当前位置:文档之家› 高数第六章总习题答案

高数第六章总习题答案

高数第六章总习题答案
高数第六章总习题答案

复习题A

一 、判断正误: 1、 若c b b a ?=?且≠0b ,则c a =; ( ? ) 解析 c b b a ?-?=)(c a b -?=0时,不能判定=b 0或c a =.例如i a =,j b =,

k c =,有?=?=0a b b c ,但c a ≠.

2、 若c b b a ?=?且≠0b ,则c a =; ( ? ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则

k j i b a =?=?,k j i j c b =+-?=?)]([,c b b a ?=?,但c a ≠.

3 、若0=?c a ,则=0a 或=0c ; ( ? ) 解析 两个相互垂直的非零向量点积也为零. 4、 a b b a ?-=?. ( √ ) 解析 这是叉积运算规律中的反交换律.

二、选择题:

1 、 当a 与b 满足( D )时,有b a b a +=+;

(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)?=a b a b .

解析 只有当a 与b 方向相同时,才有a +b =a +b .

(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.

2、下列平面方程中,方程( C )过y 轴;

(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .

3 、在空间直角坐标系中,方程2

2

21y x z --=所表示的曲面是( B );

(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2

2

21y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.

4、空间曲线???=-+=5

,

222z y x z 在xOy 面上的投影方程为( C );

(A)72

2

=+y x ; (B)???==+5722z y x ; (C) ???==+0

7

22z y x ;(D)???=-+=0222z y x z

解析 曲线???==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为?

??==+07

22z y x .

5 、直线

1

1121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为

π4; (D) 夹角为π

4

-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ?=2-1-1=0,

所以,s ⊥n ,直线与平面平行.

三、填空题:

1、若2=

b a ,π()2

=$a,

b ,则=?b a 2 ,=?b a 0 ;

解 =?b a b a sin()$a,b π2=2,=?b a b a cos()$a,b π2

=0.

2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{6

6

; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0

n =411++=6,

所以,与平面垂直的单位向量为}2,1,1{6

6

3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;

解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)

和(3,0,5)代入方程,有{

20,50,B C D C D -+=+= ? 7,51,

5B D C D ?=-???=-?

得 05157=+--D Dz Dy ,

即 057=-+z y .

4、过原点且垂直于平面022=+-z y 的直线为

z y

x -==2

0; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为

z y

x -==2

0 .

5、曲线?

??=+=1,

222z y x z 在xOy 平面上的投影曲线方程为 ???==+.0,1222z y x

解: 投影柱面为 122

2

=+y x ,故 ?

??==+0,

1222z y x 为空间曲线在xOy 平面上的投影

曲线方程.

四、解答题:

1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ?; (b) ()()-?+2a b a b ; (c)

2

b a -;

解: (a) b a ?=2

11121

-k

j i

1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-?+2a b a b 7}3,1,2{}0,5,1{=-?-=.

(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2

b a -10)19(2

=+=.

2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位

向量.

解:

(1)

}2,6,3{}5

7),2(4,21{21-=-----=P P ;

74926)3(222==++-=

(3)

2

1P P 在

z y x ,,三个坐标轴上的方向余弦分别为

362cos ,cos ,cos 777

αβγ=-==;

(4)k j i k j i 7

2

76737263)(21++-=++-=

=

P P ο

3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.

解: 令{}11

10,2,21

1

1

=?=-=-i j k

c a b

,01?==??

c c c ,

故与a 、b

都垂直的单位向量为0?±=±??

c .

4、向量d ?

垂直于向量]1,3,2[-=a ?

和]3,2,1[-=b ?

,且与]1,1,2[-=c ?

的数量积为6-,

求向量d ?

解: d ?垂直于a ?与b ?

,故d ?平行于b a ???,存在数λ使

()

b a d ????=λ?-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--= 因6-=?

c

d ??,故6)7(1)7()1(72-=-?+-?-+?λλλ, 73-=λ]3,3,3[-=∴d ?

.

5、求满足下列条件的平面方程:

(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为

π

3

. 解 (1)解1: 用三点式.所求平面的方程为02

4100

321120

1210

=---------z y x ,即

01345=+--z y x .

解2:

}1,1,1{-=

}2,1,3{-=,由题设知,所求平面的法向量为

k j i k

j i

n 452

1

311

1

3121--=--=?=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即

01345=+--z y x .

解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.

因为3121,P P P P ⊥⊥n n ,所以{

0,320,

A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求

平面方程为

0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .

(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,

所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为

π1

cos 32=

≠=,所以0≠B )

,令C B C '=,则有0='+z C y ,由题设得

2222221

2)5(10121503cos ++'++?'+?+?=

π

C C , 解得3='C 或1

3

C '=-,于是所求平面方程为03=+z y 或03=-z y .

6、 一平面过直线??

?=+-=++0

4,

05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;

解法1: 直线???=+-=++0

4,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54

4)为平面上的点.

设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,

5,1},2n ={1,0,-1},则直线的方向向量s =1n ?2n =1

01151-k

j i ={-5,2,-5},由于所

求平面经过直线,故平面的法向量与直线的方向向量垂直,即

?n s ={-5,2,-5}?},,{C B A =C B A 525-+-=0,

因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--?C B A =C B A 84--=0,解方程组

{

5250,480,

A B C A B C -+=--= ? 2,5,2

A C

B

C =-?

??=-?? 所求平面方程为 0)4()5

4

(25)0(2=-++-

--z C y C x C ,即012254=+-+z y x . 解法2: 用平面束(略)

7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.

解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =?=---n n ,从而根据点向式方程,所求直线方程为

325431x y z +--==---,即325

431

x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为

32543x y z p p p +--==,即325431

x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ?++?--?-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为

4230

25330

x z x y z -+=??

--+=?.

8、 一直线通过点)1,2,1(A ,且垂直于直线1

1

231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;

解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为

p

z n y m x 1

21-=-=-,联立121

,①,②320,③

x y z m n p x y z m n p ---?

==??==?++=?

由①,令

λ=-=-=-p z n y m x 121,则有??

?

??+=+=+=,

1,2,

1p z n y m x λλλ代入方程②有{

12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为1

1

2211-=--=-z y x .

9、 指出下列方程表示的图形名称:

(a) 142

22=++z y x ;(b) z y x 22

2

=+;(c) 22y x z +=

(d) 02

2

=-y x ;(e) 12

2=-y x ; (f) ?

??=+=22

2z y x z .

解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.

(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.

10、求曲面2

2

z x y =+与2

2

2()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程

122=+y x ,

所以柱面与xOy 平面的交线???==+'01:22z y x C 所围成的区域221+≤x y 即为曲面

22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).

复习题B

1、设4=a ,3=b ,?()6

π

=a,b

,求以2+a b 和3-a b 为邻边的平行四边形的面积.

解:(2)(3)326A =+?-=?-?+?-?a b a b a a a b b a b b

325=-?-?=-?a b a b a b ?15sin()543302

=?=???=a b a,b

.

2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求?()a,b

. 解: 由已知可得:(3)(75)0+?-=a b a b ,(4)(72)0-?-=a b a b 即 2

2

715160-+?=a b a b ,2

2

78300+-?=a b a b .

这可看成是含三个变量a 、b 及?a b 的方程组,可将a 、b 都用?a b 表示,即

==a b ?1cos()22??===?a b a b a,b

a b a b ,?()3

π=a,b .

3、求与}3,2,1{-=a 共线,且28=?b a 的向量b .

解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=?b a ,得

28}3,2,{}3,2,1{=-?-λλλ,

即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .

4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .

解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=?=?b c a c 及6=c ,所以有

①20

②③

6x z ?-=?

= 由①得2x z = ④,由②得x y -= ⑤,将④和⑤代入③得62)(2

2

2=??

? ??+-+x x x ,解

得2,4,4±==±=z y x μ,于是 }2,4,4{-=c 或}2,4,4{--=c .

解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ?.设λ是不为零的常数,则

k j i k j i b a c λλλλλ+-=-=?=220

1

1201)(,

因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或

{4,4,2}=--c .

解法3: 先求出与向量b a ?方向一致的单位向量,然后乘以6±.

k j i k

j i b a +-=-=?220

11201,31)2(2222=+-+=?b a ,

故与b a ?方向一致的单位向量为}1,2,2{31-.于是}1,2,2{3

6-±=c ,即}2,4,4{-=c 或

}2,4,4{--=c .

5、求曲线222

x y R x y z ?+=?++=?的参数式方程.

解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.

6、

求曲线22

:2z L x y x

??=?+=??xOy 面上及在zOx 面上的投影曲线的方程.

解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面

的投影柱面的方程2

2

2x y x +=则L 在xOy 面上的投影曲线的方程为2220x y x

z ?+=?=?

同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱

面的方程z =L 在zOx

面上的投影曲线方程为0

z y ?=?

?=??.

7、已知平面π过点0(1,0,1)M -和直线1211

:

201

x y z L ---==

,求平面π的方程.

