统等组成。从激发源来的单色光束照射样品室里的 样品,只要光子的能量大于材料中某原子轨道中电子的结合能,样品中的束缚电子就 被电离而逃逸。光电子在能量分析器中按其能量的大小被“色散”、聚集后被检测器接受,信号经放大后输入到记录控制系统,一般都由计算机来完成仪器控制与数据采集 工作。整个谱仪要有良好的真空度,一般情况下,样品分析室的真空度要优于10-5Pa,这一方面是为了减少电子在运动过程中同残留气体发生碰撞而损失信号强度,另一方 面是为了防止残留气体吸附到样品表面上,甚至可能与样品发生反应。谱仪还要避免 外磁场的干扰。这里主要讨论X射线光电子能谱对激发源、能量分析器和电子检测器 的特殊要求。 图19 X射线光电子能谱仪基本构成示意图 (1)X射线激发源

用于电子能谱的X射线源,其主要指标是强度和线宽 .....。一般采用Kα线,因为它是 X射线发射谱中强度最大的。Kα射线相应于L能级上的一个电子跃迁到K壳层的空穴上。光电效应几率随X射线能量的减少而增加,所以在光电子能谱工作中,应尽可能 采用软X射线(波长较长的X射线)。在X射线光电子能谱中最重要的两个X射线源 是Mg和Al的特征Kα射线(能量分别是1253.6eV和1486.6eV),其线宽分别为 0.7eV和0.9eV。由于Mg的Kα射线的自然宽度稍窄一点,对于分辨率要求较高的测试,一般采用该射线源。如欲观测重元素内层电子能谱,则应采用重元素靶的X射线管。 电子能谱中用的X射线管与X射线衍射分析用的类似。 为了让尽可能多的X射线照射样品,X射线源的靶应尽量靠近样品,另外,X射线 源和样品分析室之间必须用箔窗 ..隔离,以防止X射线靶所产生的大量次级电子进入样 品分析室而形成高的背底。对Al和Mg的X射线而言,隔离窗材料可选用高纯度的铝 箔或铍箔。X射线也可以利用晶体色散单色化,X射线经单色化后,除了能改善光电子 能谱的分辨率外,还除去了其他波长的X射线产生的伴峰,改善信噪比。 除了用特征X射线作激发源外,还可用加速器的同步辐射,它能提供能量从10eV 到10keV连续可调的激发源。这种辐射在强度和线宽方面都比特征X射线优越,更重 要的是能够从连续能量范围内任意选择所需要的辐射能量值。 (2)电子能量分析器 能量分析器是光电子能谱仪的核心部件。其作用在于把具有不同能量的光电子分 ............ 别聚焦并分辨开 ..........,一般利用电磁场 ...来实现电子的偏转性质。电子能量分析器分磁场型 和静电型 ....,前者有很高的分辨能力,但因结构复杂,磁屏蔽要求严格,目前已很少采 用。商品化电子能谱仪都采用静电型能量分析 ........,..................器.,它的优点是整个仪器安装比较紧凑 体积较小 .......,外磁场屏蔽简单,易于安装调试。常用的静电型能量分....,真空度要求较低 析器有球形分析器、球扇形分析器和简镜型分析器 .........................等,其共同特点是:对应于内外两 面的电位差值只允许一种能量的电子通过,连续改变两面间的电位差值就可以对电子..................................... 能量进行扫描 ......。 图20是半球形电子能量分析器的示意图。半球形电子能量分析器由内外两个同心 半球面构成,内、外半球的半径分别是r1和r2,两球间的平均半径为r;两个半球间的 电位差为V,内球为正,外球为负。若要使能量为E k的电子沿平均半径r轨道运动, 则必须满足以下条件: 式中: e电子电荷;c由球的内外径决定的谱仪常数[(r2/r1)- (r1/r2)]。

