当前位置:文档之家› 光电子能谱分析法基本原理

光电子能谱分析法基本原理

光电子能谱分析法基本原理
光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法

14.1 引言

X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。

XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下:

⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析

⑵表面灵敏度高,一般信息采样深度小于10nm

⑶分析速度快,可多元素同时测定

⑷可以给出原子序数3-92的元素信息,以获得元素成分分析

⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团

⑹样品不受导体、半导体、绝缘体的限制等

⑺是非破坏性分析方法。结合离子溅射,可作深度剖析

目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。

14.2 基本原理

XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。

该过程可用下式表示:

hγ=E k+E b+E r(14.1)

式中:

hγ:X光子的能量(h为普朗克常数,γ为光的频率);

E k:光电子的能量;

E b:电子的结合能;

E r:原子的反冲能量。

其中E r很小,可以忽略。对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能E b,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(14.1)又可表示为:

E k= hγ- E b-Φ(14.2)

E b= hγ- E k-Φ(14.3)

这时,式中

hγ――入射光子能量(已知值)

E k――光电过程中发射的光电子的动能(测定值)

E b――内壳层束缚电子的结合能(计算值)

Φ――谱仪的功函数(已知值)

仪器材料的功函数Φ是一个定值,约为4eV,入射光子能量已知,这样,如果测出电子的动能E k,便可得到固体样品电子的结合能。原子能级中电子的结合能(Binding Energy,简称为B.E.), 其值等于把电子从所在的能级转移到Fermi能级时所需的能量。在XPS分析中,由于采用的X射线激发源的能量较高,不仅可以激发出原子价轨道中的价电子,还可以激发出芯能级上的内层轨道电子,其出射的光电子能量仅与入射光子的能量(即辐射源能量)及原子轨道结合能有关。因此,对于特定的单色激发源和特定的原子轨道,此时其光电子能量是特征的。当固定激发源能量时,其光电子能量仅与元素的种类和所电离激发的原子轨道有关。因此,我们可以根据光电子的结合能,判断样品中元素的组成,定性分析除H和He(因为它们没有内层能级)之外的全部元素。

芯能级轨道上的电子一方面受到原子核强烈的库仑作用而具有一定的结合能,另一方面又受到外层电子的屏蔽作用。当外层电子密度减少时,屏蔽作用将减弱,内层电子的结合能增加;反之则结合能将减少。因此当被测原子的氧化价态增加,或与电负性大的原子结合时,都导致其XPS峰将向结合能增加的方向位移。这种由化学环境不同引起的结合能的微小差别叫化学位移(Chemical shift)。利用化学位移值可以分析元素的化合价和存在形式,这也是XPS分析的最重要的应用之一。

在表面分析研究中,我们不仅需要定性地确定试样的元素种类及其化学状态,而且希望能测得它们的含量。X射线光电子能谱谱线强度反应的是原子的含量或相对浓度,测定谱线强度便可进行元素的半定量分析。光电子的强度不仅与原子浓度有关,而且也与光电子平均自由程、样品表面光洁程度、元素所处化学状态、X射线源强度、仪器状态等条件有关,因此,XPS技术一般不能给出所分析的某个元素的绝对含量,只能给出所分析各元素的相对含量,而且分析误差在10-15wt%左右。还需要指出的是,XPS是一种很灵敏的表面分析方法,具有很高的表面检测灵敏度,可以达到10-3原子单层。但是,对于体相的检测灵敏度仅为0.1%(原子分数,即元素的检测限)左右。

X光电子能谱法作为表面分析方法,提供的是样品表面的元素含量与形态,而不是样品整体的成分。XPS其表面采样深度(d = 3λ)与材料性质、光电子的能量有关,也同样品表面和分析器的角度有关。通常,对于金属样品取样深度为0.5~2nm,氧化物样品为1.5~4nm;有机物和高分子样品为4~10nm。它提供的仅是表面上的元素含量,与体相成分会有很大的差别,因而常会出现XPS和X射线粉末衍射(XRD)或者红外光谱(IR)分析结果的差异,后两者给出的是体相成分的分析结果。如果利用氩离子束溅射作为剥离手段,利用XPS作为分析方法,还可以实现对样品的深度分析。

14.3 仪器结构和使用方法

XPS仪器设计与最早期的实验仪器相比,有了非常明显的进展,但是所有的现代XPS仪器都基于相同的构造:进样室、超高真空系统、X射线激发源、离子源、电子能量分析器、检测器系统、荷电中和系统及计算机数据采集和处理系统等组成。这些部件都包含在一个超高真空(Ultra High Vacuum,简称为UHV)封套中,通常用不锈钢制造,一般用μ金属作电磁屏蔽。下面对仪器各部件构造及功能进行简单介绍。图14.1 是Kratos Axis Ultra DLD型多功能电子能谱仪的外形图。

图14.1 Kratos Axis Ultra DLD型多功能电子能谱仪

14.3.1超高真空系统

超高真空系统是进行现代表面分析及研究的主要部分。XPS谱仪的激发源,样品分析室及探测器等都安装在超高真空系统中。通常超高真空系统的真空室由不锈钢材料制成,真空度优于1×10-9托。在X射线光电子能谱仪中必须采用超高真空系统,原因是(1)使样品室和分析器保持一定的真空度,减少电子在运动过程中同残留气体分子发生碰撞而损失信号强度;(2)降低活性残余气体的分压。因在记录谱图所必需的时间内,残留气体会吸附到样品表面上,甚至有可能和样品发生化学反应,从而影响电子从样品表面上发射并产生外来干扰谱线。

一般XPS采用三级真空泵系统。前级泵一般采用旋转机械泵或分子筛吸附泵,极限真空度能达到10-2Pa;采用油扩散泵或分子泵,可获得高真空,极限真空度能达到10-8Pa;而采用溅射离子泵和钛升华泵,可获得超高真空,极限真空度能达到10-9Pa。这几种真空泵的性能各有优缺点,可以根据各自的需要进行组合。现在新型X射线光电子能谱仪,普遍采用机械泵-分子泵-溅射离子泵-钛升华泵系列,这样可以防止扩散泵油污染清洁的超高真空分析室。标准的AXIS Ultra DLD 就是利用这样的泵组合。样品处理室(Smaple Treatment Center,简称为STC)借助于一个为油扩散泵所后备的涡轮分子泵进行抽真空。样品分析室(Sample Analysis Center,简称为SAC)借助于一个离子泵和附加于其上的钛升华泵(TSP)来抽空。

14.3.2快速进样室

为了保证在不破坏分析室超高真空的情况下能快速进,X射线光电子能谱仪多配备有快速进样室。快速进样室的体积很小,以便能在40~50分钟内能达到10-7托的高真空。

14.3.3 X射线激发源

XPS中最简单的X射线源,就是用高能电子轰击阳极靶时发出的特征X射线。通常采用Al Kα(光子能量为1486.6eV )和Mg Kα(光子能量为1253.8eV)阳极靶,它们具有强度高,自然宽度小(分别为830meV和680meV)的特点。这样的X 射线是由多种频率的X 射线叠加而成的。为了获得更高的观测精度,实验中常常使用石英晶体单色器(利用其对固定波长的色散效果),将不同波长的X射线分离,选出能量最高的X射线。这样做有很多好处,可降低线宽到0.2 eV,提高信号/本底之比,并可以消除X射线中的杂线和韧致辐射。但经单色化处理后,X射线的强度大幅度下降。