解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,

(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =u u u u u u r 在π上,所以0MM ⊥u u u u u r

n ,故可取

10MM =?u u u u u r

n s (1,3,2)=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ?-+?--?+=,即3230x y z +--=为所求平面方程.

解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,

π过点0(1,0,1)M -,故有

0A C D -+=, (1)

在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得

20A B C D +++=, (2)

420A B C D +++=, (3)

由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.

解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M u u u u u u r 、01M M u u u u u u r

和1s 共面,其中

()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ??=u u u u u u r u u u u u u r

s , 故平面π的方程为101

2110110201

x y z --+--+=,即3230x y z +--=为所求平面方程.

8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成

4

π

角,且垂直于平面1:π730x z ++=.

解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法

向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||

π

?=?n n n n ,即

=

(1) 由10?=n n ,得70A C +=,将7C A =-代入(1

=

,解得20,B A =或100

49

B A =-

,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.

9、求过直线1L :0

230x y z x y z ++=??-+=?

且平行于直线2L :23x y z ==的平面π的方程.

解法1: 直线1L 的方向向量为1=s 111(4,1,3)213

==---i j k

,直线2L 的对称式方程为

632

x y z

==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取

12=?n s s ,则413(7,26,18)632

=--=-i j k

n ,又因为1L 过原点,且1L 在平面π上,从而π也

过原点,故所求平面π的方程为726180x y z -+=.

解法

2: 设所求平面π

为 (23)0x y z x y z λ+++-+=,即

(12)(1)(13)0x y z λλλ++-++=,

其法向量为(12,1,13)λλλ=+-+n ,由题意知

2

⊥n s ,故

26(12)3(1)2(13)0λλλ?=++-++=n s , 得11

15

λ=-

,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.

10、求过直线L :???=+-+=+-+0

185017228z y x z y x 且与球面12

22=++z y x 相切的平面方程

解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即

1)2()828()51(172

22=--+++++λλλλ

解得:89

250

-

=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x

11、求直线L :

1

1

111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.

解: 将直线L :

11

111--==-z y x 化为一般方程 ???=-+=--0

101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程??

?=-+-=+--0

120

123z y x z y x 把此方程化为:

?

??--==)1(221y z y

x ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:

2

2

2

2

1(2)(1)2x z y y ??+=+-- ???

即 01241742

22=-++-y z y x .

12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线

1:

2x L =11

11

y z -+=-相交的直线L 的方程. 解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量}

,,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及共面,因此

1()2110312

m n p

AB ??=-=-u u u r s s ,即0=-+-p n m ②,

将①和②联立解得p n p m 4,5-=-=,由此得

1

45p n m =-=-,于是所求直线方程为1

1

453-=-=-+z y x . 解法2: 用一般式,即先求出过L 的两个平面,将其方程联立便得L 的方程. 直线L 在过点A 且平行于平面1π的平面2π上,平面2π的方程为

0)1()0(4)3(3=----+z y x ,

即01043=+--z y x ,直线L 又在过点A 及直线1L 的平面3π上,平面3π的法向量可取为

1211312

AB ?=-=-+--u u u r i j k

s i j k ,故平面3π的方程为0)1()0()3(=---++-z y x ,

即 02=++-z y x ,于是所求直线方程为{34100,20.

x y z x y z --+=-++=

13、求直线1l :??

?=+=-+3

21

z x z y x 与直线2l :1-==z y x 的公垂线的方程

解: 2L 的方向向量]1,1,1[2=l 而1L 的方向向量k j i k j i l ?

??????231

021111--=-=于是公

垂线l 的方向向量k j i k

j i l l l ?

????????431

1123121+--=--=?=,过1l 与l 的平面π的法向量

k j i k

j i l l n ?????????

62184

3

12311---=----=?=.

也可取法向量]3,1,9[=n ?

,以1=z 代入1L 方程,可得1l 上的点]1,1,1(1M ,于是平面π方程

0)1(3)1()1(9=-+-+-z y x ,即01339=-++z y x

再求2L 与π的交点P ,2L 的参数方程为t x =,t y =,t z +=1,代入上述平面方程,得: 013)1(39=-+++t t t ,1310=t ,再代回2l 的参数方程得1310=x ,1310=y ,

1323

=

z ,于是

P

(

)13

231310

13

10

,

,

,兼顾公垂线l 的方向向量]4,3,1[--=l ?

,于是可产生公垂

线l 的方程为4

3113

2313101310-=--=--z y x .

14、求点)1,`

1,2(0-M 到直线l :???=+-+=-+-0

320

12z y x z y x 的距离d .

