当前位置:文档之家› 通信原理实验指导书(简)

通信原理实验指导书(简)

通信原理实验指导书(简)
通信原理实验指导书(简)

1、液晶显示模块

显示实验模块及其工作方式以供选择。

2、键盘控制模块

(1)选择实验模块及其工作方式。

(2)学生可自己编制数字信号输入,进行编码或调制实验。

3、模拟信号源模块

提供同步正弦波、非同步信号(正弦波、三角波、方波)、音乐信号等模拟信号,可通过连接线发送到各终端编码模块。

5、数字信号源模块

(1)CPLD可编程逻辑器件,编程输出各种数字信号;

(2)通过计算机输入数字数据信号;

(3)薄膜键盘键入编制数字信号;

(4)EPM240芯片,学生二次开发编程输出各种数字信号、控制信号等。

6、噪声源模块

提供白噪声信号,可加入到调制信道中模仿信道噪声干扰。

7、抽样定理与PAM实验系统

完成抽样定理的验证实验,及PAM通信系统实验。

注:提供多种频率的方波及窄脉冲信号抽样。

8、PCM编译码系统模块

完成PCM的编码、译码实验;

完成两路PCM编码数字信号时分复用/解复用实验。

注:可改变时分复用的时隙位置,时分可复用路数及进行时分数据交换,加深学生对时分复用概念的理解。

11、AMI/HDB3编译码系统模块

完成AMI编译码功能、HDB3编译码功能。

注:提供对全“1”、全“0”、伪随机码、手工编制数字信号等进行编码译码。

14、VCO数字频率合成器模块

完成对1KHz、2KHz和外加数字信号的倍频输出。

15、频移键控FSK(ASK)调制模块

完成频移键控FSK调制实验, ASK调制实验。

注:①可对方波,伪随机码,计算机数据等信号的调制输出;

②可对已调信号进行放大或衰减输出;

③可在已调信号中加入噪声,模拟信道干扰;

④可完成本实验箱的自环单工通信实验,也可完成两台实验箱间的双工通

信实验。

16、频移键控FSK(ASK)解调模块

完成频移键控FSK解调实验,ASK解调实验。

17、相移键控BPSK(DPSK)调制模块

完成相移键控BPSK(DPSK)调制实验。

注:①可对方波,伪随机码,及计算机数据等信号进行调制输出;

②可对已调信号进行放大或衰减输出;

③可在已调信号中加入噪声,模拟信道干扰;

④可完成本实验箱的自环单工通信实验,也可完成两台实验箱间的双工通

信实验。

18、相移键控BPSK(DPSK)解调模块

完成相移键控BPSK(DPSK)解调实验。

实验一(一) CPLD可编程数字信号发生器实验

一、实验目的

1.熟悉各种时钟信号的特点及波形;

2.熟悉各种数字信号的特点及波形。

二、实验仪器

1.RZ8621D实验箱1台

2.20M双踪示波器1台

三、实验电路的工作原理

(一)、CPLD可编程模块二电路的功能及电路组成

图1-1是CPLD可编程模块的电路图。

CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时钟信号和数字信号。它由CPLD可编程器件ALTERA公司的EPM240(EPM7128或者是Xilinx公司的XC95108)、下载接口电路(J101)和一块晶振(JZ101)组成。晶振用来产生16.384MHz 系统内的主时钟。本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发(本实验箱提供专门的开发模块)生成这些信号,理论联系实践,提高实际操作能力。

(二)、各种信号的功用及波形

1.12脚输入16.384MHz主时钟,方波。由晶振JZ101产生的16.384MHz时钟,经电阻R111,从12脚送入U101进行整形,然后分频、产生各种信号输出。

2.27脚,输出2.048MHz时钟,方波。

3.100脚,输出1.024MHz时钟,方波。

4.6脚,输出64KHz时钟,方波。

5.2脚,输出32KHz时钟,方波。

6.1脚,输出16KHz时钟,方波。

7.33脚,输出32KHz伪随机码。

8.5脚,输出2KHz伪随机码。

9.69脚,输出8KHz的窄脉冲同步信号,供PCM(一)编码模块用(时隙可变)。

10.70脚,输出8KHz的窄脉冲同步信号,供PCM(二)编码模块用(时隙可变)。

8KHz的窄脉冲同步信号,可通过编程来改变它们的时序和脉冲宽度,学生可通过薄膜键盘选择,供PCM(一)模块、PCM(二)模块使用

电原理示意图见如图1-1所示,由CPLD芯片U101、下载接口电路J101、一块晶振JZ101及外围一些电容电阻组成(有兴趣的同学,可以到网上搜索相关原器件的详细资料)。

注:本实验平台中所有数字信号都是由同一个信号源JZ101分频产生,所以频率相同或者频率成倍数关系的数字信号,都有相对固定的相位关系。

四、实验内容

1.熟悉CPLD可编程数字信号发生器各测量点信号波形。

2.查阅CPLD可编程技术的相关资料,了解这些信号产生的方法。

五、实验步骤

1.打开电源总开关,电源指示灯亮,系统开始工作。

2.用示波器测出下面所列各测量点波形,并对每一测量点的波形加以分析。GND 为接地点,测量各点波形时示波器探头的地线夹子应先接地。

各测量点波形如图1-2所示,具体说明如下:

以下信号均由CPLD 可编程器件EPM240芯片编程产生并送往各测量点。 TP301:1024KHz 的时钟信号,作为PSK 调制模块中产生载频信号用。 TP901:32KHz 的时钟信号,作为FSK 调制模块中产生载频信号用。

TP602:方波信号,作为抽样定理模块中抽样时钟用。可由薄膜键盘选择“抽样定

理模块”中不同的抽样时钟信号(默认为2KHz 方波)。

TP503: 8KHz 的窄脉冲同步信号,可通过薄膜键盘选择不同时隙。

测量时将示波器通道1的探头放在TP509上(固定0时隙和脉冲宽度),将通道2的探头放在TP503上,调整通道1为触发通道,通过薄膜键盘选择“PCM 编译码模块”中不同选项,对比两路波形可以看到8KHz 的窄脉冲同步信号不同的时序关系和脉冲宽度。

TP110: 15位的伪随机序列码,码元速率为32Kb/S ,码型为111100010011010,

可对比TP901的32KHz 的时钟信号读出它的码型序列。该波形用来输岀到PSK 调制等模块单元,作为数字基带信号。

TP905:K901开关的1-2脚短接,15位的伪随机序列码,码元速率为2Kb/S ,码型

为111100010011010,可对比TP001的2KHz 的时钟信号读出它的码型序列。该波形用来输岀到FSK 调制模块单元,作为FSK 调制的数字基带信号(默认2KHz PN ),也可通过薄膜键盘选择2KHz 方波。

本实验平台中CPLD 可编程器件EPM240芯片产生的信号还有很多,学生可在以后实验过程中逐步遇到。

TP301

TP901 TP109

TP110 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

1024KHz 方波

32KHz 方波

8Hz 窄脉冲

32Kb/S 伪随机

图1-2 CPLD可编程模块产生的部分信号波形示意图

五、实验报告要求

1.分析各种时钟信号及数字信号产生的方法,叙述其功用。

2.画出各种时钟信号及数字信号的波形。

3.了解CPLD可编程技术方面的知识。

实验一(二)各种模拟信号源实验

一、实验目的:

