当前位置:文档之家› 高等数学课后习题答案第六章

高等数学课后习题答案第六章

高等数学课后习题答案第六章
高等数学课后习题答案第六章

习题6-2

1. 求图6-21 中各画斜线部分的面积: (1)

解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为

6

1

]2132[)(1022310=-=-=?x x dx x x A . (2)

解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101

0=-=-=?x x e ex dx e e A ,

解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为

1)1(|ln ln 1

11=--=-==??e e dy y y ydy A e

e e

. (3)

解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3

32

]2)3[(1

32=--=?-dx x x A .

(4)

解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3

32

|)313()32(31323

12=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22

1

x y =与x 2+y 2=8(两部分都要计算);

解:

3

8

8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A

34238cos 16402+=-=?ππ

tdt .

3

4

6)22(122-=-=ππS A .

(2)x

y 1

=与直线y =x 及x =2;

解:

所求的面积为

?-=-=2

12ln 2

3)1(dx x x A .

(3) y =e x , y =e -x 与直线x =1;

解:

所求的面积为

?-+=-=-1021

)(e

e dx e e A x x .

(4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解

所求的面积为

a b e dy e A b

a y b

a y -===?ln ln ln ln

3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

y '=-2 x +4.

过点(0, -3)处的切线的斜率为4, 切线方程为y =4(x -3). 过点(3, 0)处的切线的斜率为-2, 切线方程为y =-2x +6. 两切线的交点为)3 ,2

3

(, 所求的面积为

49]34(62[)]34(34[23

023

2

32=-+--+-+-+---=??dx x x x x x x A .

4. 求抛物线y 2=2px 及其在点),2

(p p

处的法线所围成的图形的面积.

2y ?y '=2p .

在点),2(p p

处, 1),2(=='p p y p y , 法线的斜率k =-1,

法线的方程为)2(p x p y --=-, 即y p

x -=23.

求得法线与抛物线的两个交点为),2(p p 和)3,2

9

(p p -.

法线与抛物线所围成的图形的面积为

2332323

16)612123()223(p y p y y p dy p y y p A p

p p

p =--=--=--?.

5. 求由下列各曲线 所围成的图形的面积;

(1)ρ=2a cos θ ; 解:

所求的面积为

??==-202222

2cos 4)cos 2(21πππθθθθd a d a A =πa 2. (2)x =a cos 3t , y =a sin 3t ; 解

所求的面积为 ?

??===204

220

2330sin cos 34)cos ()sin (44π

πtdt t a t a d t a ydx A a

220620428

3]sin sin [12a tdt tdt a ππ

π

=-=?

?

.

(3)ρ=2a (2+cos θ ) 解

所求的面积为

2202220218)cos cos 44(2)]cos 2(2[2

1a d a d a A πθθθθθπ

π=++=+=??.

6. 求由摆线x =a (t -sin t ), y =a (1-cos t )的一拱(0≤t ≤2π)与横轴 所围成的图形的面积.

解:

所求的面积为 ???-=--==a

a a dt t a dt t a t a ydx A 20222020

)cos 1()cos 1()cos 1(π

π22023)2

cos 1cos 21(a dt t t a a

=++-=?. 7. 求对数螺线ρ=ae θ(-π≤θ≤π)及射线θ=π所围成的图形面积. 解

所求的面积为

)(4

21)(21222

222ππππθππθθθ----===??e e a d e a d ae A .

8. 求下列各曲线所围成图形的公共部分的面积.

(1)ρ=3cos θ 及ρ=1+cos θ 解

曲线ρ=3cos θ 与ρ=1+cos θ 交点的极坐标为)3,23(πA , )3

,23(π-B . 由对称性, 所求的面积为

πθθθθπ

ππ4

5])cos 3(21)cos 1(21[2232302=++=??d d A . (2)θρsin 2=及θρ2cos 2=. 解

曲线θρsin 2=与θρ2cos 2=的交点M 的极坐标为M )6

,22(π. 所求的面积为

2

316]2c o s 21)s i n 2(21[246602-+=+=??πθθθθπππd d A .

9. 求位于曲线y =e x 下方, 该曲线过原点的切线的左方以及x 轴上方之间的图形的面积.

解 设直线y =kx 与曲线y =e x 相切于A (x 0, y 0)点, 则有 ???

??=='==k

e x y e y kx y x x 00)(0000,

求得x 0=1, y 0=e , k =e . 所求面积为

2

1ln 21)ln 1(00020e dy y y y y y e dy y y e e e e

e

=?+-=-??.