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

光电子技术基础基本概念

波前 波在介质中传播时,某时刻刚刚开始位移的质点构成的面,称为波前。它代表某时刻波能量到达的空间位置,它是运动着的。波前与射线成正交。因此,使用射线或波前来研究波是等效的。根据波前的形状一般可以把波分为球面波、平面波,柱面波等。 光电效应 光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响。 康普顿效应 1923年,美国物理学家康普顿在研究x射线通过实物物质发生散射的实验时,发现了一个新的现象,即散射光中除了有原波长λ0的x光外,还产生了波长λ>λ0 的x光,其波长的增量随散射角的不同而变化。这种现象称为康普顿效应(Compton Effect)。用经典电磁理论来解释康普顿效应时遇到了困难。康普顿借助于爱因斯坦的光子理论,从光子与电子碰撞的角度对此实验现象进行了圆满地解释。我国物理学家吴有训也曾对康普顿散射实验作出了杰出的贡献。 散射角 入射粒子与物质中的粒子发生弹性碰撞时,其偏离初始运动方向的角度。下图中的Θ角便是入射粒子的散射角。 光的偏振 光的偏振(polarization of light)振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。光波电矢量振动的空间分布对于光的传播方向失去对称性的现象叫做光的偏振。只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。凡其振动失去这种对称性的光统称偏振光。 麦克斯韦方程组 麦克斯韦方程组(英语:Maxwell's equations),是英国物理学家詹姆斯·麦克斯韦在19世纪建立的一组描述电场、磁场与电荷密度、电流密度之间关系的偏微分方程。它由四个方程组成:描述电荷如何产生电场的高斯定律、论述磁单极子不存在的高斯磁定律、描述电流和时变电场怎样产生磁场的麦克斯韦-安培定律、描述时变磁场如何产生电场的法拉第感应定律。 时谐波 在很多实际情况下,电磁波的激发源往往以大致确定的频率作正弦振荡,因而辐射出的电磁波也以相同的频率作正弦振荡,例如无线电广播或通信的载波,激光器辐射出的光束等,都

光电子学与光学

光电子学与光学 一、项目定义 项目名称:光电子学与光学 项目所属领域:基础产业和高新技术及基础科学 涉及的主要学科:微电子学与固体电子学(国家重点学科)、光学、通信与信息系统 项目主要研究方向: ●新型光电子材料、器件及其集成技术 ●有机光电子学 ●光波导及光纤器件 ●光电子器件理论研究、CAD设计及信息处理 ●非线性光学材料与系统 二、项目背景 1.项目建设意义 近年来,信息技术的蓬勃发展对人类社会产生了巨大的影响。它不但改变了人们的生活方式,而且确立了以信息产业为核心的现代产业结构。信息技术是一个包含了材料科学、计算机科学、电子科学、光学、信息获取、处

理与传输等多门学科的综合性的技术领域。信息技术对经济建设、国家安全乃至整个国家的发展起着关键性的作用,它是经济发展的“倍增器”和社会进步的“催化剂”,是体现一个国家综合国力和国际竞争力的重要标志。在迄今为止的人类历史上,没有一种技术象信息技术这样能够引起社会如此广泛、深刻的变革,在20世纪末和21世纪前半叶,信息技术乃是社会发展最重要的技术驱动力。 目前,全球信息业飞速发展,要在国际竞争舞台立于不败之地,必须有自主知识产权的技术和产品,必须有具有创新能力的人才队伍,能够创造出具有世界先进水平的研究成果。我国是发展中国家,与经济发达国家相比,在发展高技术、推进产业化过程中,不可避免地会遇到更多的困难和障碍,在发挥优势实现跨越式发展中,必须要以坚强的国家意志为基础,发挥政府导向作用,调动各方面积极性,实行统筹规划,集中资源,以保证信息技术实现跨越式发展。建设一个有自主技术、高度发达的光通信、光存储、光显示等信息产业是至关重要的。 光子已成为信息的重要载体,光电子学与光学作为信息技术的重要组成部分之一,已经越来越引起人们的重视与关注。人们不断地探索着光的本质,研究光子的产生、传输、存储、显示和探测的机理与技术。近年来,随着与化学、材料科学、微电子学、凝聚态物理学、磁学等学科