1.熟悉各种模拟信号的产生方法及其用途;

2.观察分析各种模拟信号波形的特点。

二、实验仪器

1.RZ8621D实验箱1台

2.20M双踪示波器1台

3.铆孔线1根

4.小平口螺丝刀1只

5.电话单机1台(选用)

三、电路工作原理

模拟信号源电路用来产生实验所需的各种音频信号:同步正弦波信号、非同步简易信号、话音信号、音乐信号,白噪声等。

(一)同步信号源(同步正弦波发生器)

1.功用

同步信号源用来产生与编码数字信号同步的2KHz正弦波信号,可作为抽样定理PAM、增量调制CVSD编码、PCM编码实验的输入音频信号。在没有数字存贮示波器的条件下,用它作为编码实验的输入信号,可在普通示波器上观察到稳定的编码数字信号波形。

2.电路原理

图2-1为同步正弦信号发生器的电路图。

它由2KHz方波信号产生器(图2-1中SC2K表示)、低通滤波器和输出放大电路三部分组成。

2KHz方波信号(SC2K)由CPLD可编程器件U101内的逻辑电路通过编程产生。TP001为其测量点。U001A 及周边的阻容网络组成一个截止频率为ωL的低通滤波器,用以滤除各次谐波,只输出一个2KHz正弦波,TP002“同步输出”铜铆孔为其输出点。2K正弦波通

过铜铆孔输出可供PAM、PCM、CVSD(?M)模块使用。

W001用来改变输出同步正弦波的幅度。

(二)非同步信号源

1.功用

非同步信号源是一个简易信号发生器,它可产生频率为0.3~4KHz频率可调的正弦波信号、三角波信号和方波信号,输出幅度为0~10V(一般使用范围0~4V)连续可调(注:可改变某些器件参数调整频率、幅度的输出范围)。可利用它定性地观察通信话路的频率特性,同时用做PAM、PCM、CVSD(?M)模块的音频信号源,信号波形见图2-7所示。

2.工作原理

非同步信号源的电路图如图2-2所示。它由集成函数发生器ICL8038(或者XR2206,这里不做介绍)和一些外围电路组成。ICL8038是大规模集成电路,它的内部电路主要有矩形波、三角波或正弦波发生器电路,正弦波由管脚2输出,三角波由管脚3输出,矩形波管脚9输出。管脚8为频率调节(简称调频)电压输入端。振荡频率与调频电压成正比,其线性度约为0.5%(详细用法可到网上查找)。一般情况下,正弦波信号(频率在0.3~3.4KHz间)易于观察和分析,且完全满足本平台通信原理实验的需要,所以我们建议使用正弦波输出作为非同步信号源。信号形式可由K002选择输出,调节W003可使其振荡频率

1.功用

音乐信号产生电路用来产生音乐信号送往音频终端电路,以检查话音信道的开通情况及通话质量。

2.工作原理

音乐信号产生电路见图2-3。音乐信号由U004音乐片厚膜集成电路产生。该片的1脚为电源端,2脚为控制端,3脚为输出端,4脚为公共地端。V CC经R018、D003向U004的1脚提供3.3V电源电压,当2脚通过SW001接触开关触发输入控制电压+3.3V时,音乐片即有音乐信号从第3脚输出,经TP005“音乐输出”铜铆孔送往各实验模块。

(四)外加模拟信号输入电路

在一些特殊情况下,简易正弦波信号形式不能满足实验要求,就要用外加信号源提供所需信号。例如要定量地测试通信话路的频率特性时需要使用频率、电平与输出阻抗都很稳定的频率范围很宽的音频测试信号,这就需要外接音频信号产生器或函数信号发生器。外加模拟信号输入电路为它们提供了连接到实验的接口电路。外加模拟信号加入S02接口,转接后由P01铜铆孔“外加模拟输出”输出送往各实验模块。

(五) 模拟电话输入电路

图2-4是专用电话集成电路组成的电话模块电路。J01是电话机的水晶头接口,D001为摘机检测显示,U003是PBL38710/1专用电话集成电路。它的工作原理是:当对电话机的送话器讲话时,该话音信号从PBL38710/1的TIPX和RINGX引脚输入,经U003内部话音信号传输处理后从第19引脚(VTX)输出。由VTX引脚来的模拟电话输出信号经“电话模拟发”TP004T铜铆孔送出,可作为语音信号输出用

当接收对方的话音时,送入U003第16引脚(RSN)的对方模拟电话输入信号可由“电话模拟收”TP004R铜铆孔送入。有时输入信号需要先经过右下脚的“音频功放”,再由TP007处通过铆孔线连接送入铜铆孔TP004R(功放电原理图,如图2-5)。

(六) 音频功放电路

如图2-5,U005为NE555芯片。在接收端,各种信号经过连接线接入TP006“输入”后,进入功放电路。信号幅度可由W005进行调节,最后由扬声器输出,其测量铆孔为TP107。

2.熟悉上述各种信号的产生方法,并了解信号流程。

五、实验步骤

1.打开实验箱右侧电源开关,电源指示灯亮。

2.用示波器测量TP001、TP002、TP003、TP004T、TP004R、TP005等各点波形。

3.将各模拟信号由相应铜铆孔输出,通过连接线接入TP006铜铆孔,此时模拟信号可由喇叭输出(K001的1-2连通),学生可直观地感受各模拟信号间的差别4.模拟信号源模块有关器件接口介绍

TP002:同步正弦波输出,频率2KHZ,幅度可调(一般峰峰值2V)。

TP003:非同步信号输出,一般使用范围0.3~3.4KHZ,幅度可调(一般峰峰值2V)。

TP005:音乐信号输出,SW001触发后产生。

TP004T:模拟电话信号发。

TP004R:模拟电话信号收。

TP006:功放输入。

TP007:功放放大后输出。

TP108:高斯白噪声。

SW001:音乐信号触发按钮(有些无需触发)。

K002:非同步信号形式选择。

S01:外加数字信号输入。

S02:外加模拟信号输入。

S03:误码测试时钟输出接口。

S04:误码测试数据输入接口。

SW03:误码测试时钟模块选择,1-2:FSK,2-3:PSK。

电位器调节

W001:同步正弦波信号幅度调节。

W002:非同步信号幅度调节。

W003:非同步信号频率调节。

W004:非同步信号直流分量调节(一般调节支流分量为0)。

W005:功放放大幅度调节。

W101:噪声幅度调节。

六、各测量点波形

TP001:2KHz方波,由EPM240芯片编程产生。

TP002:与TP001工作时钟同步输出的2KHz的正弦波信号。

TP003:0.3~3.4KHz的非同步信号,可通过K002选择正弦波、三角波和方波,通过W003来改变频率,通过W002来改变其幅度。

TP004T:电话电路送往各编码器模块的模拟话音信号。作为电话电路的去话信号。

TP004R:作为电话电路的来话信号输入接口。

TP005:音乐电路模块输出音乐信号,通过SW001触发产生。

P01:外加模拟信号输出。外加模拟信号由S02接口加入本实验箱,再由P01“外加模拟输出”铜铆孔输出送往各实验模块。

TP108:高斯白噪声,噪声幅度由W101调节。本模块产生的原理这里就不做详细介绍。

七、实验报告要求

1.画出各测量点波形,并进行分析。

2.画出各模拟信号源的电路框图,叙述其工作原理。

3.记录实验过程中遇到的问题并进行分析。

实验二 FSK(ASK)调制解调实验

一、实验目的

1.掌握FSK(ASK)调制的工作原理及电路组成;