10. 求由抛物线y 2=4ax 与过焦点的弦所围成的图形的面积的最小值. 解 设弦的倾角为α. 由图可以看出, 抛物线与过焦点的弦所围成的图形的面积为 10A A A +=. 显然当时, A 1=0; 当2

πα<时, A 1>0.

因此, 抛物线与过焦点的弦所围成的图形的面积的最小值为 203

03

83822a x a dx ax A a a

===?

.

α

=

11. 把抛物线y 2=4ax 及直线x =x 0(x 0>0)所围成的图形绕x 轴旋转, 计算所得旋转体的体积.

解 所得旋转体的体积为

2

0020

222400

x a x a axdx dx y V x

x x ππππ====??.

12. 由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y

轴旋转, 计算所得两个旋转体的体积. 解 绕x 轴旋转所得旋转体的体积为 ππππ7

128712

072

062

02

====??x dx x dx y V x .

绕y 轴旋转所得旋转体的体积为 ??-=-??=8

3

2

8

22

3282dy y dy x V y ππππ

πππ5

6453328035=-=y .

13. 把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.

解 由对称性, 所求旋转体的体积为 dx x a dx y V a

a

??-==0

3

323

20

2)(22ππ

3023

43

23

23

4

2

105

32)33(2a dx x x a x a a a

ππ=-+-=?.

14. 用积分方法证明图中球缺的体积为)3(2H R H V -=π.

证明 ?

?

---==R

H

R R H

R dy y R dy y x V )()(222

ππ

)3()31(232H R H y y R R

H R -=-=-ππ.

15. 求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积:

(1)2x y =, 2y x =, 绕y 轴;

解 ππππ10

3)5121()(1

0521

0221

0=-=-=??y y dy y ydy V .

(2)a

x a y ch =, x =0, x =a , y =0, 绕x 轴; 解 ???===102302202ch ch )(udu a au x dx a

x a dx x y V a a πππ令 10

22310

223)2

1221(4)2(4

u u u

u e u e a du e e a ---+=++=?ππ )2sh 2(4

3

+=

a π. (3)16)5(22=-+y x , 绕x 轴.

解 ??------+=4

4

224

4

2

2)165()165(dx x dx x V ππ

24

21601640π?=-=dx x .

(4)摆线x =a (t -sin t ), y =a (1-cos t )的一拱, y =0, 绕直线y =2a .

解 ??--=π

πππa a dx y a dx a V 202202)2()2( ?----=π

ππ20223)sin ()]cos 1(2[8t t da t a a a

232023237sin )cos 1(8ππππa tdt t a a =+-=?. 16. 求圆盘222a y x ≤+绕x =-b (b >a >0)旋转所成旋转体的体积.

解 ??------+=a

a

a

a dy y a

b dy y a b V 2222

22

)()(ππ

22

2228ππb a dy y a b a

=-=?

.

17. 设有一截锥体, 其高为h , 上、下底均为椭圆, 椭圆的轴长分别为2a 、2b 和2A 、2B , 求这截锥体的体积.

解 建立坐标系如图. 过y 轴上y 点作垂直于

y 轴的平面, 则平面与截锥体的截面为椭圆, 易得其长短半轴分别为

y h a A A --, y h b B B --.

截面的面积为π)()(y h b B B y h a A A --?--.

于是截锥体的体积为

])(2[6

1)()(0bA aB AB ab h dy y h b B B y h a A A V h

+++=--?--=?ππ. 18. 计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积.

解 设过点x 且垂直于x 轴的截面面积为A (x ),

由已知条件知, 它是边长为x R -2的等边三角形的面积, 其值为 )(3)(22x R x A -=, 所以 3223

34)(3R dx x R V R

R

=-=?

-.

19. 证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为

?=b

a dx x xf V )(2π.

证明 如图, 在x 处取一宽为dx 的小曲边梯形, 小曲边梯形绕y

轴旋转所得的旋转体的体积近似为2πx ?f (x )dx , 这就是体积元素, 即 dV =2πx ?f (x )dx ,

于是平面图形绕y 轴旋转所成的旋转体的体积为 ??==b

a

b

a

dx x xf dx x xf V )(2)(2ππ.

20. 利用题19和结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积.

解 200

2)sin cos (2cos 2sin 2πππππ

π

π=+-=-==??x x x x xd xdx x V .

21. 计算曲线y =ln x 上相应于83≤≤x 的一段弧的长度. 解 ??

?

+=+='+=83283

2

83

2

1)1(1)(1dx x

x dx x dx x y s ,

令t x =+21, 即12-=t x , 则 23ln 2111111

1322323

222232

2+=-+=-=-?-=????

dt t dt dt t t dt t t

t t s . 22. 计算曲线)3(

3

x x y -=上相应于

1≤x ≤3的一段弧的长度.