天津大学809光电子学基础考研资料 真题笔记

天津大学809光电子学基础考研资料真题笔记 本资料由天津考研网签约的天津大学精仪学院历届高分考研学生集团队合力所作,该团队在考研中取得了专业课初试的优异成绩并在复试中更胜一筹,该资料包含该优秀本校考生团队的考研经验、考研试题解题思路分析、复试流程经验介绍以及针对官方指定参考书的重难要点并根据天津大学本科授课重点整理等,从漫漫初试长路到紧张复试亮剑为各位研友提供全程考研指导攻关。该资料从导师篇、专业课篇、复试篇三个大的方面详细介绍了该专业考研涉及的问题。 天津大学809光电子学基础考研资料真题笔记 天津大学光电子技术专业的专业课出题基本依据老师在教学中的认为学生应该掌握的重点出题,而对于没有上过该校专业课的外校考生来说,如何把握住重点,如何在短短几个月的时间高效率的复习专业课变得至关重要!本资料由天津大学光电子技术专业优秀考研学生编写,为大家在以下几个方面详细盘点专业课知识,把握考研脉络: 1、对该专业做了简单介绍,重点从学生角度评价了各个导师,为考生选择一个合适的导师指明了方向。对近三年的考研情况作了总结,便于大家更好的了解该专业的考研难度和考研形势。 2、详细的为大家讲解专业课每个章节的重点,这些重点都来自于本校老师在讲课时所列重点以及编者在考研经历中对历年考研试题的总结,并将知识分为了解、掌握、重点、易考四个等级,让您更好的掌握知识的层次。 3、详细解析历年真题,分析真题分布的重点章节,每章节题目的考查形式以及命题趋势。认真的分析真题,让你抓住考试的命题思路. 4、对于试题变革后的考点做了详细的分析,,即使是本校考生也没有掌握这方面的详细资料。对考点有了深入了解,将使你站在比本校考生更高的起跑线上。 5、对复试做了详细分析,包括复试流程、复试内容、复试如何准备、复试的答题技巧。对复试技巧方面,参考了几位在各届复试中表现出色的学长的经验,相信对考生的复试应该有很大帮助。尤其在实验部分编者做了详细介绍,让外校考生能够对考研复试的实验环节做好充分准备。 天津大学809光电子学基础考研资料真题笔记 核心资料目录一: 第一篇、导师篇:本专业三个实验室的发展方向及所涉及老师的绝密介绍 第二篇、专业课篇:(综合本科教学重点及考研重点及数位研究生成功经验而成) 1、激光技术(明确了各章需要掌握知识点的重要程度及重点课后题) 2、激光原理(明确了各章需要掌握知识点的重要程度) 3、物理光学(明确了各章需要掌握知识点的重要程度) 4、附加资料: A、作业题(题目来源为本科学习期间老师留的所有作业题,包括公共教材课后题和老师补充习题); B、补充习题(天大内部资料,为一本黄色的小册子,有答案,为此科目考研必备,许多题来源于此); C、考研试卷:光电子学基础06年试卷、物理光学1996--2004年和激光原理及技术1996—2005年的考试真题(其中96-03年均有全部解答过程),此套试卷市场独家最全,众所周知天大出题重复率高,一般多年的试题就是一个小题库,所以历年试题一定要仔细研究,通过多年试卷可总结出出题重点及思路,光电子学基础06年试卷属于未解密试卷,通过考生回忆(独家)。 第三篇、复试篇(总结多位同学复试情况综合而成) 1、导师介绍:本专业三个实验室的发展方向及所涉及老师的绝密介绍; 2、笔试题目(笔试原题整理,本科期间本专业所涉及专业课的重点知识编写);