的应用。

数字调频又可称作移频键控FSK,它是利用载频频率变化来传递数字信息。

数字幅度调制ASK本实验箱没有做成专门的ASK单元,因为只接通FSK调制单元电路中相加开关K902的“对1调制”信号,即为ASK调制。

(一) FSK调制电路工作原理

FSK调制解调电原理框图,如图9-1所示;图9-2是它的调制电路电原理图。

输入的基带信号分成两路,一路控制f1=32KHz的载频,另一路经倒相去控制f2=16KHz 的载频。当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=32KHz,当基带信号为“0”时,模拟开关1关闭,模拟开关2开通。此时输出f2=16KHz,于是可在输出端得到已调的FSK信号。

电路中的两路载频(f1、f2)由内时钟信号发生器产生,两路载频分别经射随、选频滤波、射随、再送至模拟开关U902A与U901B(4066)。

(二) FSK解调电路工作原理

FSK集成电路模拟锁相环解调器由于性能优越,价格低廉,体积小,所以得到了越来越广泛的应用。解调电路电原理图如图9-3所示。

FSK集成电路模拟锁相环解调器的工作原理是十分简单的,只要在设计锁相环时,使

它锁定在FSK的一个载频如f1上,对应输出高电平,而对另一载频f2失锁,对应输出低电平,那末在锁相环路滤波器输出端就可以得到解调的基带信号序列。

FSK锁相环解调器中的集成锁相环选用了MC14046。

压控振荡器的中心频率设计在32KHz。图9-3中R924、R925、CA901主要用来确定压控振荡器的振荡频率。R929、C916构成外接低通滤波器,其参数选择要满足环路性能指标的要求。从要求环路能快速捕捉、迅速锁定来看,低通滤波器的通带要宽些;从提高环路的跟踪特性来看,低通滤波器的通带又要窄些。因此电路设计应在满足捕捉时间前提下,尽量减小环路低通滤波器的带宽。

当输入信号为16KHz时,环路失锁。此时环路对16KHz载频的跟踪破坏。

可见,环路对32KHz载频锁定时输出高电平,对16KHz载频失锁时就输出低电平。只要适当选择环路参数,使它对32KHz锁定,对16KHz失锁,则在解调器输出端就得到解调输出的基带信号序列。关于FSK调制原理波形见图9-4所示。

四、实验内容

测试FSK调制解调电路TP901—TP910各测量点波形,并作详细分析。

1.按下实验箱右测电源开关,电源指示灯亮。

2.跳线开关设置:

K901:1-2:码元速率为2KB/s的111100010011010伪随机码或2KHz方波,由薄

膜键盘选择输入;

2-3:PC数据。

K902:1-2和3-4均相连时,调制波形叠加合成开关。

K903:1-2:在已调信号中加入噪音(模仿实际通信中的信道噪声, 可在噪声模块

中TP108处测得噪声波形,W101调节噪声幅度,幅度不宜过大);

2-3:不加入噪音(或者跳线拔掉不连)。

SW01:1-2:FSK自环;

2-3:断开FSK自环,FSK可通过MODEM接口实现两个实验平台间的双工

通信(此实验将在后续章节中完成)。

3.电位器调节:

W901:调节32KHz正弦波幅度大小。

W902:调节16KHz正弦波幅度大小。

W903:调节FSK已调信号幅度大小。

W904:调节解调电路压控振荡器时钟的中心频率。

4.调节W904电位器使压控振荡器工作在32KHz(16 KHz行不行?)。

5.注意:当基带信号的码元速率与载频信号的频率相差太近时,FSK解调端输出测量点TP910输出应为不稳定的输出波形。

6.接通开关SW01的1-2脚(自环)或2-3脚(断开自环),输入FSK信号给解调电路,注意观察“1”、“0”码内所含载波的数目。

7.观察FSK解调输出TP908~TP910波形,并作记录,并同时观察FSK调制端的基带信号,比较两者波形,观察是否有失真。

FSK频移键控原理波形示意图(如图9-4)。

图9-2 FSK调制电路电原理图

FSK 频移键控原理波形图(如图9-4)

图9-4 FSK 频移键控原理波形图

TP903 TP904

TP905 TP907/908 TP909 TP910

对“1”调制 对“0”调制

五. 测量点说明

TP901:32KHz方波信号,由U101芯片(EPM7128)编程产生。

TP902:16KHz方波信号,由U101芯片(EPM7128)编程产生。

TP903:32KHz载波信号,可调节电位器W901改变幅度

TP904:16KHz载波信号,可调节电位器W902改变幅度

TP905:作为数字基带信码信号输入,由开关K901决定。

K901的1与2相连:码元速率为2KHz的111100010011010码或2KHz方波由

薄膜键盘选择输入;

K901的2与3相连: PC数据输入。

TP906:FSK调制信号输出,此测量点需使用双踪对比测量,另一踪(触发)测量TP905。

K902的1-2相连、3-4断开时,TP906为32KHz载波FSK调制信号输出;

K902的1-2断开、3-4相连时,TP906为16KHz载波FSK调制信号输出;

K902的1-2和3-4均相连时,TP906为FSK调制信号叠加输出。

TP907:衰减或放大的FSK调制信号输出。

K903的1-2脚相连时,在调制信号中加入噪声,电位器W101调整噪声幅度(可

在TP108处测得波形),模拟实际通信中的信道传输。

TP908:FSK解调信号输入。

SW01的1-2脚相连时:FSK自环,即同一平台上调制解调;

SW01的2-3相连时:FSK自环断开,FSK可通过MODEM接口实现两个实验平

台间的双工通信。

TP909:FSK解调电路中压控振荡器输出时钟的中心频率,正常工作时应为32KHz左右,频偏不应大于2KHz,若有偏差,可调节电位器W904。

TP910:FSK解调信号输出,即数字基带信码信号输出,波形同TP905。

注:在FSK解调时,数字基带信号的频率与载频的频率应满足4F ≤ fc2的关

系,否则它们的频谱重叠,FSK解调电路解调不出此时的数字基带信码信号。

六、实验报告要求

1.若输入数字信号为序列:01001000110111,画出FSK、ASK各主要测试点波形。

2.写出改变4046的哪些外围元件参数对其解调正确输出有影响?

3.分析其输出数字基带信号序列与发送数字基带信号序列相比有否产生延迟,什么情况

下会出现解调输出的数字基带信号序列反向的问题?