解 x x x y 31-=, x x y 2121-=',

x x y 4121412+-=', )1(2112x x y +='+,

所求弧长为

3432)232(21)1(213131-=+=+=?x x x dx x

x s .

23. 计算半立方抛物线32)1(32-=x y 被抛物线32x y =截得的一段弧

的长度.

解 由?????=-=3)1(3223

2x y x y 得两曲线的交点的坐标为)36 ,2(, )36 ,2(-.

所求弧长为?'+=2

1212dx y s .

因为

2

)1(22-='x y y , y

x y 2

)1(-=', )1(23)1(3

2)1()1(34242

-=--=-=

'x x x y x y . 所以 ]1)25[(98)13(13232)1(23122321

2

1

-=--=-+=??

x d x dx x s . 24. 计算抛物线y 2=2px 从顶点到这曲线上的一点M (x , y )的弧长. 解 ??

?+=+='+=y y y

dy y p p dy p y dy y x s 0

220

202

1)(1)(1

y y p y p y p y p 022222])ln(2

2[1++++=

p

y p y p y p p y 222

2ln

22++++=. 25. 计算星形线t a x 3cos =, t a y 3sin =的全长.

解 用参数方程的弧长公式. dt t y t x s ?'+'=20

22)()(4π

??+-?=20

2222]cos sin 3[)]sin (cos 3[4π

dt t t a t t a

a tdt t 6cos sin 1220

==?π

.

26. 将绕在圆(半径为a )上的细线放开拉直, 使细线与圆周始终相切, 细线端点画出的轨迹叫做圆的渐伸线, 它的方程为 )sin (cos t t t a x +=, )cos (sin t t t a y -=.

计算这曲线上相应于t 从0变到π的一段弧的长度.

解 由参数方程弧长公式

?

?+='+'=π

π0

220

2

2

)sin ()cos ()]([)]([dt t at t at dt t y t x s

202

ππ

a tdt a ==?. 27. 在摆线x =a (t -sin t ), y =a (1-cos t )上求分摆线第一拱成1: 3的点的坐标.

解 设t 从0变化到t 0时摆线第一拱上对应的弧长为s (t 0), 则

?

?

+-='+'=0

220

2

2

0]sin [)]cos 1([)]([)]([)(t t dt t a t a dt t y t x t s

)2

cos 1(42sin 2000

t

a dt t a t -==?.

当t 0=2π时, 得第一拱弧长s (2π)=8a . 为求分摆线第一拱为1: 3的点为A (x , y ), 令

a t

a 2)2

cos 1(40=-,

解得3

20π=t , 因而分点的坐标为:

横坐标a a x )2332()32sin 32(-=-=πππ,

纵坐标a a y 23)32cos 1(=-=π,

故所求分点的坐标为)2

3 ,)2332((a a -π.

28. 求对数螺线θρa e =相应于自θ=0到θ=?的一段弧长. 解 用极坐标的弧长公式. θθθρθρ?

θθ?

d a

e e d s a a ??+='+=0

220

2

2

)()()()(

)1(112

2-+=+=?

θ?

θ

θa a e a

a d e a . 29. 求曲线ρθ=1相应于自43=θ至34=θ的一段弧长.

解 按极坐标公式可得所求的弧长 ?

?

-+='+=344

3222344

32

2

)1()1()()(θθ

θθθρθρd d s

2

3ln 1251134

4322+=+=?θθθd .

30. 求心形线ρ=a (1+cos θ )的全长. 解 用极坐标的弧长公式. θθθθθρθρπ

π

d a a d s ?

?

-++='+=0

2220

22

)sin ()cos 1(2)()(2

a d a 82

cos 40==?π

θθ.

习题6-3

1. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.

解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为

182

16

026

0===?s k ksds W k(牛?厘米).

2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻-马定律知:

ππ80000)8010(102=??==k PV .

设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则

ππ80000)]80)(10[()(2=-?x x P , π-=80800)(x P .

功元素为dx x P dW )()10(2?=π, 所求功为

2ln 8008018000080800)10(40040

2

ππππ

π=-=-??=??

dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是

h

R mgRh

W +=

, 其中g 是地面上的重力加速度, R 是地球的半径;

(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .

证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为

dy y kMm dW 2=, 所求的功为 )

(2

h R R mMh

k dy y kMm W h R R

+?==?

+. (2)5333

2411

1075.910

)6306370(106370106301098.51731067.6?=?+???????=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以

23)(cx t x v ='=, 阻力4

229t kc kv f -=-=. 而32)(c

x t =, 所以 3432342

9)(9)(x kc c

x kc x f -=-=.