材料现代分析与测试 第五章 光电子能谱分析

第五章光电子能谱分析 一、教学目的 理解掌握光电子能谱分析的基本原理,掌握光电子能谱实验技术,了解光电子能谱仪,了解俄歇电子能谱分析。 二、重点、难点 重点:光电子能谱分析原理、光电子能谱实验技术及应用。 难点:光电子能谱分析原理。 第一节概述 电子能谱是近十多年才发展起来的一种研究物质表面的性质和状态的新型物理方法。这里所谓的表面是指固体最外层的l~10个原子的表面层和吸附在它上面的原子、分子、离子或其他覆盖层,它的深度从小于1到几个nm,或者包括采取剥离技术将表面层沿纵向深度暴露出新的表面。用特殊的手段对这类表面进行分析已形成一门新兴的测试方法,即表面分析法,它在理论上和实际应用上都有广泛的研究领域。表面分析方法在无机非金属材料学科中的应用,例如:研究玻璃表面的刻蚀作用、水泥矿物硅酸钙的水化作用、陶瓷表面和界面、高温超导材料表面的作用等均有重要意义。 一、表面分析可以得到的信息 表面分析是借助于各种表面分析仪,对物体10 nrn以内的表面层进行分析,可得到的信息有: (1)物质表面层(包括吸附层)的化学成分,除氢元素以外的元素都可以从表面分析法获得定性和定量的结果,而X射线能谱分析一般只能分析到原子序数为11以上的元素(最好的仪器可以分析原子序数为4的Be元素)。定量分析也只能达到半定量程度。 (2)物质表面层元素所处的状态或与其他元素间的结合状态和结构,即元素所处的原子状态、价态、分子结构等信息。 (3)表面层物质的状态,如表面层的分子和吸附层分子状态、氧化态、腐蚀状态、表面反应生成物等。 (4)物质表面层的物理性质,这在一般表面分析中虽不是研究的主要内容,但可以得到与表面的元素、价态、结构等信息的关系。 在做表面分析工作时,不仅在制备样品时要求在高真空和超净条件下进行,而且在测试过程中也要注意仪器中的条件,以防止因污染而引起测试误差。 二、表面分析法的特点

X射线光电子能谱分析实验教材

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X 射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1) 式中E k?出射的光电子的动能, eV; hν?X射线源光子的能量, eV; E b?特定原子轨道上的结合能, eV; φs?谱仪的功函, eV。 谱仪的功函主要由谱仪材料和状态决定,对同一台谱仪基本是一个常数,与样品无关,

《光电子学》课程教学大纲

《光电子学》课程教学大纲 一、《光电子学》课程说明 (一)课程代码:08131012 (二)课程英文名称:Optoelectronics (三)开课对象:应用物理学专业本科生 (四)课程性质: 光电子学为应用物理学专业本科生的专业选修课程,其预修课程有普通物理、电动力学、固体物理等。本课程的目的在于使学生了解光电子学的概念,熟悉光电子学的基础知识以及实际应用。 (五)教学目的: 课程系统介绍了光电子学的基本概念、基本原理和基础理论,并阐明各种效应间的内在联系,以便学生掌握光电子学基本概念、基本原理与基础理论,并对光电子技术的全貌有清晰的了解,为进一步学习激光原理、微波与导波光学、光纤技术、光纤通信等课程奠立必要的基础,为今后从事光通信、光信息处理、光传感等方面的研究开发工作提供必要的基础知识,培养出适应本世纪科技发展方向、掌握较为系统、深入的光电子基础理论和实践能力的高级工程技术人才。 (六)教学内容: 本课程主要包括光学基础知识、光与物质的相互作用、激光原理、光的电磁理论和波动光学、光波导理论、光调制、光的探测和显示和光无源器件等几个部分。 (七)学时数、学分数及学时数具体分配(五号宋体加粗) 学时数: 72学时 分数: 4 学分 学时数具体分配:

(八)教学方式 以课堂讲授为主要授课方式 (九)考核方式和成绩记载说明 考核方式为考试。严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩和期末成绩评定,平时成绩占40% ,期末成绩占60% 。二、讲授大纲与各章的基本要求 第一章绪论 教学要点: 通过本章学习,使学生掌握光电子学的历史沿革、发展动态,重点掌握光电子学各研究内容及其发展动态,对光电子学应用领域、本课程的总体结构等有一个概括的了解。 1.了解光电子学的发展史。 2.明确光电子学的研究内容及其发展动态。 3.明确光电子学的应用领域。 4.了解光电子课程的总体结构。 教学时数:4学时

X射线光电子能谱仪实验报告

X-射线光电子能谱仪的分析应用 一、工作原理: X-Ray 样品 电离出光电子 能量分析器 光电子长生过程 记录不同能量的电子数量 检测器 e- hv(X-ray) A(中性分子或原子)+hv(X-ray) A+(激发态离子)+e-(光电子) 二、主要用途: 1.固体样品的表面组成分析,化学状态分析,取样深度为~3nm 2.元素成分的深度分析(角分辨方式和氩离子刻蚀方式) 3.可进行样品的原位处理 AES: 1.可进行样品表面的微区选点分析(包括点分析,线分析和面分析) 2.可进行深度分析适合: 纳米薄膜材料,微电子材料,催化剂,摩擦化学,高分子材料的表面和界面研究 三、主要研究领域: (1)TiO2纳米光催化以及在空气和水净化方面的应用; (2)汽车尾气净化催化剂新型金属载体的研究; (3)纳米药物载体及靶向药物的研究; (4)纳米导电陶瓷薄膜材料的研究; (5)纳米杂化超硬薄膜材料及摩擦化学的研究; (6)纳米发光材料及纳米分析化学研究; (7)有机电致发光材料的表面化学研究; (8)纳米材料在香烟减毒净化上的应用研究;