实验三二相BPSK(DPSK)调制解调实验

一、实验目的

1.掌握二相BPSK(DPSK)调制解调的工作原理及电路组成;

2.了解载频信号的产生方法;

3.掌握二相绝对码与相对码的码变换方法。

二、实验仪器

1.RZ8621D实验箱1台

2.20M双踪示波器1台

3.小平口螺丝刀1只

三、实验电路工作原理

(一)调制实验:

在本实验中,绝对移相键控(PSK)是采用直接调相法来实现的,也就是用输入的基带信号直接控制已输入载波相位的变化来实现相移键控。

PSK调制在数字通信系统中是一种极重要的调制方式,它具有优越的抗干扰噪声性能及较高的频带利用率。因此,PSK在许多场合下得到了十分广泛的应用。

本实验中PSK调制模块原理框图(如图10-1)。从图10-1可见,二相PSK(DPSK)载波为1.024MHz,数字基带信号有32Kbit/s伪随机码、2KHz方波、CVSD编码信号、PC数据等。

1.载波倒相器

模拟信号的倒相通常采用运放来实现。电路由U301B等组成,来自1.024MHz载波信号输入到U301的反相输入端6脚,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0相载波与π相载波的幅度相等,在电路中加了电位器W301和W302。

2.模拟开关相乘器

对载波的相移键控是用模拟开关电路实现的。

0相载波与π相载波分别加到模拟开关1:U302:A的输入端(1脚)、模拟开关2:U302:B的输入端(11脚),在数字基带信号的信码中,它的正极性加到模拟开关1的输入控制端(13脚),它反极性加到模拟开关2的输入控制端(12脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关1的输入控制端为高电平,模拟开关1导通,输出0相载波,而模拟开关2的输入控制端为低电平,模拟开关2截止。反之,当信码为“0”码时,模拟开关1的输入控制端为低电平,模拟开关1截止。而模拟开关2的输入控制端却为高电平,模拟开关2导通。输出π相载波,两个模拟开关的输出通过载波输出开关K301合路叠加后输出为二相PSK调制信号,如图10-2所示。

在数据传输系统中,由于相对移相键控调制具有较强的抗干扰噪声能力,在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。

相对移相,就是利用前后码元载波相位相对变化来传递信息,所以也称为“差分移

J 301

反相器

开关2

开关1

T P 301C V S D 增量调制编码数字数据

电路

C P L

D 1.024M H z 的方波

T P 303T P 302

0相载波器

π相载波载波反相T P 304

2

315

6

T P 306

加器相

K 3011

324输出

调制P S K 图11-1 P S K 调制及测量点分布原理框图

P C 机数据

噪源

声图10-1

平代表“0”。

相对码是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。

图10-3 BPSK 、DPSK 编码波形

TP1

绝对码

相对码 TP304

相对码转换波形 PSK 实验中选择DPSK

对绝对码

调制波形 对相对码

调制波形

TP110

伪随机码波形

(二)解调实验

二相BPSK(DPSK)解调器的总电路方框图如图10-5所示。该解调器由三部分组成:载波提取电路、位定时恢复电路与信码再生整形电路。载波恢复和位定时提取,是数字载波传输系统必不可少的重要组成部分。载波恢复的具体实现方案是和发送端的调制方式有关的,以相移键控为例,有:N次方环、科斯塔斯环(Constas环)、逆调制环和判决反馈环等。近几年来由于数字电路技术和集成电路的迅速发展,又出现了基带数字处理载波跟踪环,

2. 科斯塔斯环提取载波原理

科斯塔斯环由U701(LM311)模拟运放放大后的信号分两路输出至两鉴相器的输入端,鉴相器1与鉴相器2的控制信号输入端的控制信号分别为0相载波信号与π/2相载波信号。这样经过两鉴相器输出的鉴相信号再通过有源低通滤波器滤掉其高频分量,再由两比较判决器完成判决解调出数字基带信码,由U706A与U707A构成的相乘器电路,去掉数字基带信号中的数字信息。得到反映恢复载波与输入载波相位之差的误差电压Ud, Ud经过环路低通滤波器R718、R719、C706滤波后,输出了一个平滑的误差控制电压,去控制VCO压控振荡器74S124。

它的中心振荡输出频率范围从1Hz到60MHz,工作环境温度在0~70℃,当电源电压工作在+5V、频率控制电压与范围控制电压都为+2V时,74S124的输出频率表达式为:f0 = 5×10-4/Cext,在实验电路中,调节精密电位器W701(100KΩ)的阻值,使频率控制输入电压(74LS124的2脚)与范围控制输入电压(74LS124的3脚)基本相等,此时,当电源电压为+5V时,才符合:f0 = 5×10-4/Cext,再变改电容CA701(80Pf~110Pf),使74S124的7脚输出为2.048NHZ方波信号。74S124的6脚为使能端,低电平有效,它开启压控振荡器工作;

当74S124的第7脚输出的中心振荡频率偏离2.048MHz时,此时可调节W701,用频率计监视测量点TP702上的频率值,使其准确而稳定地输出2.048MHz的载波信号。

该2.048MHz的载波信号经过分频(÷2)电路:U709一次分频变成1.024MHz载波信号,并完成π/2相移相。由U709B的9脚输出π/2相去鉴相器2的控制信号输入端U302D(4066)的6脚,由U709A的5脚输出0相载波信号去鉴相器1的控制信号输入端U302C(4066)的5脚。这样就完成了载波恢复的功能,此时K701需选择1-2脚。

图10-6是该解调环各输出测量点波形图,从图中可看出该解调环路的优点是:

①该解调环在载波恢复的同时,即可解调出数字信息。

②该解调环电路结构简单,整个载波恢复环路可用模拟和数字集成电路实现。

但该解调环路的缺点是:存在相位模糊。

四、实验内容

1.二相PSK调制实验

调整好载波幅度,观察TP301~TP306各测量点的波形。如图10-7 BPSK调制模块波形示意图。

2.PSK解调实验

3. PSK解调载波提取实验

将PSK的电路调整到最佳状态,逐一测量TP701~TP705各点处的波形,画出波形图并作记录,注意相位、幅度之间的关系。

五、实验步骤及注意事项

1.打开实验箱右侧电源开关,电源指示灯亮。

2.跳线开关、键盘设置功能如下:

J301(数字基带信号的设置):

1-2脚相连(键盘控制输出),伪随机码32KB/s码型为111100010011010

通信原理实验指导书(完整)