功元素dW =-f (x )dx , 所求之功为 37

320

3

4320

3

43

20

7

2799)]([a kc dx x kc

dx x kc dx x f W a a

a

===-=?

??. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少? 解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为

k kxdx W 2

11

01==?,

击第二次作功为

)2(2

12112h h k kxdx W h

+==?+. 因为21W W =, 所以有 )2(21212h h k k +=, 解得12-=h (cm).

6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?

解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为

dx x x dx r x dW 22)

3210(-=?=ππ,

所求功为

?-=15

02)3

210(dx x x W π

?+-=15

032)9

440100(dx x x x π =1875(吨米)=57785.7(kJ).

7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.

解 建立x 轴, 方向向下, 原点在水面. 水压力元素为

xdx dx x dP 221=??=, 闸门上所受的水压力为

2125

225

2===?x xdx P (吨)=205. 8(kN).

8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.

解 建立坐标系如图, 则椭圆的方程为

11)43()43(22

22=+-y x . 压力元素为

dx x x dx x y x dP 22)43

()43(38)(21--?=??=,

所求压力为

??

-??+=--?=222

30

22cos 4

3cos 43)sin 1(4338)43()43(38π

πtdx t t dx x x P ππ

169

cos 49202==?tdx (吨)=17.3(kN).

(提示: 积分中所作的变换为t x sin 4

343=-)

9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力. 解 建立坐标系如图. 直线AB 的方程为

x y 1015-=,

压力元素为

dx x x dx x y x dP )5110()(21-?=??=,

所求压力为

1467)5

110(20

0=-?=?dx x x P (吨)=14388(千牛).

10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力.

解 建立坐标系如图.

腰AC 的方程为x y 32=, 压力元素为

dx x x dx x x dP )3(34322)3(+=???+=,

所求压力为

168)2

331(34)3(346

0236

0=+=+=?x x dx x x P (克)=1.65(牛).

11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力.

解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为 dy y a Gm y a dy m G dF 2

222+=+?

μ, dF 在x 轴方向和y 轴方向上的分力分别为

, dF r

y dF y =.

2202222022)(1)(l

a a l Gm dy y a y a aGm dy y a Gm r a F l l

x +-=++-=+?-=??μμμ, )11()(12

2

02222022l a a Gm dy y a y a Gm dy y a Gm r y F l l

y +-=++=+?=??μμμ. 12. 设有一半径为R 、中心角为 ? 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0. θμc o s 2

???=R

d s

m G d F x θθμ

θθμd R

Gm R Rd Gm cos cos )(2=?=

, θθμ

?

?

d R Gm F x ?-=22

cos

2

sin 2cos 220?

μθθμ?

R Gm d R Gm ==?. dF r a

dF x -

=

高等数学课后习题答案第六章 (1)

习题六 1. 指出下列各微分方程的阶数: (1)一阶 (2)二阶 (3)三阶 (4)一阶 2. 指出下列各题中的函数是否为所给微分方程的解: 2(1)2,5xy y y x '==; 解:由25y x =得10y x '=代入方程得 故是方程的解. (2)0,3sin 4cos y y y x x ''+==-; 解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+ 代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=. 故是方程的解. 2(3)20,e x y y y y x '''-+== ; 解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++ 代入方程得 2e 0x ≠. 故不是方程的解. 解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+ 代入方程得 故是方程的解. 3. 在下列各题中,验证所给二元方程为所给微分方程的解: 证:方程22 x xy y C -+=两端对x 求导: 得 22x y y x y -'= - 代入微分方程,等式恒成立.故是微分方程的解. 证:方程ln()y xy =两端对x 求导: 11y y x y ''= + (*) 得 (1)y y x y '=-. (*)式两端对x 再求导得 将,y y '''代入到微分方程,等式恒成立,故是微分方程的解. 4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线: 解:当0x =时,y = 5.故C =-25 故所求曲线为:22 25y x -= 解: 2212(22)e x y C C C x '=++ 当x =0时,y =0故有1 0C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e x y x =. 5. 求下列各微分方程的通解: (1)ln 0xy y y '-=;