解法1:直线l 的方向向量为121[0,2,4]121=-=-i j k

s ,在l 上任取一点)2,0,1(-M ,则

0(3,1,1)M M ??→

=-,0M M ??→

?s 311(2,12,6)024

=-=-i j k

,故0?=M M s u u u u u u r

,又=s ,

d 0?=

=

M M s

s

u u u u u u r

解法2:将直线l 的方程由一般式化为标准式得

4

2

201-==+z y x ,故过点0M 与直线l

垂直的平面π的方程为0)1(4)1(2=-++z y , 即 012=-+z y ,直线l 的参数式方程为:1-=x ,t y =,22+=t z ,将上式代入平面π的方程,得:01)22(2=-++t t ,解得:53-=t ,所以直线l 的交点为()5453,,1--N 2,于是点0M 到直线l 的距离为

0d M N ??→

==

15.求两直线1l :??

?=--+=--+02201z y x z y x 与2l :?

??=+++=--+04220

22z y x z y x 之间的最短距离

解法1:过1l 作平面20//l π,过1l 的平面方程为0)22(1=---+--+z y x z y x λ,即

0)21()1()1()21(=--+--++++λλλλz y x ,

要此平面平行于2l ,则此法向量0n 须垂直于2s ,即020?=n s ,而2(6,3,0)=-s ,则

0)1(3)21(6=+-+λλ,解得:31-=λ,从而平面0π的方程为0122=--+z y x ,容

易得到直线2l 上一点)2,0,0(2-M ,点2M 到平面

0π的距离为1h ==即为1

l 与2l 之间的距离.

解法2:容易得到直线1l 上的一点)0,0,1(1M ,直线2l 上的一点)2,0,0(2-M ,于是12(1,0,2)M M ??→

=--,可求

得直线1l 与直线2l 的方向向量分别为1(0,1,1)=--s ,2(6,3,0)=-s ,两直线公垂线的方向向

量为(1,2,2)=-s ,直线1l 与2l 之间的距离为h 1212Pr 1??→

??→

?===s M M s

j M M s

.

(完整word版)大一高数练习题

1.填空题 1、当0→x 时,x cos 1-与2x 相比较是 同阶 无穷小。 2、=→2 203sin lim x x x 1/3 3、曲线(1cos ),sin x t t y t =-=在t π=处的切线斜率为 -1/2 4、当k 满足条件__x>2_________时,积分?+∞-1 1k x dx 收敛 5、曲线||x y =的极值点是 x=0 6 、设函数y =则dy = 2xdx 7、若()lim(1)x x t f t x →∞ =+,则=')(t f e t 8、?-=22 35sin cos π πxdx x 0 9、若?=t xdx t f 12ln )(,则=')(t f ln 2 t 10、微分方程0cos 2=-y dx x dy 的通解为siny=x 2__________ 1、当0→x 时,x cos 1-与22x 相比较是 无穷小. 2、设函数?????=≠=0001sin )(3x x x x x f 当当,则=')0(f . 3、设)4)(2)(3)(5()(--++=x x x x x f ,则方程0)(='x f 有 个实根. 4、当k 满足条件___________时,积分1 2k dx x +∞+?收敛. 5、设函数21x y -=,则dy = . 6、函数)2(-=x x y 的极值点是 . 7、=≠∞→)0(sin lim a x a x x . 8、若?=t x dx e t f 02 )(,则=')(t f .

9、?-=π πxdx x 32sin . 10、微分方程 0cos 2=-x dy y dx 的通解为___________. 一、 单项选择题(每小题2分,共10分) 1、函数x x y -=3ln 的定义域为(B ) A ),0(+∞ B ]3,(-∞ C )3,0( D ]3,0( 2、函数()f x 在0x 处)0()0(00+=-x f x f 是()f x 在0x 处连续的( B ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 无关条件 3、函数93)(+=x x f 在0=x 处(C ) A 不连续 ; B 可导; C 连续但不可导; D 无定义 4、下列式子中,正确的是(B ) A. ()()f x dx f x '=? B. 22()()d f x dx f x dx =? C. ()()f x dx f x =? D.?=)()(x f dx x f d 5、设()x f x e -=,则(ln )f x dx x =? _C______. A . 1C x + B. ln x C + C. 1C x -+ D. ln x C -+ 二、单项选择题(每小题2分,共10分) 1.函数241)(x x x f -+=的定义域为( C ). A .]2,2[-; B. )2,2(-; C. ]2,0()0,2[ -; D. ),2[+∞. 2、若)(x f 在0x 的邻域内有定义,且)0()0(00+=-x f x f ,则(B ). A )(x f 在0x 处有极限,但不连续; B )(x f 在0x 处有极限,但不一定连续;