14.3.4 离子源

离子源是用于产生一定能量、一定能量分散、一定束斑和一定强度的离子束。在XPS中,配备的离子源一般用于样品表面清洁和深度剖析实验。在XPS谱仪中,常采用Ar离子源。它是一个经典的电子轰击离子化源,气体被放入一个腔室并被电子轰击而离子化。Ar离子源又可分为固定式和扫描式。固定式Ar离子源,将提供一个使用静电聚焦而得到的直径从125μm到mm量级变化的离子束。由于不能进行扫描剥离,对样品表面刻蚀的均匀性较差,仅用作表面清洁。对于进行深度分析用的离子源,应采用扫描式Ar离子源,提供一个可变直径(直径从35μm到mm量级)、高束流密度和可扫描的离子束,用于精确的研究和应用。

14.3.5 荷电中和系统

用XPS测定绝缘体或半导体时,由于光电子的连续发射而得不到足够的电子补充,使得样品表面出现电子“亏损”,这种现象称为“荷电效应”。荷电效应将使样品出现一个稳定的表面电势VS,它对光电子逃离有束缚作用,使谱线发生位移,还会使谱锋展宽、畸变。因此XPS中的这个装置可以在测试时产生低能电子束,来中和试样表面的电荷,减少荷电效应。

14.3.6能量分析器

能量分析器的功能是测量从样品中发射出来的电子能量分布,是X射线光电子能谱仪的核心部件。常用的能量分析器,基于电(离子)在偏转场(常用静电场而不再是磁场)或在减速场产生的势垒中的运动特点。通常,能量分析器有两种类型,半球型分析器和筒镜型能量分析器。半球型能量分析器由于对光电子的传输效率高和能量分辩率好等特点,多用在XPS谱仪上。而筒镜型能量分析器由于对俄歇电子的传输效率高,主要用在俄歇电子能谱仪上。对于一些多功能电子能谱仪,由于考虑到XPS和AES的共用性和使用的侧重点,选用能量分析器的主要依据是哪一一种分析方法为主。以XPS为主的采用半球型能量分析器,而以俄歇为主的则采用筒镜型能量分析器。

14.3.7 检测器系统

光电子能谱仪中被检测的电子流非常弱,一般在10-13A/s~10-19A/s,所以现在多采用电子倍增器加计数技术。电子倍增器主要有两种类型:单通道电子倍增器和多通道电子检测器。单通道电子倍增器可有106~109 倍的电子增益。为提高数据采集能力,减少采集时间,近代XPS

谱仪越来越多地采用多通道电子检测器。最新应用于光电子能谱仪的延迟线检测器(Delay Line Detector,简称为DLD),采用多通道电子检测器,尤其在微区(10μm左右)分析时,可以大大提高收谱和成像的灵敏度。

14.3.8 成像XPS

表面分析时的成像XPS可以提供表面相邻区中空间分布的元素和化学信息。对使用其他表面技术难以分析的样品而言,成像XPS是特别有用途的。这包括从微米到毫米尺度范围内非均匀材料、绝缘体、电子束轰击下易损伤的材料或要求了解化学态在其中如何分布的材料。在成像XPS 中,除了提供元素和化学态分布外,还能用于标出覆盖层稠密度,以估算X射线或离子束斑大小和位置,或检验仪器中电子光学孔径的准直。因而成像XPS成为能得到空间分布信息的常规应用方法。

XPS成像把小面积能谱的接收与非均质样品的光电子成像结合起来,可以在接近15μm的空间分辨率下通过连续扫描的方法采集。商品化的仪器现在组合了成像和小束斑谱采集的能力,能够在微米尺度上进行微小特征的表面化学分析。该技术的未来方向是在更小的区域内达到更高的计数率,将XPS成像推向真正的亚微米化学表征技术。

14.3.8 数据系统

X射线电子能谱仪的数据采集和控制十分复杂,涉及大量复杂的数据的采集、储存、分析和处理。数据系统由在线实时计算机和相应软件组成。在线计算机可对谱仪进行直接控制并对实验数据进行实时采集和处理。实验数据可由数据分析系统进行一定的数学和统计处理,并结合能谱数据库,获取对检测样品的定性和定量分析知识。常用的数学处理方法有谱线平滑,扣背底,扣卫星峰,微分,积分,准确测定电子谱线的峰位、半高宽、峰高度或峰面积(强度),以及谱峰的解重叠(Peak fitting)和退卷积,谱图的比较等。当代的软件程序包含广泛的数据分析能力,复杂的峰型可在数秒内拟合出来。

14.4 实验技术

14.4.1 样品的制备和处理

XPS能谱仪对分析的样品有特殊的要求,所以待分析样品需要根据情况进行一定的预处理。

由于在实验过程中样品必须通过传递杆,穿过超高真空隔离阀,送进样品分析室。因此对样品的尺寸有一定的大小规范,以利真空进样。通常固体薄膜或块状样品要求切割成面积大小为0.5cm×0.8cm大小,厚度小于4mm。为了不影响真空,要求样品要尽量干燥。另外,装样品不要使用纸袋,以免纸纤维污染样品表面。

对于粉体样品,可以用胶带法制样,即用双面胶带直接把粉体固定在样品台上。这时要求粉末样品要研细。这种方法制样方便,样品用量少,预抽到高真空的时间较短,可缺点是可能会引进胶带的成分。另外一种制样方法是压片制样,即把粉体样品压成薄片,然后再固定在样品台上,有利于在真空中对样品进行处理,而且其信号强度也要比胶带法高得多,不过样品用量太大,抽到超高真空的时间太长。在普通的实验过程中,一般采用胶带法制样。

考虑到对真空度影响,对于含有挥发性物质的样品(如单质S或P或有机挥发物),在样品进入真空系统前必须通过对样品加热或用溶剂清洗等方法清除掉挥发性物质。

对于表面有油等有机物污染的样品,在进入真空系统前必须用油溶性溶剂如环己烷,丙酮等清洗掉样品表面的油污。最后再用乙醇清洗掉有机溶剂,为了保证样品表面不被氧化,一般采用真空干燥。

光电子带有负电荷,在微弱的磁场作用下,可以发生偏转。在能量分析系统中,装备了磁头镜。因而,当样品具有磁性时,由样品表面出射的光电子就会在磁场的作用下偏离接收角,最后不能到达分析器,从而得不到正确的XPS谱。此外,当样品的磁性很强时,还可能磁化分析器头及样品架,因此,绝对禁止带有磁性的样品进入分析室。对于具有弱磁性的样品,需要退磁,才可以进行XPS分析。

14.4.2 氩离子束溅射技术

为了清洁被污染的固体表面,在X射线光电子能谱分析中,常常利用离子枪发出的离子束对样品表面进行溅射剥离,以清洁表面。利用离子束定量地剥离一定厚度的表面层,然后再用XPS 分析表面成分,这样就可以获得元素成分沿深度方向的分布图,这是离子束最重要的应用。作为深度分析的离子枪,一般采用0.5~5 KeV的Ar离子源。扫描离子束的束斑直径一般在1~10mm 范围,溅射速率范围为0.1~50 nm/min。为了提高深度分辩率,一般应采用间断溅射的方式。为了减少离子束的坑边效应,应增加离子束的直径。为了降低离子束的择优溅射效应及基底效应,应提高溅射速率和降低每次溅射的时间。在XPS研究溅射过的样品表面元素的化学价态时,要特别注意离子束的溅射还原作用,它可以改变元素的存在状态,许多氧化物可以被还原成较低价态的氧化物,如Ti, Mo, Ta等。此外,离子束的溅射速率不仅与离子束的能量和束流密度有关,还与溅射材料的性质有关。

14.4.3 荷电校正(Calibration)

对于绝缘体样品或导电性能不好的样品,光电离后将在表面积累正电荷,在表面区内形成附加势垒,会使出射光电子的动能减小,亦即荷电效应的结果,使得测得光电子的结合能比正常的要高。样品荷电问题非常复杂,一般难以用某一种方法彻底消除。在实际的XPS分析中,一般采用内标法进行校准。最常用的方法是用真空系统中最常见的有机污染碳的C 1s的结合能(284.6 eV)作为参照峰,进行校准。