高等数学 课后习题答案第九章

习题九 1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为 πππ ,,343αβγ=== 的方向导数。 解: (1,1,2)(1,1,2) (1,1,2)cos cos cos u u u u y l x z αβγ ????=++???? 22(1,1,2)(1,1,2)(1,1,2)πππ cos cos cos 5.(2)()(3)343xy xz y yz z xy =++=--- 2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解:{4,3,12},13.AB AB == u u u r u u u r AB u u u r 的方向余弦为 4312 cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u yz x u xz y u xy z ?==??==??==? 故4312982105. 13131313u l ?=?+?+?=? 3. 求函数22221x y z a b ??=-+ ??? 在点处沿曲线22 2 21x y a b +=在这点的内法线方向的方向导 数。 解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为 2222220,x y b x y y a b a y ''+==- 所以在点 处切线斜率为 2.b y a a ' ==- 法线斜率为 cos a b ?= . 于是 tan sin ??==

∵ 22 22 ,, z z x y x a y b ?? =-=- ?? ∴ 22 22 z l a b ? ? =--= ?? 4.研究下列函数的极值: (1)z=x3+y3-3(x2+y2); (2)z=e2x(x+y2+2y); (3)z=(6x-x2)(4y-y2); (4)z=(x2+y2) 22 () e x y -+ ; (5)z=xy(a-x-y),a≠0. 解:(1)解方程组 2 2 360 360 x y z x x z y y ?=-=? ? =-=?? 得驻点为(0,0),(0,2),(2,0),(2,2). z xx=6x-6, z xy=0, z yy=6y-6 在点(0,0)处,A=-6,B=0,C=-6,B2-AC=-36<0,且A<0,所以函数有极大值z(0,0)=0. 在点(0,2)处,A=-6,B=0,C=6,B2-AC=36>0,所以(0,2)点不是极值点. 在点(2,0)处,A=6,B=0,C=-6,B2-AC=36>0,所以(2,0)点不是极值点. 在点(2,2)处,A=6,B=0,C=6,B2-AC=-36<0,且A>0,所以函数有极小值z(2,2)=-8. (2)解方程组 22 2 e(2241)0 2e(1)0 x x x y z x y y z y ?=+++=? ? =+= ?? 得驻点为 1 ,1 2 ?? - ? ??. 22 2 2 4e(21) 4e(1) 2e x xx x xy x yy z x y y z y z =+++ =+ = 在点 1 ,1 2 ?? - ? ??处,A=2e,B=0,C=2e,B2-AC=-4e2<0,又A>0,所以函数有极小值 e 1 ,1 2 2 z??=- - ? ??. (3) 解方程组 2 2 (62)(4)0 (6)(42)0 x y z x y y z x x y ?=--=? ? =--=?? 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4). Z xx=-2(4y-y2), Z xy=4(3-x)(2-y) Z yy=-2(6x-x2) 在点(3,2)处,A=-8,B=0,C=-18,B2-AC=-8×18<0,且A<0,所以函数有极大值z(3,2)=36. 在点(0,0)处,A=0,B=24,C=0,B2-AC>0,所以(0,0)点不是极值点. 在点(0,4)处,A=0,B=-24,C=0,B2-AC>0,所以(0,4)不是极值点. 在点(6,0)处,A=0,B=-24,C=0,B2-AC>0,所以(6,0)不是极值点. 在点(6,4)处,A=0,B=24,C=0,B2-AC>0,所以(6,4)不是极值点. (4)解方程组 22 22 ()22 ()22 2e(1)0 2e(1)0 x y x y x x y y x y -+ -+ ?--=? ? --=?? 得驻点P0(0,0),及P(x0,y0),其中x02+y02=1, 在点P0处有z=0,而当(x,y)≠(0,0)时,恒有z>0,故函数z在点P0处取得极小值z=0. 再讨论函数z=u e-u

郑州大学高等数学下课后习题答案解析

习题7.7 3.指出下列方程所表示的曲线. (1)???==++;3, 25222x z y x (2)???==++;1,3694222y z y x (3)???-==+-;3, 254222x z y x (4)???==+-+.4,08422y x z y 【解】 (1)表示平面3=x 上的圆周曲线1622=+z y ; (2)表示平面1=y 上的椭圆19 32322 2=+z x ; (3)表示平面3-=x 上的双曲线14 162 2=-y z ; (4)表示平面4=y 上的抛物线642-=x z . 4.求() () ?????=++=++Γ2, 21, :2 22 2 222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 2224 3R y x = + 所以,Γ在xoy 面上的投影曲线为 ?????==+.0, 4 322 2z R y x (二)(1)、(2)联立消去y 得 R z 2 1 = 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤ ?? ? ??==

(三)(1)、(2)联立消去x 得 R z 21 = 所以,Γ在yoz 面上的投影曲线为 .23.0, 21R y x R z ≤ ????? == 6.求由球面224y x z --= ①和锥面() 223y x z += ②所围成的立体在xoy 面上的投影区域. 【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为 ? ??==+.0, 122z y x 所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 习题7.8 2.设空间曲线C 的向量函数为(){} t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与 20=t 相应的点处的单位切向量. 【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为 (){}2,4,42='r . C 相应20=t 的点处的单位切向量为 (){}.31,32,322,4,4612? ?????±=± =' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学课后习题与解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