2019年大一高数试题及答案.doc

x 1 ②1 - - ④x 大一高数试题及答案 、填空题(每小题1分,共10分) ----- 2 1 1?函数 v =arcsi nJ 1 — x + _______ 的定义域为 Jl —x 2 2 2 ?函数 y = x ? e 上点(0,1 )处的切线方程是 ________________ 4 ?设曲线过(0,1),且其上任意点( x , y )的切线斜率为2x ,则该曲线的方程是 3 .设f (X )在X 。可导, 且f (x ) = A ,则怛。 f(X o 2h)- f(X o - 3h) h 5. x ”dx 6. lim x sin 1 X )二 x 设 f(x,y)=sin(xy) ,则 fx(x,y)= 9.微分方程 3 dx 3 Jh 2的阶数为 dx OO 10 .设级数 n=1 OO 刀 a n 发散,则级数刀 n=1000 二、单项选择题。 (1?10每小题1分,1 1?2 0每小题2分,共3 0分) 1.设函数 1 f (x) , g(x)二 1 -x 则f [g(x)]= ()

① tf ( x, y ) ② t 2 f (x, y ) 2. x sin 丄 1 是() x ① 无穷大量 ② 无穷小量 ③ 有界变量 ④ 无界变量 3 .下列说法正确的是 ① F (X) +G (X)为常数 ② F (X) -G (X)为常数 ③ F (X) -G (X) =0 ④ d ! F (x)dx d I G ( x ) dx 1 dx dx 6. 1 -1 x |dx =( ) i ① 0 ②i ③2 ④3 7 .方程2x + 3y =1在空间表示的图形是 () ① 平行于xoy 面的平面 ② 平行于oz 轴的平面 ③ 过oz 轴的平面 ④ 直线 ① 若f ( X )在X = Xo 连续, 则f( X )在X = Xo 可导 ② 若f ( X )在X = Xo 不可导,则f( ③ 若f ( X )在X = Xo 不可微,则f( ④ 若f ( X )在X = Xo 不连续,则f( X )在X = Xo 不连续 X )在X = Xo 极限不存在 X )在X = Xo 不可导 4 .若在区间(a,b )内恒有 f ' ( X ) b)内曲线弧『=f(x )为 () 0 , f " ( X ) 0,则在(a. ① 上升的凸弧 ② 下降的凸弧 ③ 上升的凹弧 ④ 下降的凹弧 '.设 F '(x) G '( x),则() 8.设 f(x,y)= x 3 y 3 x 2 y t a n ,则 f(tx,ty)=

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

大一高等数学复习题含答案

复 习 题 一、 单项选择题: 1、5 lg 1 )(-= x x f 的定义域是( D ) A 、()),5(5,+∞∞-Y B 、()),6(6,+∞∞-Y C 、()),4(4,+∞∞-Y D 、())5,4(4,Y ∞-Y ()),6(6,5+∞Y 2、如果函数f(x)的定义域为[1,2],则函数f(x)+f(x 2 )的定义域是( B ) A 、[1,2] B 、[1,2] C 、]2,2[- D 、]2,1[]1,2[Y -- 3、函数)1lg()1lg(22x x x x y -++++=( D ) A 、是奇函数,非偶函数 B 、是偶函数,非奇函数 C 、既非奇函数,又非偶函数 D 、既是奇函数,又是偶函数 解:定义域为R ,且原式=lg(x 2+1-x 2 )=lg1=0 4、函数)10(1)(2≤≤--=x x x f 的反函数=-)(1 x f ( C ) A 、21x - B 、21x -- C 、)01(12≤≤--x x D 、)01(12≤≤---x x 5、下列数列收敛的是( C ) A 、1)1()(1 +-=+n n n f n B 、?????-+=为偶数为奇数n n n n n f ,11,11 )( C 、?????+=为偶数为奇数n n n n n f ,11,1 )( D 、???????-+=为偶数为奇数n n n f n n n n ,2 21,221)( 解:选项A 、B 、D 中的数列奇数项趋向于1,偶数项趋向于-1,选项C 的数列极限为0 6、设1 111.0个n n y Λ=,则当∞→n 时,该数列( C ) A 、收敛于0.1 B 、收敛于0.2 C 、收敛于 9 1 D 、发散 解:)10 11(91101101101111.02n n n y -=+++= =ΛΛ 7、“f(x)在点x=x 0处有定义”是当x →x 0时f(x)有极限的( D ) A 、必要条件 B 、充分条件 C 、充分必要条件 D 、无关条件