实验一:抽样定理实验 一、实验目的 1、熟悉TKCS—AS型通信系统原理实验装置; 2、熟悉用示波器观察信号波形、测量频率与幅度; 3、验证抽样定理; 二、实验预习要求 1、复习《通信系统原理》中有关抽样定理的内容; 2、阅读本实验的内容,熟悉实验的步骤; 三、实验原理和电路说明 1、概述 在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。因此,采取多路化制式是极为重要的通信手段。最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。 利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。并且,从抽样信号中可以无失真地恢复出原信号。 抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础的。在工作设备中,抽样过程是模拟信号数字化的第一步。抽样性能的优劣关系到整个系统的性能指标。 作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。 图1-1 单路PCM系统示意图 为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。 2、抽样定理 抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。因此,对于一个最高频率为3400Hz的语音信号m(t),可以用频率大于或等于6800Hz的样值序列来表示。抽样频率fs和语音信号m(t)的频谱如图1-2和图1-3所示。 由频谱可知,用截止频率为f H的理想低通滤波器可以无失真地恢复原始信号m(t),这就说明了抽样定理的正确性。 实际上,考虑到低通滤波器特性不可能理想,对最高频率为3400Hz的语音信号,通常采用8KHz抽样频率,这样可以留出1200Hz的防卫带,见图1-4。如果fs<2f H,就会出现频谱混迭的现象,如图1-5所示。 在验证抽样定理的实验中,我们用单一频率f H的正弦波来代替实际的语音信号,采用标准抽样频率fs=8KHz,改变音频信号的频率f H,分别观察不同频率时,抽样序列和低通滤波器的输出信号,体会抽样定理的正确性。

通信原理实验指导书

通信实验指导书电气信息工程学院

目录 实验一AM调制与解调实验 (1) 实验二FM调制与解调实验 (5) 实验三ASK调制与解调实验 (8) 实验四FSK调制与解调实验 (11) 实验五时分复用数字基带传输 (14) 实验六光纤传输实验 (19) 实验七模拟锁相环与载波同步 (27) 实验八数字锁相环与位同步 (32)

实验一 AM调制与解调实验 一、实验目的 理解AM调制方法与解调方法。 二、实验原理 本实验中AM调制方法:原始调制信号为1.5V直流+1KHZ正弦交流信号,载波为20KHZ正弦交流信号,两者通过相乘器实现调制过程。 本实验中AM解调方法:非相干解调(包络检波法)。 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解AM调制方法与解调方法。

实验一参考结果

实验二 FM调制与解调实验 一、实验目的 理解FM调制方法与解调方法。 二、实验原理 本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。 本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波) 三、实验所需部件 调制板、解调板、示波器、计算机(数据采集设备)。 四、实验步骤 1.熟悉实验所需部件。 2.按下图接线。 3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面 各图中。 4.结合上述实验结果深入理解FM调制方法与解调方法。

通信原理实验 思考题

通信原理实验思考题 第三章数字调制技术 实验一FSK传输系统实验 实验后思考题: 1.FSK正交调制方式与传统的FSK调制方式有什么区别?有哪些特点? 答:传统的FSK调制方式采用一个模拟开关在两个独立振荡器中间切换,这样产生的波形在码元切换点的相位是不连续的。而且在不同的频率下还需采用不同的滤波器,在应用上非常不方便。采用正交调制的优点在于在不同的频率下可以自适应的将一个边带抑制掉,不需要设计专门的滤波器,而且产生的波形相位也是连续的,从而具有良好的频谱特性。 2.TPi03 和TPi04 两信号具有何关系? 答:正交关系 实验中分析: P28 2. 产生两个正交信号去调制的目的。 答:在FSK 正交调制方式中,必须采用FSK 的同相支路与正交支路信号;不然如果只采一路同相FSK 信号进行调制,会产生两个FSK 频谱信号,这需在后面采用较复杂的中频窄带滤波器。用两个正交信号去调制,可以提高频带利用率,减少干扰。 4.(1)非连续相位 FSK 调制在码元切换点的相位是如何的。 答:不连续的,当包含 N(N 为整数)个载波周期时,初始相位相同的相邻码元的波形(为整数)个载波周期时,和瞬时相位是连续的,当不是整数时,波形和瞬时相位 也是可能不连续的。 P29 1.(2)解调端的基带信号与发送端基带波形(TPi03)不同的原因? 答:这是由于解调端与发送端的本振源存在频差,实验时可根据以下方法调整:将调模块中的跳线KL01置于右端,然后调节电位器WL01,可以看到解调端基带信号与发送端趋于一致。 2.(2)思考接收端为何与发送端李沙育波形不同的原因? 答:李沙育图形的形状与两个输入信号的相位和频率都有关。 3. 为什么在全0或全1码下观察不到位定时的抖动? 答:因为在全0或全1码下接收数据没有跳变沿,译码器无论从任何时刻开始译码均能正确译码,因此译码器无须进行调整,当然就看不到位定时的抖动了。 实验二BPSK传输系统实验 实验后思考题: 1.写出眼图正确观察的方法。 答:眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。 观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

通信原理实验一、二实验报告

通信原理 实验一 实 验 报 告 实验日期: 学院: 班级: 学号: 姓名: 指导老师:

实验一数字基带传输系统的MA TLAB仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握 卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的 常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用 MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MA TLAB实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB 程序产生离散随机信号 2、编写MATLAB 程序生成连续时间信号 3、编写MATLAB 程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看, 信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如 信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层次上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 四、实验步骤 (1)分析程序program1_1 每条指令的作用,运行该程序,将结果保存,贴在下面的空白 处。然后修改程序,将dt 改为0.2,并执行修改后的程序,保存图形,看看所得图形的效果 怎样。 dt=0.01 时的信号波形 Sinusoidal signal x(t) -2-1.5-1-0.500.51 1.52 Time t (sec) dt=0.2 时的信号波形

光通信原理实验指导书

实验一模拟信号光调制实验 一、实验目的 1、了解模拟信号光纤通信原理。 2、了解不同频率不同幅度的正弦波、三角波、方波等模拟信号的系统光传输性能情况。 二、实验内容 1、测量不同的正弦波、三角波和方波的光调制系统性能。 三、实验器材 1、主控&信号源、25号模块各1块 2、双踪示波器1台 3、连接线若干 4、光纤跳线1根 四、实验原理 1、实验原理框图 光调制功率检测框图 模拟信号光调制传输系统框图 2、实验框图说明 本实验是输入不同的模拟信号,测量模拟光调制系统性能。如模拟信号光调制传输系统框图所示,不同频率不同幅度的正弦波、三角波和方波等信号,经25号模块的光发射机单元,完成电光转换,然后通过光纤跳线传输至25号模块的光接收机单元,进行光电转换处理,从而还原出原始模拟信号。实验中利用光功率计对光发射机的功率检测,了解模拟光调制系统的性能。 注:根据实际模块配置情况不同,自行选择不同波长(比如1310nm、1550nm)的25号光收发模块进行实验。 五、注意事项 1、在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。 2、不要带电插拔信号连接导线。 六、实验步骤 1、系统关电,参考系统框图,依次按下面说明进行连线。 (1)用连接线将信号源A-OUT,连接至25号模块的TH1模拟输入端。