高数第六章总习题答案

复习题A 、判断正误 1、若a b b c 且b 0 ,则a c ; ( ) 解析 a b b c = b (a c) =0 时, 不能判定b 0或a c . 例如a i , b j , k ,有 a b b c 0 , 但a c . c M * 2、 右a b b c 且 b 0 ,则 a c ; ( ) 解析 此结论不一定成立.例如 a i ,b j , c (i j), 则 b i j k ,b c j [ (i j)] k , a b b c , 但a c . 3、若 a c 0 ,则a 0或c 0 ; ( ) 两个相互垂直的非零向量点积也为零. 解析 二、选择题: 当a 与b 满足(D )时,有a b 解析只有当a 与b 方向相同时,才有 a + b=a+b . 解析 对于曲面z 1 x 2 2 y 2,垂直于z 轴的平面截曲面是椭圆, 垂直于x 轴或y 轴 的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面. 4、 a 解析 b b a . 这是叉积运算规律中的反交换律. (A) a b ; (B ) a b (为常数); (C) // b ; (D) a||b . (A)中a , b 夹角不为0, (B), (C )中a , b 方向可以相同,也可以相反. 2、下列平面方程中,方程(C ) 过y 轴; (A) x y z 1 ; (B) x (C) x z 0; (D) 解析平面方程Ax By Cz 0若过 y 轴,则B D 0,故选C. 3、在空间直角坐标系中,方程 1 x 2 2y 2所表示的曲面是(B ); (A )椭球面; (B ) 椭圆抛物面; (C) 椭圆柱面; (D ) 单叶双曲面.

高等数学练习题库及答案

高等数学练习题库及答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《高等数学》练习测试题库及答案 一.选择题 1.函数y= 1 1 2 +x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2 x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 2 3.下列数列为单调递增数列的有( ) A . ,,, B . 23 ,32,45,54 C .{f(n)},其中f(n)=?????-+为偶数,为奇数n n n n n n 1,1 D. {n n 21 2+} 4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散 D .两收敛数列之和必收敛 6.=--→1 ) 1sin(lim 21x x x ( ) .0 C 2 7.设=+∞→x x x k )1(lim e 6 则k=( ) .2 C 6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( ) 2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )

A.必要条件 B.充分条件 C.充分必要条件 D.无关条件 10、当|x|<1时,y= () A、是连续的 B、无界函数 C、有最大值与最小值 D、无最小值 11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为() A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为() A、 xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x 0连续,g(x)在点x 不连续,则下列结论成立是() A、f(x)+g(x)在点x 必不连续 B、f(x)×g(x)在点x 必不连续须有 C、复合函数f[g(x)]在点x 必不连续 D、在点x0必不连续 f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设 满足() A、a>0,b>0 B、a>0,b<0 C、a<0,b>0 D、a<0,b<0 15、若函数f(x)在点x 0连续,则下列复合函数在x 也连续的有() A、 B、

高数课后习题及答案 第二章 2.3

2.2)1 ()3,0 x f x x ==; 解: 11 lim 11 lim lim ()lim 3330 lim ()lim 333 x x x x x x x x x x f x f x - →--+ →++-∞ →→+∞ →→========+∞ 因为0 lim ()lim ()x x f x f x - + →→≠,所以3 lim ()x f x →-不存在。 3)2 11(),02x f x x - ?? == ? ?? ; 解: 2 10000 11lim ()lim ()lim ()lim 22x x x x x f x f x f x -+- -∞ →→→→?? ??=====+∞ ? ??? ?? 所以3 lim ()x f x →-不存在。 4)3,3 9)(2 -=+-= x x x x f ; 解:63 ) 3)(3(lim )(lim )(lim 3 3 3 -=+-+==+ + - -→-→-→x x x x f x f x x x 故极限6)(lim 3 -=-→x f x 2 2 2 2 2 5).lim ()224,lim ()3215, lim ()lim (),lim ()x x x x x f x f x f x f x f x -+-+→→→→→=?==?-=≠解:因为所以不存在。 ()0 6.lim ()lim 21,lim ()lim cos 12,lim ()lim (),lim ()x x x x x x x x f x f x x f x f x f x --++-+→→→→→→→===+=≠)解:因为所以不存在。 7)1()arctan ,0f x x x ==;