深度分析过程,剥离到一定深度,污染碳信号减弱或者消失,这时可以通过Ar 2p3/2特征峰或者是样品中稳定元素的特征峰作为参照进行校准。

14.4.4 XPS谱图分析技术

在XPS谱图中,包含极其丰富的信息,从中可以得到样品的化学组成,元素的化学状态及其各元素的相对含量。

XPS谱图分为两类,一类是宽谱(wide)。当用AlKα或MgKα辐照时,结合能的扫描范围常在0-1200eV或 0-1000eV。在宽谱中,几乎包括了除氢和氦元素以外的所有元素的主要特征能量的光电子峰,可以进行全元素分析。第二类为高分辨窄谱(narrow),范围在10-30 eV,每个元素的主要光电子峰几乎是独一无二的,因此可以利用这种“指纹峰”非常直接而简捷地鉴定样品的元素组成。

14.4.4.1定性分析

利用宽谱,可以实现对样品的定性分析。通常XPS谱图的横坐标为结合能(B.E.),纵坐标为光电子的计数率(Count Per Second,简称为CPS)。一般来说,只要该元素存在,其所有的强峰都应存在,否则应考虑是否为其他元素的干扰峰。激发出来的光电子依据激发轨道的名称进行标记。如从C原子的1s轨道激发出来的光电子用C 1s标记。由于X射线激发源的光子能量较高,可以同时激发出多个原子轨道的光电子,因此在XPS谱图上会出现多组谱峰。大部分元素都可以激发出多组光电子峰,可以利用这些峰排除能量相近峰的干扰,以利于元素的定性标定。由于相

近原子序数的元素激发出的光电子的结合能有较大的差异,因此相邻元素间的干扰作用很小。

定性分析的流程为:宽扫→指认最强峰对应的元素→标出该元素副峰在谱中所对应的位置→寻找剩余峰所属元素。由于光电子激发过程的复杂性,在XPS谱图上不仅存在各原子轨道的光电子峰,同时还存在部分轨道的自旋裂分峰,Kα2产生的卫星峰,携上峰以及X射线激发的俄歇峰等伴峰,在定性分析时必须予以注意。在分析谱图时,尤其对于绝缘样品,要进行荷电效应的校正,以免导致错误判断。使用计算机自动标峰时,同样会产生这种情况。

14.4.4.2 半定量分析

XPS研究而言,并不是一种很好的定量分析方法。它给出的仅是一种半定量的分析结果,即相对含量而不是绝对含量。现代XPS提供以原子百分比含量和重量百分比含量来表示的定量数据。

由于各元素的灵敏度因子是不同的,而且XPS谱仪对不同能量的光电子的传输效率也是不同的,并随谱仪受污染程度而改变,这时XPS给出的相对含量也与谱仪的状况有关。因此进行定量分析时,应经常较核能谱仪的状态。此外,XPS仅提供几个 nm厚的表面信息,其组成不能反映体相成分。样品表面的C, O污染以及吸附物的存在也会大大影响其定量分析的可靠性。

14.4.4.3元素的化学态分析

(a)结合能分析

表面元素化学价态分析是XPS的最重要的一种分析功能,也是XPS谱图解析最难,比较容易发生错误的部分。在进行元素化学价态分析前,首先必须对结合能进行校准。因为结合能随化学环境的变化较小,而当荷电校准误差较大时,很容易标错元素的化学价态。此外,有一些化合物的标准数据依据不同的作者和仪器状态存在很大的差异,在这种情况下这些标准数据仅能作为参考,最好是自己制备标准样,这样才能获得正确的结果。另外,元素可能的化学状态有时也要结合实验过程来分析。

还有一些元素的化学位移很小,用XPS的结合能不能有效地进行化学价态分析,在这种情况下,就需要借助谱图中的线形,伴峰结构及俄歇参数法来分析。在XPS谱中,经常会出现一些伴峰,如携上峰,X射线激发俄歇峰(XAES)以及XPS价带峰。这些伴峰虽然不太常用,但在不少体系中可以用来鉴定化学价态,研究成键形式和电子结构,是XPS常规分析的一种重要补充。(b) XPS的携上峰分析

在光电离后,由于内层电子的发射引起价电子从已占有轨道向较高的未占轨道的跃迁,这个跃迁过程就被称为携上过程。在XPS主峰的高结合能端出现的能量损失峰即为携上峰。携上峰在有机体系中一种比较普遍的现象,特别是对于共轭体系会产生较多的携上峰。携上峰一般由π-π*跃迁所产生,也即由价电子从最高占有轨道(HOMO)向最低未占轨道(LUMO)的跃迁所产生。某些过渡金属和稀土金属,由于在3d轨道或4f轨道中有未成对电子,也常常表现出很强的携上效应。因此,也可以作为辅助手段来判定元素的化学状态。

(c)X射线激发俄歇电子能谱(XAES)分析

在X射线电离后的激发态离子是不稳定的,可以通过多种途径产生退激发。其中一种最常见的退激发过程就是产生俄歇电子跃迁的过程,因此X射线激发俄歇谱是光电子谱的必然伴峰。对于有些元素,XPS的化学位移非常小,不能用来研究化学状态的变化。这时XPS中的俄歇线随化学环境的不同会表现出明显的位移,且与样品的荷电状况及谱仪的状态无关,因此可以用俄歇化学位移(例如测定Cu,Zn,Ag)及其线形来进行化学状态的鉴别。通常,通过计算俄歇参数来判断其化学状态。俄歇参数是指XPS谱图中窄俄歇电子峰的动能减去同一元素最强的光电子峰动能。它综合考虑了俄歇电子能谱和光电子能谱两方面的信息,因此可以更为精确地研究元素的化

学状态。

(d)XPS价带谱分析

XPS价带谱反应了固体价带结构的信息,由于XPS价带谱与固体的能带结构有关,因此可以提供固体材料的电子结构信息。例如,在石墨,碳纳米管和C60分子的价带谱上都有三个基本峰。这三个峰均是由共轭π键所产生的。在C60分子中,由于π键的共轭度较小,其三个分裂峰的强度较强。而在碳纳米管和石墨中由于共轭度较大,特征结构不明显。而在C60分子的价带谱上还存在其他三个分裂峰,这些是由C60分子中的σ键所形成的。由此可见,从价带谱上也可以获得材料电子结构的信息。由于XPS价带谱不能直接反映能带结构,还必须经过复杂的理论处理和计算。因此,在XPS价带谱的研究中,一般采用XPS价带谱结构的进行比较研究,而理论分析相应较少。

14.4.5 元素沿深度分析(Depth Profiling)

XPS可以通过多种方法实现元素组成在样品中的纵深分布。最常用的两种方法是Ar离子溅射深度分析和变角XPS深度分析。

变角XPS深度分析是一种非破坏性的深度分析技术,只能适用于表面层非常薄(1~5 nm)的体系。其原理是利用XPS的采样深度与样品表面出射的光电子的接收角的正玄关系,可以获得元素浓度与深度的关系。取样深度(d)与掠射角(α,进入分析器方向的电子与样品表面间的夹角)的关系如下:d = 3λsin(α)。当α为90°时,XPS的采样深度最深,减小α可以获得更多的表面层信息,当α为5°时,可以使表面灵敏度提高10倍。在运用变角深度分析技术时,必须注意下面因素的影响:(1)单晶表面的点陈衍射效应;(2)表面粗糙度的影响;(2)表面层厚度应小于10 nm。