(9)无机纳米杀菌与抗菌材料及其在饮用水净化上的作用; (10)电解水制氧电极材料的研究 四、XPS分析特点: ? 可以分析除H和He以外的所有元素。 ? 相邻元素的同种能级的谱线相隔较远,相互干扰较少,元素定性的标识性强。 ? 能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。 ? 可作定量分析,即可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。 ? 是一种高灵敏超微量表面分析技术,样品分析的深度约为20?,信 -8g,绝对灵敏度高达10-号来自表面几个原子层,样品量可少至10 18g。 五、XPS谱图的解释步骤: (1)在XPS谱图中首先鉴别出C1s、O1s、C(KLL) 和O(KLL)的谱峰(通常比较明显)。 (2)鉴别各种伴线所引起的伴峰。 (3)先确定最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。

多功能型光电子能谱仪详细配置及技术指标

多功能型光电子能谱仪详细配置及技术指标 一、系统主要结构和功能要求 1.仪器主体为两室结构,分别是分析室和样品制备室兼快速进样室; 2.超高真空分析室内应实现单色化XPS、双阳极XPS、成像XPS、深度剖 析XPS、离子散射谱ISS、能量损失谱REELS、紫外光电子能谱(UPS)、自动化五轴样品台及样品加热等功能;配备独立的从粗真空到超高真空 抽气系统; 3.样品制备室应实现样品的大束斑离子清洁、至少三个样品托的停放台以 及超高真空监测等功能;配备独立的从粗真空到超高真空抽气系统; 二、系统各部分详细配置及相应要求: 1. 分析室 1.1 真空腔及抽气系统 1.1.1 真空腔为纯μ金属制造,外径不低于300mm; 1.1.2 抽气系统为钛升华泵、磁悬浮涡轮分子泵以及机械泵各一套; 1.1.3 烘烤12小时并完成除气,抽气48小时后,系统本底真空优于 5.0x10-10 mbar; 1.2 能量分析器 1.2.1 180ο半球能量分析器,半径不小于150mm; 1.2.2 能量扫描范围为0~5000 eV; 1.2.3 外罩为纯μ金属制造; 1.3 探测器 1.3.1 电子倍增器,用于XPS能谱; 1.3.2 微通道板探测器,用于XPS成像,可实现小于6μm成像区域的能谱获取; 1.4 单色化X射线源 1.4.1 微聚焦单色化Al Kα X射线源; 1.4.2 束斑面积从900μm到200μm连续可调;

1.4.3 最优能量分辨率:对Ag3d5/2峰,半高宽优于0.45 eV; 1.4.4 大束斑灵敏度:对Ag3d5/2峰能量分辨优于0.5 eV时,灵敏度 (要求为常规工作条件下实际值)应好于400k cps; 1.4.5 60μm束斑灵敏度:对Ag3d5/2峰的能量分辨优于0.5 eV时, 灵敏度(要求为常规工作条件下实际值)应好于20k cps; 1.4.6 20μm 束斑灵敏度:对Ag3d5/2峰的能量分辨优于0.5 eV时, 灵敏度(要求为常规工作条件下实际值)应好于500 cps; 1.5 双阳极X射线源 1.5.1 Al/Mg双阳极Al Kα X射线源,单源功率均不低于400W;1.5.2 对Ag 3d5/2峰,能量分辨优于0.8eV时,灵敏度优于650,000 cps 1.5.3 另提供高能X射线源Zr/Ti双阳极靶材一套,实现高能XPS以 及高能XAES; 1.6 成像XPS 快速平行成像,对Ag3d5/2,线扫描的最佳空间分辨率优于3 μm; 1.7 超高真空监测装置 1.7.1 可实现大气至10-10mbar范围的连续真空测量; 1.7.2 系统软件可显示系统真空压力值; 1.8 离子散射谱ISS 在1 keV He离子作用于清洁金表面,能量分辨优于15eV时,灵敏度应优于20,000 cps/nA; 1.9 电子能量损失谱REELS 分析室可实现电子能量损失谱配置,电子枪发射的电子最高能量应不低于1000eV,能量分辨率优于0.5eV; 1.10 深度剖析离子枪 1.10.1 工作气体为He、Ar或Ne; 1.10.2 离子能量100 eV ~ 3000 eV连续可调; 1.10.3 3keV情况下,束流应高于6 μA; 1.10.4 在 2.5uA和4keV时,束斑直径应不高于200 μm;