(2)用光纤跳线连接25号模块的光发端口和光收端口,此过程是将电信号转换为光信号,经光纤跳线传输后再将光信号还原为电信号。注意,连接光纤跳线时需定位销口方向且操作小心仔细,切勿损伤光纤跳线或光收发端口。 (3)用同轴连接线将25号模块的P4光探测器输出端,连接至23号模块的P1光探测器输入端。 2、设置25号模块的功能初状态。 (1)将收发模式选择开关S3拨至“模拟”,即选择模拟信号光调制传输。 (2)将拨码开关J1拨至“ON”,即连接激光器;拨码开关APC此时选择“ON”或“OFF”都可,即APC功能可根据需要随意选择。 (3)将功能选择开关S1拨至“光功率计”,即选择光功率计测量功能。 3、进行系统联调和观测。 (1)打开系统和各实验模块电源开关。设置主控模块的菜单,选择【主菜单】→【光纤通信】→【模拟信号光调制】。此时系统初始状态中A-OUT输出为1KHz正弦波。调节信号源模块的旋钮W1,使A-OUT输出正弦波幅度为1V。 (2)选择进入主控&信号源模块的【光功率计】功能菜单,根据所选模块波长类型选择波长【1310nm】或【1550nm】。 (3)保持信号源频率不变,改变信号源幅度测量光调制性能:调节信号源模块的W1,改变输入信号的幅度,记录不同幅度时的光调制功率变化情况。 (4)保持信号源幅度不变,改变信号源频率测量光调制性能:改变输入信号的频率,自行设计表格记录不同频率时的光调制功率变化情况。 (5)拆除23号模块和25号模块之间的同轴连接线,适当调节25号模块的W5接收灵敏度旋钮,用示波器对比观察光接收机的模拟输出端TH4和光发射机的模拟输入端TH1,了解模拟光调制系统线性度。 (6)改变信号源的波形,用三角波或方波进行上述实验步骤,进行相关测试,表格自拟。 七、实验报告 1、画出实验框图,并阐述模拟信号光调制基本原理。

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信原理SystemView仿真实验指导书

实验一图符库的使用 一、实验目的 1、了解SystemVue图符库的分类; 2、掌握SystemVue各个功能库常用图符的功能及其使用方法。 二、实验内容 按照实例使用图符构建简单的通信系统,并了解每个图符的功能。 三、基本原理 SystemVue的图符库功能十分丰富,一共分为以下几个大类 1.基本库 SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。 (信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号 (算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求 (函数库)32种函数尽显函数库的强大库容! (信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它 2.扩展功能库 扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。它允许通信、DSP、射频/模拟和逻辑应用。 (通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。这些模块从纠错编码、调制解调、到各种信道模型一应俱全。 (DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。该库支持大多DSP芯片的算法模式。例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。 还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。 (逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。 (射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。 3.扩展用户库

通信原理-习题及答案概要

一、填空 1、单音调制时,幅度A不变,改变调制频率Ωm,在PM中,其最大相移△θm 与Ωm_______关系,其最大频偏△?m与Ωm__________;而在FM,△θm与Ωm________,△?m与Ωm_________。 1、在载波同步中,外同步法是指____________________,内同步法是指 ________________________。 2、已知一种差错控制编码的可用码组为:0000、1111。用于检错,其检错能力 为可检;用于纠正位错码;若纠一位错,可同时检查错。 3、位同步信号用于。 1.单边带信号产生的方式有和。 2.设调制信号的最高频率为f H ,则单边带信号的带宽为,双边带信号的带宽为,残留边带信号的带宽为。 3.抽样的方式有以下2种:抽样、抽样,其中没有频率失真的方式为抽样。 4.线性PCM编码的过程为,,。 5.举出1个频分复用的实例。 6.当误比特率相同时,按所需E b /n o 值对2PSK、2FSK、2ASK信号进行排序 为。 7、为了克服码间串扰,在___________之前附加一个可调的滤波器;利用____________的方法将失真的波形直接加以校正,此滤波器称为时域均衡器。 1、某数字传输系统传送8进制信号,码元速率为3000B,则该系统的信息速 率为。 2、在数字通信中,可以通过观察眼图来定性地了解噪和对系统性 能的影响。 3、在增量调制系统中,当模拟信号斜率陡变时,阶梯电压波形有可能跟不 上信号的变化,形成很大失真的阶梯电压波形,这样的失真称 为。 4、为了防止二进制移相键控信号在相干解调时出现“倒π”现象,可以对 基带数字信号先进行,然后作BPSK调制。 1、通信系统的性能指标主要有和,在模拟通信系统中前者用有效传输带宽衡量,后者用接收端输出的衡量。 2、对于一个数字基带传输系统,可以用实验手段通过在示波器上观察该系统

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

通信原理实验报告

通信原理实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用 subplot(311); % 设置3行1列的作图区,并在第1区作图 plot(t,x1); title('占空比25%'); axis([0 ]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 ]); subplot(313); plot(t,x3);

title('占空比75%'); axis([0 ]); 图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4::4; T=4; % 设置信号宽度x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1);

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

通信原理实验指导书

通信原理实验指导书 实验准备步骤 在进行通信原理实验之前,请同学们按照下面的步骤进行实验准备: 1.通过串口线、程序下载线连接PC机与实验平台; 2.打开稳压电源,调节电压输入值为12V; 3.检查电源线连接是否正确,白黑相间线连接正极,纯黑线连接负极,切 勿接反; 4.连接无误后,打开实验板电源; 5.打开通信原理实验界面,如下图所示配置并打开串口; 6.将实验板上的拨码开关全部拨到ON; 7.下载程序到实验板上: 打开quartusⅡ5.0软件,选择Tools/programmer,设置Hardware Setup为ByteBlasterll[LPT1],Mode为Passive Serial,单击Add File,选择文件路径E:\实验平台程序与文档\通信原理实验平台程序与文档 \FPGA\toplevel.sof,文件选择完毕后,单击Start 进行程序下载,当 程序下载完毕,且在实验板下载指示灯(LED后四位)未灭时,拔掉实 验板上下载线,如果此过程中指示灯灭了,显示程序下载过程失败,请 重新单击Start进行下载。 完成以上操作步骤后,同学们可以开始进行以下实验内容。

实验一、实验平台基础实验 实验步骤: 通信原理实验界面,选择基础实验,开始以下实验步骤:串口收发及其测温实验 1.点击测温按钮,查看并分析实验结果; 2.发送两位16进制数字,观察LED的变化是否与设定值相同; 3.改变拨码开关并接收数据,查看并分析返回数值。 单片机波形发生器实验 1.填入合适的峰峰值和频率值,选择要生成的波形,单击开始; (由于实验箱问题,输入的峰峰值和示波器测出来的峰峰值有误差) 2.用示波器观察TP13点的输出波形。 语音录放实验 暂时不做 实验结果: 整理实验数据,画出各测试点的波形。 实验二、直接数字频率合成和数字调制实验 实验步骤: DDS频率合成实验 1.进入数字调制技术界面,选择直接数字频率合成; 2.在左方文本框中填入合适的频率值并发送; 3.用示波器观察TP35的DDS输出波形,修改输入值,观察DDS所产生 的频率。 FSK调制实验 1.在两个文本框中分别填写合适的频率值并发送; 2.用示波器观察TP35波形,验证是否为原输入信号相对应的FSK信号。 BPSK、DPSK、ASK调制实验操作均同FSK操作