Ar离子溅射深度分析方法是一种使用最广泛的深度剖析的方法,是一种破坏性分析方法,会引起样品表面晶格的损伤,择优溅射和表面原子混合等现象。其优点是可以分析表面层较厚的体系,深度分析的速度较快。其分析原理是先把表面一定厚度的元素溅射掉,然后再用XPS分析剥离后的新鲜表面的元素含量,从而获得元素沿样品深度方向的分布。XPS的Ar离子溅射深度分析,灵敏度不如二次离子质谱(简称为SIMS),但在定量分析中显示的基体效应相对较小。另外,XPS的溅射深度分析的优点是对元素化学态敏感,并且XPS谱图比溅射型AES谱图容易解释。现代XPS仪器由于采用了小束斑X光源(微米量级),空间分辨率已经发展到优于10μm,尤其对绝缘性材料,XPS深度分析变得较为现实和常用。

14.4 实验部分

实验1 XPS法测定TiO2薄膜表面的元素组成、含量及其价态分析

一、实验目的

1.了解和掌握XPS分析的基本原理以及在未知物定性鉴定上的应用;

2.了解XPS的半定量分析及其元素化学价态测定;

3.熟悉和了解X射线光电子能谱仪的使用和实验条件的选择;

二、方法原理

通过XPS分析技术扫描得到全元素的宽谱,测得各未知元素的原子轨道的特征结合能,从

其结合能来鉴定未知元素的种类,进行定性分析。利用元素浓度和XPS信号强度的线性关系进行定量分析。然后根据所收集各元素的窄谱,测得各元素的结合能和化学位移,来鉴定元素的化学价态。

三、实验步骤

(1)样品处理和进样

将干燥的已制备好的涂有TiO2薄膜的硅片切割成大小合适的片,固定到铜片的导电胶带上。然后将铜片固定在样品台上,送入快速进样室。开启低真空阀,用机械泵和分子泵抽真空到10-8托。然后关闭低真空阀,开启高真空阀,使快速进样室与分析室连通,把样品送到分析室内的样品架上,关闭高真空阀。

(2)检查硬件和软件

首先要检查水箱压力,电源,气源是否处于正常状态;检查双阳极是否退到最后;检查样品处理室(简称为STC)和样品分析室(简称为SAC)的真空(应优于3×10-9torr);检查STC-SAC之间阀门的开关状态。

其次,打开光纤灯和摄像机显示器,检查计算机软件中各操作界面中的指示灯是否正常。(3)仪器参数设置

在仪器手动控制“instrument manual control”窗口,在“Acquisition”界面,设置几个关键性参数: type:Snap shot;technique:XPS;lens mode:hybrid;B.E;Pass energy (通能):80eV;Energy region中一般输入O 1s,即由O 1s的信号强度来作为样品最佳测试位置判断标准。在“X-ray PSU”界面,参数设置为:Al(mono)(铝单色器);emission(发射电流):10 mA; Anode(阳极电压):15kV 。

(4)开启X-射线源

在“X-ray PSU”界面,按“standby”键,等待filament一项中灯丝电流值上升稳定至1.37A左右,点击“on”键。在“Neutraliser gun”界面打开中和枪,按“on”键;

(5)样品最佳测试位置调节

在“Acquisition”界面,按“on”键,开始收snapshot谱,对样品最佳测试位置进行手动调节。根据软件中的“Real time display”实时监控窗口中谱峰面积area值的变化,在“manipulator”界面,调节各个坐标轴方向的按键(主要是Z轴方向)找到信号最强的位置(即area值最大)。在“position table”界面点击“update position”,存储位置坐标到该样品名称下。在“Acquisition”界面先后按“restart”,“off”键。

(6)数据采集

在仪器管理“vision instrument manager”窗口下,创建文件名和路径,建立宽谱(wide)和窄谱(narrow)的相关操作文件。具体参数为:wide(定性分析):扫描的能量范围为0~1200 eV,通能(P.E.)为 80 eV,步长(Steps)为1eV/步,扫描时间(Dwells)为100s,扫描次数(Sweeps)为1次;narrow(化学价态分析):扫描的能量范围依据各元素而定,按照结合能由大到小的顺序(O1s,Ti2p,C1s)输入,通能(P.E.)为40eV,扫描步长为0.1 eV/步,扫描次数可以为1-5次,收谱时间为5~10min,其中对应于非导电性样品要多收C 1s谱来进行荷电校正。

设置完成后,按“resume”键回到自动控制状态,按“submit”键,开始按照预设路径自动收谱并存储。

(7)退样

数据采集结束后,按“manual now”键,按“off”键关掉X射线枪和电子中和枪,并将样品退出分析室,送到快速进样室。

四、数据处理

(1) 数据转化

在数据处理“vision processing”窗口,点黑文件块,点右键,在“display”窗口的谱图中点右键,在“Export File”下点击“data to an ASCII file”,将所有文件块数据保存。

(2) 定性分析

用计算机采集宽谱图后,首先标注每个峰的结合能位置,然后再根据结合能的数据在标准手册中寻找对应的元素。最后再通过对照标准谱图,一一对应其余的峰,确定有哪些元素存在。原则上当一个元素存在时,其相应的强峰都应在宽谱图上出现。现在新型的XPS能谱仪,可以通过计算机进行智能识别,自动进行元素的鉴别。由于结合能的非单一性和荷电效应,所以计算机自动识别经常会出现一些错误的结论,要特别注意。

(3) 元素化学价态分析

从“processing window”窗口下,点击“quantify”中的“qualification region”,对每个元素窄谱谱蜂扣背底;在“components”界面,进行分峰拟合,有几个谱峰输入几次该元素光电子标识(如Ti2p)。这时在计算机系统上会自动定出各元素窄谱谱蜂的结合能位置。依据所测C1s光电子峰结合能数据判断是否有荷电效应存在。如有,先校准每个结合能数据,然后再依据这些结合能数据,参考各元素结合能标准数据库,鉴别这些元素的化学价态。

(4)半定量分析

在定量分析程序中,根据已经进行扣背底的每个元素谱峰的面积计算和元素的灵敏度因子,计算机会自动计算出每个元素的相对原子百分比和质量百分比。

在“processing window”下,按住ctrl键,选中已经扣背底的C、O、Ti各元素块,点击“options”下的“Browser actions”,点击“profile spectra”,选中“region”和“area”两项,点击“display in window”框,出现“quantification report”窗口,即给出表面元素

C、O、Ti的相对原子含量和相对重量含量比的数据报告。拷贝这些数据到写字板,保存即可。

(5) 数据校正

首先,分析所测样品中C1s谱峰。将该谱图中显示C1s峰的结合能与基准值284.6ev(通常,以污染炭(CH2)n中的C1s峰(284.6eV)作为基准)相比较。若所测样品中的C1s的结合能比284.6 eV 小,则将所有元素结合能坐标加上二者差值;若所测样品中的C1s的结合能比284.6 eV 大,则将所有元素结合能坐标减去二者差值,进行校正。

五、思考题

1.在XPS的定性分析谱图上,经常会出现一些峰,在XPS的标准数据中难以找到它们的归属,这些峰应该如何归属?