高数第六章总习题答案教学提纲

复习题A 一 、判断正误: 1、 若c b b a ?=?且≠0b ,则c a =; ( ? ) 解析 c b b a ?-?=)(c a b -?=0时,不能判定=b 0或c a =.例如i a =,j b =, k c =,有?=?=0a b b c ,但c a ≠. 2、 若c b b a ?=?且≠0b ,则c a =; ( ? ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则 k j i b a =?=?,k j i j c b =+-?=?)]([,c b b a ?=?,但c a ≠. 3 、若0=?c a ,则=0a 或=0c ; ( ? ) 解析 两个相互垂直的非零向量点积也为零. 4、 a b b a ?-=?. ( √ ) 解析 这是叉积运算规律中的反交换律. 二、选择题: 1 、 当a 与b 满足( D )时,有b a b a +=+; (A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)?=a b a b . 解析 只有当a 与b 方向相同时,才有a +b =a +b . (A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反. 2、下列平面方程中,方程( C )过y 轴; (A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C . 3 、在空间直角坐标系中,方程2 2 21y x z --=所表示的曲面是( B ); (A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2 2 21y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.

高等数学习题集及答案

第一章 函数 一、选择题 1. 下列函数中,【 】不是奇函数 A. x x y +=tan B. y x = C. )1()1(-?+=x x y D. x x y 2sin 2 ?= 2. 下列各组中,函数)(x f 与)(x g 一样的是【 】 A. 3 3)(,)(x x g x x f = = B.x x x g x f 22tan sec )(,1)(-== C. 1 1 )(,1)(2+-=-=x x x g x x f D. 2ln )(,ln 2)(x x g x x f == 3. 下列函数中,在定义域内是单调增加、有界的函数是【 】 A. +arctan y x x = B. cos y x = C. arcsin y x = D. sin y x x =? 4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 5. 函数arctan y x =的定义域是【 】 A. (0,)π B. (,)22ππ - C. [,]22ππ - D. (,+)-∞∞ 6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 9. 下列各组函数中,【 】是相同的函数 A. 2()ln f x x =和 ()2ln g x x = B. ()f x x =和()g x = C. ()f x x =和()2g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】 A. ()cos f x x = B. ()arccos f x x = C. ()tan f x x = D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】 A. (,)22 ππ - B. (0,)π C. (,)-∞+∞ D. [1,1]- 12. 下列函数是奇函数的是【 】

(完整版)高等数学试题及答案

《高等数学》试题30 考试日期:2004年7月14日 星期三 考试时间:120 分钟 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高数第六章答案

习题6-2 1. 求图6-21 中各画斜线部分的面积: (1) 解 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 6 1]2132[)(1022310 =-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0, 1]. 所求的面积为 1|)()(101 0=-=-=?x x e ex dx e e A , 解法二 画斜线部分在y 轴上的投影区间为[1, e ]. 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e . (3) 解 画斜线部分在x 轴上的投影区间为[-3, 1]. 所求的面积为

3 32 ]2)3[(1 32=--=?-dx x x A . (4) 解 画斜线部分在x 轴上的投影区间为[-1, 3]. 所求的面积为 3 32 |)313()32(3132312=-+=-+=--?x x x dx x x A . 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2;

解: 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2 +4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积. 解:

高等数学课后习题答案第六章

习题62 1 求图621 中各画斜线部分的面积 (1) 解 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为 6 1 ]2132[)(102231 0=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为 1 |)()(101 0=-=-=?x x e ex dx e e A 解法二 画斜线部分在y 轴上的投影区间为[1 e ] 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e (3) 解 画斜线部分在x 轴上的投影区间为[3 1] 所求的面积为 3 32]2)3[(1 32= --=?-dx x x A (4) 解 画斜线部分在x 轴上的投影区间为[ 1 3] 所求的面积为 3 32 |)313()32(3132312=-+=-+=--?x x x dx x x A 2. 求由下列各曲线所围成的图形的面积 (1) 22 1 x y =与x 2y 28(两部分都要计算) 解 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A

34 238cos 16402+=-=?ππ tdt 3 4 6)22(122- =-=ππS A (2)x y 1 =与直线y x 及x 2 解 所求的面积为 ?-=-= 2 12ln 2 3)1(dx x x A (3) y e x y e x 与直线x 1 解 所求的面积为 ?-+=-=-102 1 )(e e dx e e A x x (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3 求抛物线y x 24x 3及其在点(0 3)和(3 0)处的切线所围成的图形的面积 解 y 2 x 4 过点(0, 3)处的切线的斜率为4 切线方程为y 4(x 3) 过点(3, 0)处的切线的斜率为2 切线方程为y 2x 6