大一高数试题及答案.doc

大一高数试题及答案 一、填空题(每小题1分,共10分) 1.函数 2 2 111arcsin x x y -+ -=的定义域为______________________。 2.函数 2e x y += 上点( 0,1 )处的切线方程是______________。 3.设f(X )在0x 可导,且A (x)f'=,则h h x f h x f h ) 3()2(l i m 000--+→ = _____________。 4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是 ____________。 5.=-?dx x x 4 1_____________。 6.=∞→x x x 1 sin lim __________。 7.设f(x,y)=sin(xy),则fx(x,y)=____________。 9.微分方程 22 233)(3dx y d x dx y d +的阶数为____________。 ∞ ∞ 10.设级数 ∑ an 发散,则级数 ∑ an _______________。 n=1 n=1000 二、单项选择题。(1~10每小题1分,11~20每小题2分,共30分) 1.设函数 x x g x x f -== 1)(,1 )(则f[g(x)]= ( ) ①x 1 1- ②x 1 1- ③ x -11 ④x

2.11 sin +x x 是 ( ) ①无穷大量 ②无穷小量 ③有界变量 ④无界变量 3.下列说法正确的是 ( ) ①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有 0)(",0)('>

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

高数第六章总习题答案

复习题A 、判断正误 1、若a b b c 且b 0 ,则a c ; ( ) 解析 a b b c = b (a c) =0 时, 不能判定b 0或a c . 例如a i , b j , k ,有 a b b c 0 , 但a c . c M * 2、 右a b b c 且 b 0 ,则 a c ; ( ) 解析 此结论不一定成立.例如 a i ,b j , c (i j), 则 b i j k ,b c j [ (i j)] k , a b b c , 但a c . 3、若 a c 0 ,则a 0或c 0 ; ( ) 两个相互垂直的非零向量点积也为零. 解析 二、选择题: 当a 与b 满足(D )时,有a b 解析只有当a 与b 方向相同时,才有 a + b=a+b . 解析 对于曲面z 1 x 2 2 y 2,垂直于z 轴的平面截曲面是椭圆, 垂直于x 轴或y 轴 的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面. 4、 a 解析 b b a . 这是叉积运算规律中的反交换律. (A) a b ; (B ) a b (为常数); (C) // b ; (D) a||b . (A)中a , b 夹角不为0, (B), (C )中a , b 方向可以相同,也可以相反. 2、下列平面方程中,方程(C ) 过y 轴; (A) x y z 1 ; (B) x (C) x z 0; (D) 解析平面方程Ax By Cz 0若过 y 轴,则B D 0,故选C. 3、在空间直角坐标系中,方程 1 x 2 2y 2所表示的曲面是(B ); (A )椭球面; (B ) 椭圆抛物面; (C) 椭圆柱面; (D ) 单叶双曲面.

大一高等数学试题及答案

期末总复习题 一、填空题 1、已知向量2a i j k =+-r r r r ,2b i j k =-+r r r r ,则a b ?r r = -1 。 2、曲线2x z =绕z 轴旋转所得曲面方程为 z=x 2 + y 2 。 3、级数1113n n n ∞=?? + ???∑的敛散性为 发散 。 4、设L 是上半圆周222a y x =+(0≥y ),则曲线积分221L ds x y +?= a π 5.交换二重积分的积分次序:??--012 1),(y dx y x f dy =dy y x dx ),(f 0x -121?? 6.级数∑∞=+1)1(1 n n n 的和为 1 。 二、选择题 1、平面0)1(3)1(=+++-z y x 和平面02)1()2(=+--+z y x 的关系 ( B ) A 、重合 B 、平行但不重合 C 、一般斜交 D 、垂直 2. 下列曲面中为母线平行于z 轴的柱面的是 ( C ) A 、2221x z += B 、2221y z += C 、2221x y += D 、22221x y z ++= 3. 设)0(4:22>≤+y y x D ,则32222ln(1) 1D x x y dxdy x y ++=++??( A )

A 、2π B 、0 C 、1 D 、4π 4、设)0(4:22>≤+y y x D ,则??=D dxdy ( A ) A 、π16 B 、π4 C 、π8 D 、π2 5、函数22504z x y =--在点(1,-2)处取得最大方向导数的方向是 ( A ) A 、216i j -+ B 、216i j -- C 、216i j + D 、216i j - 6、微分方程222()()0y y y '''+-=的阶数为 ( B ) A 、1 B 、2 C 、4 D 、6 7.下列表达式中,微分方程430y y y ''-+=的通解为 ( D ) A 、3x x y e e C =++ B 、3x x y e Ce =+ C 、3x x y Ce e =+ D 、312x x y C e C e =+ 8.lim 0n n u →∞=为无穷级数1 n n u ∞=∑收敛的 ( B ) A 、充要条件 B 、 必要条件 C 、充分条件 D 、什么也不是 三、已知1=a ?,3=b ?,b a ??⊥,求b a ??+与b a ? ?-的夹角.P7