2.对于一个不导电的有机样品,是否可以直接用结合能的数据进行化学价态的鉴别?应如何处理才能保证价态分析的正确性。

实验2 CeO2/Si界面元素组分的XPS深度剖析

一、实验目的

1. 熟悉并掌握利用XPS Ar离子束溅射法进行深度分析的原理,了解它在材料深度分析上的

优缺点。

2. 学会分析不同元素的XPS谱随Ar离子溅射时间的变化图。

二、实验原理

XPS深度分析常被用于表征界面反应以及在薄固体膜中鉴别界面反应产物。该分析方法原理是,利用离子源产生一定能量、一定束斑、一定强度的一次离子束。一次离子被加速入射到样品上,就会从样品表面附近区移走原子,从而把样品表面一定厚度的元素溅射掉,然后再用XPS 分析剥离后的新表面的元素含量,这样就可以获得元素沿深度分布的信息。它是一种破坏性分析方法,会引起样品表面晶格的损伤,择优溅射和表面原子混合等现象。但其优点是可以分析表面层较厚的体系,深度分析的速度较快。

三、实验步骤

(1)进样和检查仪器硬件、计算机软件,打开光纤灯和摄像机显示器。设置“Acquisition”

界面参数:Type,Snap shot;Technique,XPS; Hybrid:B.E;Pass energy,80eV;Energy region:O 1s。开启X-射线枪和电子中和枪,对样品测试位置进行调整,并储存该位置;(2)未剖析前样品表面XPS谱收集。在“vision instrument manager”窗口,创建文件名和路径。设置宽谱和窄谱参数:wide: 0~1200 eV;Pass energy:160 eV;Steps:0.1eV;

Dwells:100s,Sweeps:1 ; narrow:扫描的能量范围按照结合能由大到小(Ce 3d, O 1s,C 1s;Si 2p,)的顺序输入;Pass energy:40 eV;Steps:0.1eV;Dwells:100s,Sweeps:1。点击“resume”和“submit”键,收集表面XPS谱并存储;

(3)在“vision instrument manager”窗口,按“manual”键到手动状态;在“instrument manual control”窗口,手动先关X-ray枪和电子中和枪;

(4)点击计算机软件上仪器线路图中的“close SAC-STC Valve”框,关闭SAC与STC间的真空阀;

(5)开启Ar气源;点开气路中的“Ion Gun Gas On”框,等程序完成后,点“Ion Gun Gas Off”

框,进行一次表面清洗;

(6)点击“Ion gun”界面中“table”下的“high sample”一行,然后点击“restore row”;(7)再次开启气路中的“Ion gun gas on”,等到仪器主控面板上气体压力为2.9*10-8托后,点击“Ion gun”界面中的“stand by”,等离子枪灯丝“filament”电流先升后降至 1.42A 后,点击“on”键(亮绿灯)开启离子抢。溅射时间依据离子枪的溅射速率而定(1~10 min),循环次数依据样品需要剖析的厚度而定;

(8)刻蚀完成后,切换ion gun灯为“stand by”,点击“off”键关掉离子枪。然后点击“ion gun gas off”框关闭Ar气源;

(9)收集不同溅射时间下的样品表面的XPS谱图。先开计算机仪器线路图中SAC-STC真空阀,后开X-ray枪为“stand by”状态,开启电子中和枪为“On”,自动进行宽谱和窄谱收取;(10)所有测试结束后,点击“manual now”,关掉X射线枪和中和枪,并将样品退出分析室,送到快速进样室。

四、数据处理

通过深度分析程序,作出不同元素的XPS谱随Ar离子溅射时间的变化图。再通过定量处理可以获得样品各原子百分比与溅射时间的关系。而溅射时间与样品的深度有线性关系,可以通过标定获得剥离深度。

需要注意的是:未溅射剥离的表面XPS分析时用C1s(284.6eV基准)校正,如果要刻蚀多

次,第二次收谱则要在窄谱中加上Ar 2p峰来校正,因为随着刻蚀进行,污染C元素含量在不断减少,不能用于校正了。此外,在进行元素化学状态的分析时,一定要注意溅射还原现象。

五、思考题

1. 在Ar离子剥离深度分析中,溅射时间与深度有何联系?

2. 深度剖析分析中,荷电效应如何校正?

参考资料

(1) D.Briggs著,桂琳琳,黄惠忠,郭国霖等译,《X射线与紫外光电子能谱》,北京大学出版社,

1984。

(2) 黄惠忠,《论表面分析及其在材料研究中的应用》,科学技术文献出版社,2002。

(3) 周清,《电子能谱学》,南开大学出版社,1995。

(4) 朱永发,《电子能谱学》讲义,清华大学,http://166.111.28.134;

(5) 查询数据库网址:https://www.doczj.com/doc/659904120.html,/xps/Bind_e_spec_query.asp,或者:

https://www.doczj.com/doc/659904120.html,。

实验2层次分析法

项目六矩阵的特征值与特征向量 实验2 层次分析法 实验目的 通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次 分析法建立数学模型的基本步骤;学会用Mathematica解决层次分析法中的数学问题. 基本原理 层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学 方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中 新型的数学方法. 运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行. 1.建立层次结构 首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这 个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层 次结构一般分三层: 第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层; 第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则层; 第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.

图2-1 决策目标 准则1准则2准则n 方案1方案2方案m …… …… 注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2) 整个层次结构中层次数不受限制. 2.构造判断矩阵 构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即 .,,2,1,,)(n j i a A n n ij ==? 称矩阵A 为判断矩阵. 根据上述定义,易见判断矩阵的元素ij a 满足下列性质: )(,1),(1 j i a j i a a ii ij ji ==≠= 当0>ij a 时,我们称判断矩阵A 为正互反矩阵. 怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素 y 的影响可直接定量表示时, i x 与j x 对y 的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较 复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决. 通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用 5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成 对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以 27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.

(完整版)X射线光电子能谱分析(XPS)

第18章X射线光电子能谱分析 18.1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES 分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6μm大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS 方法可广泛应用于化学化工,材料,机械,电子材料等领域。 18.2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成一个激发态的离子。在光电离过程中,固体物质的结合能可以用下面的方程表示: E k = hν- E b - φs (18.1)

光电子能谱分析法基本原理

第十四章 X-射线光电子能谱法 14.1 引言 X-射线光电子谱仪(X-ray Photoelectron Spectroscopy,简称为XPS),经常又被称为化学分析用电子谱(Electron Spectroscopy for Chemical Analysis,简称为ESCA),是一种最主要的表面分析工具。自19世纪60年代第一台商品化的仪器开始,已经成为许多材料实验室的必不可少的成熟的表征工具。XPS发展到今天,除了常规XPS外,还出现了包含有Mono XPS (Monochromated XPS, 单色化XPS,X射线源已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源), SAXPS ( Small Area XPS or Selected Area XPS, 小面积或选区XPS,X射线的束斑直径微型化到6μm) 和iXPS(imaging XPS, 成像XPS)的现代XPS。目前,世界首台能量分辨率优于1毫电子伏特的超高分辨光电子能谱仪(通常能量分辨率低于1毫电子伏特)在中日科学家的共同努力下已经研制成功,可以观察到化合物的超导电子态。现代XPS拓展了XPS的内容和应用。 XPS是当代谱学领域中最活跃的分支之一,它除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。XPS可以分析导体、半导体甚至绝缘体表面的价态,这也是XPS的一大特色,是区别于其它表面分析方法的主要特点。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。XPS表面分析的优点和特点可以总结如下: ⑴固体样品用量小,不需要进行样品前处理,从而避免引入或丢失元素所造成的错误分析 ⑵表面灵敏度高,一般信息采样深度小于10nm ⑶分析速度快,可多元素同时测定 ⑷可以给出原子序数3-92的元素信息,以获得元素成分分析 ⑸可以给出元素化学态信息,进而可以分析出元素的化学态或官能团 ⑹样品不受导体、半导体、绝缘体的限制等 ⑺是非破坏性分析方法。结合离子溅射,可作深度剖析 目前,XPS主要用于金属、无机材料、催化剂、聚合物、涂层材料、纳米材料、矿石等各种材料的研究,以及腐蚀、摩擦、润滑、粘接、催化、包覆、氧化等过程的研究,也可以用于机械零件及电子元器件的失效分析,材料表面污染物分析等。 14.2 基本原理 XPS方法的理论基础是爱因斯坦光电定律。用一束具有一定能量的X射线照射固体样品,入射光子与样品相互作用,光子被吸收而将其能量转移给原子的某一壳层上被束缚的电子,此时电子把所得能量的一部分用来克服结合能和功函数,余下的能量作为它的动能而发射出来,成为光电子,这个过程就是光电效应。 该过程可用下式表示: hγ=E k+E b+E r(14.1) 式中: hγ:X光子的能量(h为普朗克常数,γ为光的频率);