通信原理实验报告

AM调制和解调的仿真原理:1)AM调制的原理是,发射信号的一侧将信号加到高频振荡上,然后通过天线发射出去。在此,高频振荡波是载波信号,也称为载波。调幅是通过调制信号来控制高频载波的幅度,直到其随调制信号线性变化。在线性调制系列中,第一幅度调制是全幅度调制或常规幅度调制,称为am。在频域中,调制频谱是基带调制信号频谱的线性位移;在时域中,调制包络与调制信号波形具有线性关系。设正弦载波为:C(T)= ACOS (WCT +φ0),其中a为载波幅度;WC是载波角频率;φ0是载波的初始相位(通常假设φ0 = 0)。调制信号(基带信号)为m(T)。根据调制的定义,幅度调制信号(调制信号)通常可以表示为:如果调制信号M(T)的频谱为m(W),则SM(T)= am(T)cos(WCT),则调制信号的频谱SM(T):SM(W)= a [M(W + WC)+ m(w﹥6 ﹣1wc)] /22。从高频调制信号中恢复调制信号的过程称为解调。)也称为检测。对于幅度调制信号,解调是从幅度变化中提取调制信号的过程。解调是调制的逆过程。产品类型的同步检波器可用于解调振幅。可以将调制信号与本地恢复载波信号相乘,并且可以通过低通滤波来获得解调信号。下图显示了AM解调的原理:原理图和仿真结果:参数设置:正弦波WAVE1和正弦波WAVE2

模块分别在发送器和接收器处生成载波信号,并且角频率ωC设置为60 rad / s,并且调幅系数为1;调制信号M(T)由正弦波模块产生,为正弦波信号,角频率为5rad / s,幅度为1V。直流分量A0恒定。低通滤波器模块的截止频率设置为6rad / s。承运人:sin60t;调制信号:sin(5T)sin(60t)2 2. B DSB调制和解调模拟调制原理:在幅度调制的一般模型中,如果滤波器是全通网络(= 1),则滤波器中没有DC分量。调制信号,则输出调制信号是没有载波分量(DSB)的双边带调制信号。当源信号的极性改变时,调制信号的相位将突然改变π。SDSB (T)= m(T)coswct调制的目的是将调制信号的频谱移动到所需位置,从而提高系统信息传输的有效性和可靠性。DSB调制原理的框图如图4-3所示:图1:DSB信号本质上是基带信号和载波的乘法,而卷积在频域中。表达式为:调制后,s DSB(W)= [M(W + WC)+ m (W?6?1 WC)] / 2(1),已调制信号的带宽变为原始基带信号带宽的两倍:模拟基带信号的带宽为W。则调制信号的带宽为2W;(2)在调制信号中没有离散的载波频率分量,因为原始的模拟基带信号不包含离散的DC分量。(3)(4)某个信号的频谱或随机信号的功率谱是基带信号的频谱/功率谱的线性位移。因此,它称为线性调制。解调原理:DSB只能进

通信原理实验报告

通信原理实验报告 实验一抽样定理 实验二 CVSD编译码系统实验 实验一抽样定理 一、实验目的 所谓抽样。就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),即x(t)*s(t)=x(t)s(t)。在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 二、功能模块介绍 1.DDS 信号源:位于实验箱的左侧 (1)它可以提供正弦波、三角波等信号,通过连接P03 测试点至PAM 脉冲调幅模块的32P010 作为脉冲幅度调制器的调制信号x(t)。抽样脉冲信号则是通过P09 测试点连至PAM 脉冲调幅模块。 (2)按下复合式按键旋钮SS01,可切换不同的信号输出状态,例如D04D03D02D01=0010 对应的是输出正弦波,每种LED 状态对应一种信号输出,具体实验板上可见。 (3)旋转复合式按键旋钮SS01,可步进式调节输出信号的频率,顺时针旋转频率每步增加100Hz,逆时针减小100Hz。 (4)调节调幅旋钮W01,可改变P03 输出的各种信号幅度。 2.抽样脉冲形成电路模块 它提供有限高度,不同宽度和频率的抽样脉冲序列,可通过P09 测试点连线送到PAM 脉冲调幅模块32P02,作为脉冲幅度调制器的抽样脉冲s(t)。P09 测试点可用于抽样脉冲的连接和测量。该模块提供的抽样脉冲频率可通过旋转SS01 进行调节,占空比为50%。 3.PAM 脉冲调幅模块 它采用模拟开关CD4066 实现脉冲幅度调制。抽样脉冲序列为高电平时,模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开,无信号输出。因此,本模块实现的是自然抽样。在32TP01 测试点可以测量到已调信号波形。 调制信号和抽样脉冲都需要外接连线输入。已调信号经过PAM 模拟信道(模拟实际信道的惰性)的传输,从32P03 铆孔输出,可能会产生波形失真。PAM 模拟信道电路示意图如下图所示,32W01(R1)电位器可改变模拟信道的传输特性。

通信原理答案第五章

第五章 5-1 已知线性调制信号表示式如下: (1)t t c ωcos cos Ω,(2)t t c ωcos )sin 5.01(Ω+。 式中,Ω=6c ω。试分别画出它们的波形图和频谱图。 1(1)cos cos [cos()cos()] 2[cos cos ]{[()][()][()][()]} 2 1 (2)(10.5sin )cos cos [sin()sin()] 4 [(10.5sin )cos ][()(c c c c c c c c c c c c c c c t t F t t t t t F t t ωωωπ ωδωωδωωδωωδωωωωωωωπδωωδωωΩ=-Ω++Ω∴Ω= --Ω++-Ω+-+Ω+++Ω+Ω=+-Ω++Ω∴+Ω=-++Q Q 解:)]{[()][()] 4 [()[()]]} c c c c j π δωωδωωδωωδωω++-Ω---Ω+++Ω--+Ω 5-2 根据图P5-1所示的调制信号波形,试画出DSB 及AM 信号的波形图,并比较它们分别通过包络检波器后的波形差别。

图P5-1 m(t) t 解: 从波形中可以看出,DSB 信号经过包络检波器后输出波形失真,不能恢复调制信号;而AM 信号经过包络检波器后能正确恢复调制信号。 m(t) t 0 S DSB (t) 0 t S AM (t) t 5-3已知调制信号m (t )=cos(2000πt ),载波为cos104 πt ,进行单边带调制,试确定该单边带信号的表示式,并画出频谱图。 ()sin(2000)sin(4000) 1111 ()()cos ()sin cos(12000)cos(14000) 22221111 ()()cos ()sin cos(8000)cos(6000) 2222 USB c c LSB c c m t t t s t m t t m t t t t s t m t t m t t t t ππωωππωωππ=+=-=+=+=+) ))解:则 f (kHz) S SSB (ω) 上边带 -7 –6 -4 -3 0 3 4 6 7 上边带 下边带 下边带 5-4 将调幅波通过残留边带滤波器产生残留边带信号。若此滤波器的传输函数H( ) 如图P5-2所示(斜线段为直线)。当调制信号为()[100600]m t A sin t sin t ππ=+时,试确定所得残留边带信号的表达式。 14 -14 H ( ) 1 f/kHz