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 0ln(15)lim .sin 3x x x x →+ 2. (6 分)设2,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 3 1;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分 2212[]121 x y x x '∴=-++ 4分

高等数学练习答案1-10

习题1-10 1. 证明方程x 5-3x =1至少有一个根介于1和2之间. 证明 设f (x )=x 5-3x -1, 则f (x )是闭区间[1, 2]上的连续函数. 因为f (1)=-3, f (2)=25, f (1)f (2)<0, 所以由零点定理, 在(1, 2)内至少有一点ξ (1<ξ<2), 使f (ξ)=0, 即x =ξ 是方程x 5-3x =1的介于1和2之间的根. 因此方程x 5-3x =1至少有一个根介于1和2之间. 2. 证明方程x =a sin x +b , 其中a >0, b >0, 至少有一个正根, 并且它不超过a +b . 证明 设f (x )=a sin x +b -x , 则f (x )是[0, a +b ]上的连续函数. f (0)=b , f (a +b )=a sin (a +b )+b -(a +b )=a [sin(a +b )-1]≤0. 若f (a +b )=0, 则说明x =a +b 就是方程x =a sin x +b 的一个不超过a +b 的根; 若f (a +b )<0, 则f (0)f (a +b )<0, 由零点定理, 至少存在一点ξ∈(0, a +b ), 使f (ξ)=0, 这说明x =ξ 也是方程x =a sin x +b 的一个不超过a +b 的根. 总之, 方程x =a sin x +b 至少有一个正根, 并且它不超过a +b . 3. 设函数f (x )对于闭区间[a , b ]上的任意两点x 、y , 恒有|f (x )-f (y )|≤L |x -y |, 其中L 为正常数, 且f (a )?f (b )<0. 证明: 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 证明 设x 0为(a , b )内任意一点. 因为 0||l i m |)()(|l i m 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(l i m 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学课后习题答案第六章

习题六 1. 指出下列各微分方程的阶数: (1)一阶 (2)二阶 (3)三阶 (4)一阶 2. 指出下列各题中的函数是否为所给微分方程的解: 2(1)2,5xy y y x '==; 解:由2 5y x =得10y x '=代入方程得 22102510x x x x ?=?= 故是方程的解. (2)0,3sin 4cos y y y x x ''+==-; 解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解. 2(3)20,e x y y y y x '''-+== ; 解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++ 代入方程得 2e 0x ≠. 故不是方程的解. 12121212(4)()0,e e .x x y y y y C C λλλλλλ'''-++==+ 解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+ 代入方程得 1212122211221211221212e e ()(e e )(e e )0.x x x x x x C C C C C C λλλλλλλλλλλλλλ+-++++= 故是方程的解. 3. 在下列各题中,验证所给二元方程为所给微分方程的解: 22(1)(2)2,;x y y x y x xy y C '-=--+= 证:方程 22x xy y C -+=两端对x 求导: 220x y xy yy ''--+= 得 22x y y x y -'= - 代入微分方程,等式恒成立.故是微分方程的解. 2(2)()20,ln().xy x y xy yy y y xy '''''-++-== 证:方程ln()y xy =两端对x 求导: 11y y x y '' = + (*) 得 (1)y y x y '= -. (*)式两端对x 再求导得

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

高等数学第六章答案

第六章 定积分的应用 第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16 . (2) 1 (3) 323. (4)32 3 . 2. 求由下列各曲线所围成的图形的面积: (1) 463 π-. (2) 3 ln 22-. (3)1 2e e +-. (4)b a - 3. 94 . 4. (1).1 213 (2).4 5. (1) πa 2. (2) 238 a π. (3)2 18a π. 6. (1)423π? ? (2) 54 π (3)2cos2ρθρθ==及 16 2 π + 7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2 x x y y x =和轴、向所围图形,绕轴及轴。