因子分析的一般原理概述

因子分析的一般原理概述 简才永 因子分析是处理多变量数据的一种统计方法,它可以揭示多变量之间的关系,其主要目的是从众多的可观测得变量中概括和综合出少数几个因子,用较少的因子变量来最大程度地概括和解释原有的观测信息,从而建立起简洁的概念系统,揭示出事物之间本质的联系。 一、因子分析的种类 (一)、R型因子分析与Q型因子分析 这是最常用的两种因子分析类型。R型因子分析,是针对变量所做的因子分析,其基本思想是通过对变量的相关系数矩阵内部结构的研究,找出能够控制所有变量的少数几个随机变量去描述多个随机变量之间的相关关系。然后再根据相关性的大小把变量分组,使同组内的变量之间的相关性较高,不同组变量之间的相关性较低。Q型因子分析,是针对样品所做的因子分析。它的思路与R因子分析相同,只是出发点不同而已。它在计算中是从样品的相似系数矩阵出发,而R型因子分析在计算中是从样品的相关系数矩阵出发的。 (二)、探索性因子分析与验证性因子分析 探索性因子分析(EFA),主要适用于在没有任何前提预设假定下,研究者用它来对观察变量因子结构的寻找、对因子的内容以及变量的分类。通过共变关系的分解,进而找出最低限度的主要成分,让你后进一步探讨这些主成分或共同因子与个别变量之间的关系,找出观察变量与其对应因子之间的强度,即所谓的因子负荷值,以说明因

子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。 验证性因子分析(CFA),要求研究者对研究对象潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观测变量的组成模式,进行因子分析的目的是为了检验这一先前提出的因子结构的适合性。这种方法也可以应用于理论框架的检验,它在结构方程模型中占据相当重要的地位,有着重要的应用价值,也是近年来心理测量中相当重要的内容。 二、因子分析基本思想、模型与条件 (一)、因子与共变结构 因子分析的基本假设是那些不可观测的“因子”隐含在许多现实可观察的事物背后,虽然难以直接测量,但是可以从复杂的外在现象中计算、估计或抽取得到。它的数学原理是共变抽取。也就是说,受到同一个因子影响的测量分数,共同相关的部分就是因子所在的部分,这可以用“因子”的共变相关部分来表示。 (二)、因子分析的条件 第一、因子分析以变量之间的共变关系作为分析的依据,凡影响共变的因子都要先行确认无误。首先,因子分析的变量都必须是连续变量,符合线性关系的假设。其他顺序与类别型的数据不能用因子分析简化结构。 第二、抽样过程必须随机,并具有一定规模。一般样本量不得低于100,原则上是越大越好。此外,一般还要求样本量与变量数之间

X射线光电子能谱仪

X射线光电子能谱分析 1 引言 固体表面分析业已发展为一种常用的仪器分析方法,特别是对于固体材料的分析和元素化学价态分析。目前常用的表面成分分析方法有:X射线光电子能谱(XPS), 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。AES分析主要应用于物理方面的固体材料科学的研究,而XPS的应用面则广泛得多,更适合于化学领域的研究。SIMS和ISS由于定量效果较差,在常规表面分析中的应用相对较少。但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。本章主要介绍X射线光电子能谱的实验方法。 X射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。该方法是在六十年代由瑞典科学家Kai Siegbahn教授发展起来的。由于在光电子能谱的理论和技术上的重大贡献,1981年,Kai Siegbahn获得了诺贝尔物理奖。三十多年的来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。XPS已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。XPS的研究领域也不再局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。 在XPS谱仪技术发展方面也取得了巨大的进展。在X射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X射线能量单色化并连续可调的激发源;传统的固定式X射线源也发展到电子束扫描金属靶所产生的可扫描式X射线源;X射线的束斑直径也实现了微型化,最小的束斑直径已能达到6 m 大小, 使得XPS在微区分析上的应用得到了大幅度的加强。图像XPS技术的发展,大大促进了XPS在新材料研究上的应用。在谱仪的能量分析检测器方面,也从传统的单通道电子倍增器检测器发展到位置灵敏检测器和多通道检测器,使得检测灵敏度获得了大幅度的提高。计算机系统的广泛采用,使得采样速度和谱图的解析能力也有了很大的提高。 由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。因此,XPS方法可广泛应用于化学化工,材料,机械,电子材料等领域。 2 方法原理 X射线光电子能谱基于光电离作用,当一束光子辐照到样品表面时,光子可以被样品中某一元素的原子轨道上的电子所吸收,使得该电子脱离原子核的束缚,以一定的动能从原子内部发射出来,变成自由的光电子,而原子本身则变成

材料现代分析与测试 第五章 光电子能谱分析

第五章光电子能谱分析 一、教学目的 理解掌握光电子能谱分析的基本原理,掌握光电子能谱实验技术,了解光电子能谱仪,了解俄歇电子能谱分析。 二、重点、难点 重点:光电子能谱分析原理、光电子能谱实验技术及应用。 难点:光电子能谱分析原理。 第一节概述 电子能谱是近十多年才发展起来的一种研究物质表面的性质和状态的新型物理方法。这里所谓的表面是指固体最外层的l~10个原子的表面层和吸附在它上面的原子、分子、离子或其他覆盖层,它的深度从小于1到几个nm,或者包括采取剥离技术将表面层沿纵向深度暴露出新的表面。用特殊的手段对这类表面进行分析已形成一门新兴的测试方法,即表面分析法,它在理论上和实际应用上都有广泛的研究领域。表面分析方法在无机非金属材料学科中的应用,例如:研究玻璃表面的刻蚀作用、水泥矿物硅酸钙的水化作用、陶瓷表面和界面、高温超导材料表面的作用等均有重要意义。 一、表面分析可以得到的信息 表面分析是借助于各种表面分析仪,对物体10 nrn以内的表面层进行分析,可得到的信息有: (1)物质表面层(包括吸附层)的化学成分,除氢元素以外的元素都可以从表面分析法获得定性和定量的结果,而X射线能谱分析一般只能分析到原子序数为11以上的元素(最好的仪器可以分析原子序数为4的Be元素)。定量分析也只能达到半定量程度。 (2)物质表面层元素所处的状态或与其他元素间的结合状态和结构,即元素所处的原子状态、价态、分子结构等信息。 (3)表面层物质的状态,如表面层的分子和吸附层分子状态、氧化态、腐蚀状态、表面反应生成物等。 (4)物质表面层的物理性质,这在一般表面分析中虽不是研究的主要内容,但可以得到与表面的元素、价态、结构等信息的关系。 在做表面分析工作时,不仅在制备样品时要求在高真空和超净条件下进行,而且在测试过程中也要注意仪器中的条件,以防止因污染而引起测试误差。 二、表面分析法的特点

SPSS因子分析法

因子分析 ? 因子分析(Factor analysis ):用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 主成分分析(Principal component analysis ):是因子分析一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。 两者关系:主成分分析(PCA )和因子分析(FA )是两种把变量维数降低以便于描述、理解和分析的方法。 ? 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 ? 类型 根据研究对象的不同,把因子分析分为R 型和Q 型两种。 当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。 但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。 ? 分析原理 假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 : 当p 较大时,在p 维空间中考察问题比较麻烦。这就需要进行降维处理,即用较少几个综合指标代替原来指标,而且使这些综合指标既能尽量多地反映原来指标所反映的信息,同时它们之间又是彼此独立的。 线性组合:记x1,x2,…,xP 为原变量指标,z1,z2,…,zm (m ≤p )为??????????????=np n n p p x x x x x x x x x X 212222111211