通信原理实验报告一

中央民族大学实验报告 学生姓名:马丽娜学号:0938087 专业班级:09电子班 实验类型:□√验证□综合□设计□创新实验日期:2012年3月21日实验成绩: 指导老师:邹慧兰 一、实验项目名称 模拟锁相环模块 二、实验目的 1、熟悉模拟锁相环的基本工作原理 2、掌握模拟字锁相环的基本参数及设计 三、实验基本原理 模拟锁相环模块在通信原理综合实验系统中可作为一个独立的模块进行测试。在系统256KHz时钟锁在发端的256KHz的时钟上,来获得系统的同步时钟,如HDB3接受的同步时钟以及后续电路同步时钟。 该模块主要由模拟锁相环UP01(MC4066)、数字分频器UP02(74LS161)、D触发器UP04(74LS74)、环路滤波器和运放UP03(TEL2702)及阻容器件构成的输入带通滤波器(中心频率:256KHz)组成。在UP01内部有一个振荡器与一个高速鉴相器组成。

该模拟锁相环的框图见图2.1.1。因来自发端信道的HDB3码为归零码,归零码中含有256KHz时钟分量,经UP03B构成中心频率为256KHz有源由带通滤波器后,滤出256KHz时钟信号,该信号再通过UP03A放大,然后经UP04A和UP04B两个除二分频器(共四分频)变为64KHz信号,进入UP01鉴相器输入A脚;VCO输出的512KHz 输出信号经UP02进行八分频变为64KHz信号,送入UP01的鉴相输入B脚;经UP01内部鉴相器鉴相之后的误差控制信号经环路滤波器送入UP01的压控振荡器输入端;WP01可以改变模拟锁相环的环路参数。正常时,VCO锁定在外来的256KHz频率上。模拟锁相环模块各跳线开关功能如下: 1、跳线开关KP01用于选择UP01的鉴相输出。当KP01设置于1_2时(左端),选择异或门鉴相输出,环路锁定时TPP03、TPP05输出信号将存在一定相差;当KP01设置于2_3时(右端),选择三态门鉴相输出,环路锁定时TPP03、TPP05将不存在相差,调整电位器WP01可以改变模拟锁相环的环路参数。 2、跳线开关KP021是用于选择输入锁相信号,当KP021设置于1_2时(HDB3:左端),输入信号来自HDB3编码模块的HDB3码信号;当KP021设置于2_3时(TEST:右端)选择外部的测试信号(J007输入),此信号用于测量该模拟锁相环模块的性能。 在该模块中,各测试点的定义如下: 1、TPP01:256KHz带通滤波器输出 2、TPP02:隔离放大器输出 3、TPP03:鉴相器A输入信号(64KHz) 4、TPP04:VCO输出信号(512KHz) 5、TPP05:鉴相器B输入信号(64KHz) 6、TPP06:环路滤波器输出 7、TPP07:锁定指示检测(锁定时为高电平) 以上测试点通过JP01测试头引出,JPO1的排列如下图所示

通信原理实验指导书161702

通 信 原 理 实 验 指 导 书 (2017版) 编者 张水英 汪泓 浙 江 理 工 大 学 2017年3月

目 录 实验一 常规双边带幅度调制系统设计及性能分析 (1) 实验二 模拟信号数字化传输系统的建模与分析 (6) 实验三 BPSK调制、解调实验 (9)

实验一 常规双边带幅度调制系统设计及性能分析 一、实验目的 1、熟悉常规双边带幅度调制系统各模块的设计; 2、研究常规双边带幅度调制系统的信号波形、信号频谱、信号带宽、输入信噪比、输出信噪比及两者之间的关系; 3、掌握 MATLAB 和SIMULINK 开发平台的使用方法; 4、熟悉 Matlab 与Simulink 的交互使用。 二、实验仪器 带有MATLAB 和SIMULINK 开发平台的微机。 三、实验原理 AM 信号产生的原理图如图1所示。AM 信号调制器由加法器、乘法器和带通滤波器(BPF )组成。图中带通滤波器的作用是让处在该频带范围内的调幅信号顺利通过,同时抑制带外噪声和各次谐波分量进入下级系统。 图1 AM 信号的产生 3.1 AM 信号时域表达式及时域波形图 AM 信号时域表达式为 0()[()]cos AM c s t A m t t ω=+ 式中0A 为外加的直流分量;为输入调制信号,它的最高频率为 ()m t

m f ,无直流分量;c ω为载波的频率。为了实现线性调幅,必须要求 0max ()m t A ≤ 否则将会出现过调幅现象,在接收端采用包络检波法解调时,会产生严重的失真。如调制信号为单频信号时,常定义0(/)AM m A A β1=≤为调幅指数。 AM 信号的波形如图2所示,图中认为调制信号是单频正弦信号,可以清楚地看出AM 信号的包络完全反应了调制信号的变化规律。 t t t t ()m t 0(A m t +cos c t ω s ()AM t 图2 AM 信号波形 3.2 AM 信号频域表达式及频域波形图 对AM 信号进行傅里叶变换,就可以得到AM 信号的频域表达式 ()ω如下: AM S 0()[(AM ()] 1 [)()][()()]2 AM c c c c S s t M M A ωωωωωπδωωδωω==++?+++?F 式中,()M ω是调制信号的频谱。 ()m t

通信原理课后答案2

5-10 某线性调制系统的输出信噪比为20dB,输出噪声功率为 ,由发射机输出端到解调器输入端之间总的传输损耗为100dB,9 10W 试求: (1)DSB/SC时的发射机输出功率; (2)SSB/SC时的发射机输出功率。 ,解调器输入信号功率为Si,解:设发射机输出功率为S T /Si=100(dB). 则传输损耗K= S T (1)DSB/SC的制度增益G=2,解调器输入信噪比 相干解调时:Ni=4No 因此,解调器输入端的信号功率: 发射机输出功率: (2)SSB/SC制度增益G=1,则 解调器输入端的信号功率 发射机输出功率:

6-1设二进制符号序列为 1 1 0 0 1 0 0 0 1 1 1 0,试以矩形脉冲为例,分别画出相应的单极性码波形、双极性码波形、单极性归零码波形、双极性归零码波形、二进制差分码波形及八电平码波形。解:各波形如下图所示: 6-8已知信息代码为 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1,求相应的AMI码及HDB3码,并分别画出它们的波形图。 解:

6-11设基带传输系统的发送滤波器、信道及接收滤波器组成总特性为H(ω),若要求以2/Ts波特的速率进行数据传输,试检验图P5-7各种H(ω)是否满足消除抽样点上码间干扰的条件? ω (a) (c) (d) 解:无码间干扰的条件是: ? ? ? ? ? ? ? > ≤ = ?? ? ? ? ? + = ∑ s s i s s eq T T T T i H H π ω π ω π ω ω 2 ) ( (a) ? ? ? ? ? ? ? > = ≤ = s s T B T H π ω π π ω ω 2 1 ) (

相关主题
文本预览
相关文档 最新文档