光电子学基础知识.doc

第一章光辐射与发光源 教学目的 1、掌握光波在各种介质屮的传播特性。 2、了解光度学基本知识。 3、了解热辐射基本定律 教学重点与难点 重点:光波在电光晶体、声光晶体屮的传播特性。 难点:光度学基本知识。 1.1电磁波谱与光辐射 1.电磁波的性质与电磁波谱 光是电磁波。 根据麦克斯韦电磁场理论,若在空间某区域有变化电场E (或变化磁场产),在邻近区域将产牛变化的磁场看(或变化电场E),这种变化的电场和变化的磁场不断地交替产牛,由近及远以有限的速度在空间传播,形成电磁波。 电磁波具有以下性质: (1)电磁波的电场片和磁场芳都垂直于波的播方向,三者相互垂直,所以电磁波是横波。E、芳和传播方向构成右手螺旋系。 (2)沿给定方向传播的电磁波,E和产分别在各口平面内振动,这种特性称为偏振。 (3)空间各点E和产都作周期性变化,而且相位相同,即同时达到最大,同时减到最小。 ⑷ 任一吋刻,在空间任一点,E和产在量值上的关系为血£ =亦//。 (5)电磁波在真空屮传播的速度为c = 丁勺“。,介质屮的传播速度为 u =0 电磁波包括的范围很广,从无线电波到光波,从X射线到了射线,都属于

波谱的一极小波段。图屮还给出了各种波长范围(波段)。 Mun L10” X/nm lxlO 6 - '极远 -J ?远 1 1 >屮 >近 ■ '1 ?橙 w ?绿 *蓝 - < >轧 ?近 >远 1 ? 声频电磁振荡 亳米波 红外光 紫外光 宇宙射线 10 — -1012 -1O 10 -106 -104 一」 —1()4 -10'8 L 1O 40 电磁波的范畴,只是波长不同而己。H 前己经发现并得到广泛利用的电磁波有 波长达104m 以上的,也有波长短到10-5nm 以下的。我们可以按照频率或波长 的顺序把这些电磁波排列成图表,称为电磁波谱,如图1所示,光辐射仅占电 电磁辐射波谱 2.光辐射 以电磁波形式或粒子(光子)形式传播的能量,它们可以用光学元件反射、 成像或色散,这种能量及其传播过程称为光辐射。一般认为其波长在 lOnm-lmm,或频率在3xlO“Hz ?3xlO“Hz 范围内。一般按辐射波长及人眼的 牛理视觉效应将光辐射分成三部分:紫外辐射、可见光和红外辐射。一般在可 见到紫外波段波长用nm 、在红外波段波长用pm 表示。波数的单位习惯用cm"。 可见光。通常人们提到的“光”指的是可见光。可见光是波长在390?770nm 范围的光辐射,也是人视觉能感受到“光亮”的电磁波。当可见光进入人眼时, 人眼的主观感觉依波长从长到短表现为红色、橙色、黄色、绿色、青色、蓝色 和紫色。 紫外辐射。紫外辐射比紫光的波长更短,人眼看不见,波长范围是1?390nm 。 细分为近紫外、远紫外和极远紫外。由于极远紫外在空气小几乎会被完全吸收, 只能在真空屮传播,所以又称为真空紫外辐射?。在进行太阳紫外辐射的研究小, 常将紫外辐射分为A 波段、B 波段和C 波段。 770 622 597 577 492 455 390 300 200 4xl04 1.5X106 可 见 光 6xl03

相关主题
文本预览
相关文档 最新文档