高等数学课后习题答案第六章

习题6-2 1 求图6-21 中各画斜线部分的面积 (1) 解 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为 6 1 ]2132[)(1022310=-=-=?x x dx x x A . (2) 解法一 画斜线部分在x 轴上的投影区间为[0 1] 所求的面积为 1 |)()(101 0=-=-=?x x e ex dx e e A 解法二 画斜线部分在y 轴上的投影区间为[1 e ] 所求的面积为 1)1(|ln ln 1 11=--=-==??e e dy y y ydy A e e e

(3) 解 画斜线部分在x 轴上的投影区间为[-3 1] 所求的面积为 3 32 ]2)3[(1 32= --=?-dx x x A (4) 解 画斜线部分在x 轴上的投影区间为[-1 3] 所求的面积为

3 32 |)313()32(31323 12=-+=-+=--?x x x dx x x A 2. 求由下列各曲线所围成的图形的面积: (1) 22 1 x y =与x 2+y 2=8(两部分都要计算); 解: 3 8 8282)218(220220*********--=--=--=????dx x dx x dx x dx x x A 34238cos 16402+=-=?ππ tdt . 3 4 6)22(122-=-=ππS A . (2)x y 1 =与直线y =x 及x =2; 解: 所求的面积为

?-=-=2 12ln 2 3)1(dx x x A . (3) y =e x , y =e -x 与直线x =1; 解: 所求的面积为 ?-+=-=-1 021 )(e e dx e e A x x . (4)y =ln x , y 轴与直线y =ln a , y =ln b (b >a >0). 解 所求的面积为 a b e dy e A b a y b a y -===?ln ln ln ln 3. 求抛物线y =-x 2+4x -3及其在点(0, -3)和(3, 0)处的切线所围成的图形的面积.

高等数学典型习题及参考答案

第八章典型习题 一、 填空题、选择题 1、点)3,1,4(M -到y 轴的距离就是 2、平行于向量}1,2,1{a -=? 的单位向量为 3、().0431,2,0垂直的直线为 且与平面过点=--+-z y x 4、.xoz y z y x :面上的投影柱面方程是在曲线?? ?==++Γ2 10222 5、()==-=+=+=-δ λ δλ则平行与设直线,z y x :l z y x : l 1111212121 ()23A ()12B ()32C ()21 D 6、已知k 2j i 2a ????+-=,k 5j 4i 3b ? ???-+=,则与b a 3??-平行的单位向量为 ( ) (A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-± (D )}11,7,3{179 1-± 7、曲线???==++2 z 9 z y x 222在xoy 平面上投影曲线的方程为( ) (A )???==+2z 5y x 22 (B )???==++0z 9z y x 222(C )???==+0 z 5y x 22 (D )5y x 22=+ 8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9 、 设 空 间 三 直 线 的 方 程 分 别 为 251214: 1+=+=+z y x L ,67313:2+=+=z y x L ,4 1312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L 10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面 11、方程05 z 3y 3x 2 22=-+所表示的曲面就是( ) (A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面 二、解答题

同济版高等数学课后习题解析

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ΛΛ2211lim (1,1<x ,)(211n n n x a x x += + 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+= +221)(211(数列有下界) 又02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1) (数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞ →lim ,对)(211n n n x a x x += +两边取极限,得)(21b a b b +=,解得a b =(负的舍去),故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 21 221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 ) 1(21+= =+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 ) 1(2)1(lim )1(2)1())1(lim 111+=+=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x 时,1cos ~1)1(3 12 --+x ax ,求常数a .

高等数学试题及答案

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2l n 2x x x dx C =+? B )、s i n c o s t d t t C =-+ ? C )、 2a r c t a n 1dx dx x x =+? D )、211 ()dx C x x - =-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=????? ?? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B )、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

大学《高等数学A》课后复习题及解析答案

大学数学A (1)课后复习题 第一章 一、选择题 1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2 ln )(,ln 2)(x x g x x f == B .0 )(,1)(x x g x f == C .1)(,11)(2-=-?+= x x g x x x f D .2)(|,|)(x x g x x f == 2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .| |)(x e x f = C .x x f cos )(= D .1 sin )1()(2--= x x x x f 3.极限??? ? ?+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .2 1 D .∞ 4.极限x x x x sin lim +∞→的值为.. …….. ……..……………………………………………………………………………...…….( ) A .0 B .1 C .2 D .∞ 5.当0→x 时,下列各项中与 2 3 x 为等价无穷小的是…………………………………………………….( ) A .)1(3-x e x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=x x f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小 7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 8.设函数?? ? ??<≤--<≤≤≤-=01,110, 21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )

相关主题
文本预览
相关文档 最新文档