AHP层次分析法计算原理

AHP层次分析法计算原理 一般地,可以选用三层结构对发展战略作出整体评价。 第一层为目标层,它是企业要实现的战略目标,第二层是评价因素层,它包括战略目标实现进行评价的所考虑的各种因素以及各因素之间的相对比值,并求出各要素实现总体目标所占的权重。第三层是指标层,即个评价因素需考虑的具体指标。 首先,根据总目标确定各要素之间的相对重要关系,构建两两比较判断矩阵,其基本形式为: 其中,a j表示对于C来说,A对A相对重要性的数值体现,通常a j可取1、2、3……、9以及它们的倒数作为标度。其中, 1――表示两个元素相比,具有同样的重要性; 3――表示两个元素相比,一个元素比另一个元素稍微重要; 5――表示两个元素相比,一个元素比另一个元素明显重要; 7――表示两个元素相比,一个元素比另一个元素强烈重要; 9――表示两个元素相比,一个元素比另一个元素极端重要。 2、4、6、8为上述相邻判断的中值。 矩阵中的元素具有以下特征:①a j >0,②a j二丄,③a H=1o a ji 然后,根据判断矩阵计算相对于战略目标各评价元素的相对重要 性次序的权重,首先计算判断矩阵A的最大特征根入max和其对应的经归一化后的特征向量W=[W i, W2 , W3, , W n ]T,计算的公式为:(8 - 1)

归一化后的特征向量W=[W i, W2, W3, , W n]T即为各评价因素对于总目标的权重。 (8 - 2)W i - n W i i J 其 1 n 中,W = a j (8 - 3) 入max为判断矩阵A的最大特征根,计算公式为: (8 - 4) 其中,(AW)i表示AW的第i个元素。 最后,对矩阵A进行一致性检验。当a q二空时,称判断矩阵为a jk 致性矩阵。判断一致性的指标为C.R.的取值。 C.R.嚅 (8 - 5) (8 - 6) R丄为随机一致性指标,其值是通过多次重复进行随机判断矩阵特征值的计算后得到的。随机一致性指标R丄的取值见表8-2。 表8-2随机一致性指标R.I?的取值表 维数12 345 6 7 8 9 10 J (AW)i i吕nw

(完整版)因子分析法基本原理

1.因子分析法基本原理 在对某一个问题进行论证分析时,采集大量多变量的数据能为我们的研究分析提供更为丰富的信息和增加分析的精确度。然而,这种方法不仅需要巨大的工作量,并且可能会因为变量之间存在相关性而增加了我们研究问题的复杂性。因子分析法就是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。这样我们就可以对原始的数据进行分类归并,将相关比较密切的变量分别归类,归出多个综合指标,这些综合指标互不相关,即它们所综合的信息互相不重叠。这些综合指标就称为因子或公共因子。 因子分析法的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。这样,就能相对容易地以较少的几个因子反映原资料的大部分信息,从而达到浓缩数据,以小见大,抓住问题本质和核心的目的。 因子分析法的核心是对若干综合指标进行因子分析并提取公共因子,再以每个因子的方差贡献率作为权数与该因子的得分乘数之和构造得分函数。因子分析法的数学表示为矩阵:B AF X +=,即: ????? ?? ??++++=++++=++++=++++=p k pk p p p p k k k k k k f f f f x f f f f x f f f f x f f f f x βααααβααααβααααβααααΛΛΛΛΛΛ332211333332321313223232221212113132121111 (k ≤p)………………(1式) 模型中,向量X ()p x x x x ,,,,321Λ是可观测随机向量,即原始观测变量。F ()k f f f f ,,,,321Λ是X ()p x x x x ,,,,321Λ的公共因子,即各个原观测变量的表达式中共同出现的因子,是相互独立的不可观测的理论变量。公共因子的具体含义必须结合实际研究问题来界定。A ()ij α是公共因子F ()k f f f f ,,,,321Λ的系数,称为因子载荷矩阵,ij α(i=1,2,.....,p;j=1,2,....,k)称为因子载荷,是第i 个原有变量在第j 个因子上的负荷,或可将ij α看作第i 个变量在第j 公共因子上的权重。ij α是x i 与f j

(完整版)因子分析法基本原理.docx

1.因子分析法基本原理 在 某一个 行 分析 , 采集大量多 量的数据能 我 的研究分析提供更 丰富的信息和增加分析的精确度。 然而, 种方法不 需要巨大的工 作量,并且可能会因 量之 存在相关性而增加了我 研究 的复 性。 因子分析法就是从研究 量内部相关的依 关系出 , 把一些具有 复 关系的 量 少数几个 合因子的一种多 量 分析方法。 我 就可以 原始的数据 行分 并,将相关比 密切的 量分 , 出多个 合指 , 些 合指 互不相关, 即它 所 合的信息互相不重叠。 些 合指 就称 因子或公共因子。 因子分析法的基本思想是将 量 行分 , 将相关性 高, 即 系比 密的分在同一 中, 而不同 量之 的相关性 低, 那么每一 量 上就代表了一个基本 构, 即公共因子。 于所研究的 就是 用最少个数的不可 的所 公共因子的 性函数与特殊因子之和来描述原来 的每一分 量。 ,就能相 容易地以 少的几个因子反映原 料的大部分信息, 从而达到 数据,以小 大,抓住 本 和核心的目的。 因子分析法的核心是 若干 合指 行因子分析并提取公共因子, 再以每个因子的方差 献率作 数与 因子的得分乘数之和构造得分函数。 因子分析法的数学表示 矩 : X AF B ,即 : x 1 11 f 1 1 2 f 2 1 3 f 3 1k f k 1 x 2 21 f 1 22 f 2 23 f 3 2 k f k 2 x 3 31 f 1 32 f 2 33 f 3 3k f k 3 (k ≤p)?????? (1 式) x p p1 f 1 p 2 f 2 p 3 f 3 pk f k p 模型中,向量 X x 1, x 2 , x 3 , , x p 是可 随机向量,即原始 量。 F f 1 , f 2, f 3 , , f k 是X x 1, x 2 , x 3, , x p 的公共因子,即各个原 量的表达式中 共同出 的因子, 是相互独立的不可 的理 量。 公共因子的具体含 必 合 研究 来 界定。 A ij 是公共因子 F f 1, f 2 , f 3, , f k 的系数,称 因子 荷矩 , ij (i=1,2,.....,p;j=1,2,....,k)称 因子 荷,是第 i 个原有 量在第 j 个 因子上的 荷,或可将 ij 看作第 i 个 量在第 j 公共因子上的 重。 ij 是 x i 与 f j

(完整版)层次分析法步骤

层次分析法实例与步骤 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组成: ●目标层(最高层):指问题的预定目标; ●准则层(中间层):指影响目标实现的准则; ●措施层(最低层):指促使目标实现的措施; 通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。 为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。但问题绝不这么简单。通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。 假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措

案例解析X射线光电子能谱(XPS)八大应用!