(2)22y x y 8x,x y ==和绕及轴。 (3)()2 2 x y 516,x +-=绕轴。 (4)xy=1和y=4x 、x=2、y=0,绕。 (5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。 2234824131,;(2),;(3)160;(4);(5)5a .52556 πππππππ() 8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积. 128 7x V π= . y V =645 π 9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332 105 a π 10.(1)证明 由平面图形0≤a ≤x ≤ b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ?=b a dx x xf V )(2π . 证明略。 (2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转 体的体积. 2 2π 11.计算底面是半径为R 的圆, 而垂直于底面上一条固定 直径的所有截面都是等边三角形的立体体积. 3 R . 12.计算曲线3 223 y x =上相应于38x ≤≤的一段弧的弧长。2123 13.计算曲线2 ln(1)y x =-上相应于102x ≤≤ 的一段弧的弧长。1ln 32 - 14.求星型线33 cos sin x a t y a t ?=?=? 的全长。6a

高等数学习题及解答 (1)

普通班高数作业(上) 第一章 函数 1、试判断下列每对函数是否是相同的函数,并说明理由:(第二版P22:4;第三版P8:1)(注:“第二版P22:4”指第二版教材第22页的第4题) (2))sin(arcsin x y =与x y =; (4)x y = 与2x y =; (6))arctan(tan x y =与x y =; (8))(x f y =与)(y f x =。 2、求下列函数的定义域,并用区间表示:(第二版P22:5;第三版P8:2) (2)x x x y -+=2; (3)x y x -+=1ln arcsin 21; (7)x e y x ln 111 -+ =。 3、设?????<-≥-=0 ,10 ,1)(2 2x x x x x f ,求)()(x f x f -+。(第二版P23:10;第三版无) 4、讨论下列函数的单调性(指出其单增区间和单减区间):(第二版P23:11;第 三版P12:1) (2)24x x y -= ; (4)x x y -=。 5、讨论下列函数的奇偶性:(第二版P23:12;第三版P12:2) (2)x x x x f tan 1)(2+-=; (3))1ln()(2x x x f -+=; (6)x x f ln cos )(=; (7)? ??≥+<-=0,10,1)(x x x x x f 。 6、求下列函数的反函数及反函数的定义域:(第二版P23:16;第三版P14:1) (1))0,(),21ln(-∞=-=f D x y ; (6)???≤<--≤<-=21,)2(210, 12)(2 x x x x x f 。 7、(1)已知421)1(x x x x f +=-,求)(x f ; (2)已知2 ln )1(222 -=-x x x f ,且x x f ln )]([=?求)(x ?。(第二版P23:19;第三版P16:3) 8、以下各对函数)(u f 与)(x g u =中,哪些可以复合构成复合函数)]([x g f ?哪些不可复合?为什么?(第二版P24:23;第三版P16:7)

高数第六章答案

习题6-2 1. 求图6-21 中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 6 1]2132[)(1022310 =-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3 32 ]2)3[(1 32=--=?-dx x x A . (4) 解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3 32 |)313()32(3132312=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2 +4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

高等数学(大一)题库

(一)函数、极限、连续 一、选择题: 1、 在区间(-1,0)内,由( )所给出的函数是单调上升的。 (A) ;1+=x y (B);2x x y -= (C)34+-=x y (D)25-=x y 2、 当+∞→x 时,函数f (x )=x sin x 是( ) (A )无穷大量 (B )无穷小量 (C )无界函数 (D )有界函数 3、 当x →1时,31)(,11)(x x x x x f -=+-= ?都是无穷小,则f (x )是)(x ?的( ) (A )高阶无穷小 (B )低阶无穷小 (C )同阶无穷小 (D )等阶无穷小 4、 x =0是函数 1 ()arctan f x x =的( ) (A )可去间断点 (B )跳跃间断点; (C )振荡间断点 (D )无穷间断点 5、 下列的正确结论是( ) (A ))(lim x f x x →若存在,则f (x )有界; (B )若在 0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0 x g x x →),(lim 0 x h x x →都存在, 则),(lim 0 x f x x →也 存在; (C )若f(x)在闭区间[a , b ]上连续,且f (a ), f (b )<0则方程f (x )=0,在(a , b )内有唯一的实根; (D ) 当∞→x 时,x x x x x a sin )(,1) (== β都是无穷小,但()x α与)(x β却不能比. 二、填空题: 1、 若),1(3-=x f y Z 且x Z y ==1 则f (x )的表达式为 ; 2、 已知数列n x n 1014- =的极限是4, 对于,101 1=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ; 3、 3214 lim 1 x x ax x b x →---+=+(b 为有限数) , 则a = , b = ; 4、 设 ,)(a x a x x f --=则x =a 是f (x )的第 类 间断点; 5、 ,0 , ; 0, )(,sin )(?? ?>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,则n = ; 三、 计算题: 1、计算下列各式极限: (1)x x x x sin 2cos 1lim 0-→; (2)x x x x -+→11ln 1lim 0;

相关主题
文本预览
相关文档 最新文档