【干货】玩转XPS丨案例解析X射线光电子能谱(XPS)八大应用! 表面分析技术 (Surface Analysis)是对材料外层(the Outer-Most Layers of Materials (<100nm))的研究的技术。 X射线光电子能谱简单介绍 XPS是由瑞典Uppsala大学的K. Siegbahn及其同事历经近20年的潜心研究于60年代中期研制开发出的一种新型表面分析仪器和方法。鉴于K. Siegbahn教授对发展XPS领域做出的重大贡献,他被授予1981年诺贝尔物理学奖。 X射线激发光电子的原理 XPS现象基于爱因斯坦于1905年揭示的光电效应,爱因斯坦由于这方面的工作被授予1921年诺贝尔物理学奖; X射线是由德国物理学家伦琴(Wilhelm Conrad R?ntgen,l845-1923)于1895年发现的,他由此获得了1901年首届诺贝尔物理学奖。

X射线光电子能谱(XPS ,全称为X-ray Photoelectron Spectroscopy)是一种基于光电效应的电子能谱,它是利用X射线光子激发出物质表面原子的内层电子,通过对这些电子进行能量分析而获得的一种能谱。 这种能谱最初是被用来进行化学分析,因此它还有一个名称,即化学分析电子能谱(ESCA,全称为Electron Spectroscopy for Chemical Analysis)。XPS谱图分析中原子能级表示方法 XPS谱图分析中原子能级的表示用两个数字和一个小字母表示。例如:3d5/2(1)第一个数字3代表主量子数(n); (2)小写字母代表角量子数; (3)右下角的分数代表内量子数j

X射线光电子能谱(XPS)谱图分析

一、X光电子能谱分析的基本原理 X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质 发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用 下式表示: hn=Ek+Eb+Er (1) 其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的 反冲能量。其中Er很小,可以忽略。 对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米 能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真 空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为: hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样, 如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的 轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以 了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小 可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析 元素的化合价和存在形式。 二、电子能谱法的特点 (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电 发射电子的能量分布,且直接得到电子能级结构的信息。(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称 作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层 电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定 性的标识性强。 (3)是一种无损分析。 (4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏

层次分析法的基本步骤和要点(20210228093222)

层次分析法的基本步骤和要点

层次分析法的基本步骤和要点 结合一个具体例子,说明层次分析法的基本步骤和要点。 【案例分析】市政工程项目建设决策:层次分析法问题提出 市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。 1. 建立递阶层次结构 应用AHP军决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。 AHP要求的递阶层次结构一般由以下三个层次组 成: 目标层(最高层):指问题的预定目标; 准则层(中间层):指影响目标实现的准则; 措施层(最低层):指促使目标实现的措施;通

过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。 然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系'即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一 层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。 在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。 最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。 明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。 【案例分析】市政工程项目进行决策:建立递阶层次结构

因子分析法(自己整理)

因子分析法 1.因子分析法简介: 1)因子分析法的提出 “因子分析”的名称于1931年由Thurstone 首次提出,但它的概念起源于二十世纪初Karl Pearson 和Charles Spearmen 等人关于智力测验的统计分析。近年来,随着电子计算机的高速发展,人们将因子分析方法成功地应用于各个领域,使得因子分析的理论和方法更加丰富。 2)因子分析的定义 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息。因子分析法(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。 运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。 3)与主成分分析的联系 主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变

层次分析方法基本原理

层次分析方法基本原理 层次分析法简单的说就是运用多因素分级处理来确定因素权重的方法。它是一种定性分析和定量分析相结合的评价决策方法,它将评价者对复杂系统的评价思维过程数学化。 层次分析法基本思路是评价者通过将复杂问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算。就可以得出不同替代案的重要度,从而为选择最优方案提供决策依据。 层次分析法特点是:能将人们的思维过程数学化、系统化,便于人们接受;所需定量数据信息较少。 ⑵层次分析法图解: 评估每一层针对上一层的因素的重要程度,通过传递性,最后确定因素层的指标相对于目标层的重要程度,从而确定全部指标的权重系数 ⑶应用层次分析法进行综合评价其主要步骤有: 第一步:对构成评价问题的目标(准则)及因素等要素建立多级递阶结构模型。 第二步:在多级递阶结构模型中,对属同一级的要素,用上一级的要素为准则进行两两比较后,根据判断尺度确定其相对重要度,并据此建立判断矩阵。 对于递阶层次结构中各层上的元素可以依次相对于与之有关的上一层元素,进行两两比较,从而建立一系列的判断矩阵。判断矩阵 A = (aij)n×n 具有下述性质: 其中, aij(i,j = 1,2,…,n) 代表元素 Ui 与 Uj 相对于其上一层元素重要性的比例标度。判断矩阵的值反映了人们对各因素相对重要性的认识,一般采用

1-9 比例标度对重要性程度赋值。标度及其含义如下表所示。 第三步:通过一定计算后,确定各要素的相对重要度:四个步骤如下 ①计算单一层次下元素的相对权重并进行一致性检验 1矩阵 A 的最大特征根为λmax ,其相应的特征量为 W ,解判断矩阵 A 的特征根问题 最大特征根及其对应的特征向量通常应用方根法来求解,具体计算步骤如下: 所得 W 经归一化后,即(1)计算判断矩阵每一行元素的乘积M I 为同一层次相应元素对于上一层次某一因素相对重要性的权重向量。 2用估计得到的排序向量左乘判断矩阵得到一个新的向量,依次用你排序向量的每个分量去除这个新向量的每个对应分量,得到了另一个向量,对这个向量的分量求和然后除以分量的个数,得到了关于特征根λmax的近似值 由于客观事物的复杂性以及人们对事物认识的模糊性和多样性,所给出的判断矩阵不可能完全保持一致,有必要进行一致性检验,计算一致性指标 CI 其中, n 为判断矩阵阶数。 若随机一致性比率 CR = CI / RI < 0.10 ,则判断矩阵具有满意的一致性,否则需要调整判断矩阵的元素取值。随机一致性指标 RI 取值见表 -2 。

(完整版)方法:因子分析法

因子分析基础理论知识 1 概念 因子分析(Factor analysis ):就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大部分信息的统计学分析方法。从数学角度来看,主成分分析是一种化繁为简的降维处理技术。 主成分分析(Principal component analysis ):是因子分析的一个特例,是使用最多的因子提取方法。它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。选取前面几个方差最大的主成分,这样达到了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大部分的信息。 两者关系:主成分分析(PCA )和因子分析(FA )是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。 2 特点 (1)因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。 (2)因子变量不是对原始变量的取舍,而是根据原始变量的信息进行重新组构,它能够反映原有变量大部分的信息。 (3)因子变量之间不存在显著的线性相关关系,对变量的分析比较方便,但原始部分变量之间多存在较显著的相关关系。 (4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。 在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理(即通过因子分析或主成分分析)。显然,在一个低维空间解释系统要比在高维系统容易的多。 3 类型 根据研究对象的不同,把因子分析分为R 型和Q 型两种。 当研究对象是变量时,属于R 型因子分析; 当研究对象是样品时,属于Q 型因子分析。 但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。 4分析原理 假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 : ?????? ????? ???=np n n p p x x x x x x x x x X ΛM M M M ΛΛ212222111211

因子分析法基本原理.doc

精 品 资 料 1.因子分析法基本原理 在对某一个问题进行论证分析时,采集大量多变量的数据能为我们的研究分析提供更为丰富的信息和增加分析的精确度。然而,这种方法不仅需要巨大的工作量,并且可能会因为变量之间存在相关性而增加了我们研究问题的复杂性。因子分析法就是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。这样我们就可以对原始的数据进行分类归并,将相关比较密切的变量分别归类,归出多个综合指标,这些综合指标互不相关,即它们所综合的信息互相不重叠。这些综合指标就称为因子或公共因子。 因子分析法的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。这样,就能相对容易地以较少的几个因子反映原资料的大部分信息,从而达到浓缩数据,以小见大,抓住问题本质和核心的目的。 因子分析法的核心是对若干综合指标进行因子分析并提取公共因子,再以每个因子的方差贡献率作为权数与该因子的得分乘数之和构造得分函数。因子分析法的数学表示为矩阵:B AF X +=,即: ????? ?? ??++++=++++=++++=++++=p k pk p p p p k k k k k k f f f f x f f f f x f f f f x f f f f x βααααβααααβααααβαααα 332211333332321313223232221212113132121111 (k ≤p)………………(1式) 模型中,向量X ()p x x x x ,,,,321 是可观测随机向量,即原始观测变量。F ()k f f f f ,,,,321 是X ()p x x x x ,,,,321 的公共因子,即各个原观测变量的表达式中

相关主题
文本预览
相关文档 最新文档