当前位置:文档之家› 单级电压放大电路设计

单级电压放大电路设计

单级电压放大电路设计
单级电压放大电路设计

东南大学电工电子实验中心

实验报告

课程名称:电子电路实践

第三次实验

实验三单级电压放大电路设计

一、基本信息

实验时数:6学时

时间要求:第10~11周完成,第11周内交实验报告

教材:《电子线路实践》Page 1~6

实验检查:带班教师检查

二、学习目标:

1、掌握单级放大电路的设计、工程估算、安装和调试;

2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频

特性等的基本概念以及测量方法;

3、了解负反馈对放大电路特性的影响。

4、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流毫伏表、函

数发生器的使用技能训练。

三、设计提示:

图3-1 射级偏置电路

1、对于图3-1中的偏置电路,只有R2支路中的电流I1>>I BQ时,才能保证U BQ恒定实现自

动稳定工作点的作用,所以工程中一般取:

1(5~10)

BQ

I I

=(硅管)

1(10~20)

BQ

I I

=(锗管)。

2、 为了提高电路的稳定性,一般要求U BQ >>U BE ,工程中一般取U BQ =(5~10)U BE ,即U BQ =(3~

5)V (硅管),U BQ =(1~3)V (锗管)。 3、 电路的静态工作点电流E

BE

BQ CQ R U U I -≈

,由于是小信号放大,所以I CQ 一般取0.5~2mA 。

4、 I CQ 确定后通过以下公式可计算R 1和R 2的值:

()()CQ

BQ

BQ

BQ

BQ I U I U I U R 1051051

2~~?=

=

=

β, ()BQ

BQ CC

BQ

CC U R U V

I U V R 21

1-=

-=

5、 交流电压放大倍数()()

CQ

L

e

b L be

L

I mV R r r R r R Au 2613001βββββ++?-

=++?-=?-

='

''

。 6、 交流输入阻抗1226////(1)300(1)i be be b e CQ

mV

R r R R r r r I ββ=≈=++=++。 7、 交流输出阻抗//O o C C R r R R =≈。

8、 电路频率特性的下限频率值主要受C 1,C 2和C E 影响,其关系分别为:

()()121103C r R f be S L ?+?≥π~,()()2

21

103C R R f L C L ?+?≥π~,

()

E

be

S E L C r R R f ?++?≥)//(~β

π121

31。

9、 幅频特性曲线、上限频率、下限频率、截止频率中心频率、带宽的测量方法:

A

(a)单级放大器放大特性

(b)低通特性 (c)高通特性

(d)带

通特性

图3-2 幅频特性示意图

幅频特性反应了电路增益和频率之间的关系,图3-2列出了常见的幅频特性类型。 (a)和(d)中的f L 表示下限频率,f H 表示上限频率,带宽BW=f H -f L ,(d)中的f 0表示中心频率;(b)和(c)中的f 0表示截止频率。在实验中可采用“逐点法”测量不同频率时的电压放大倍数A u 来测量幅频特性。测量时,保持输入信号幅度不变,改变输入信号频率,每改变一次信号频率,用交流毫伏表或示波器测量一个输出电压值,计算其增益,然后将测试数据列表、整理并在坐标纸上将其连接成曲线。由于函数发生器的输出信号幅度在不同频率时可能会有变化,因此每改变一次频率都要用交流毫伏表或示波器测量输入信号的幅度,一定要保证输入信号的幅度不改变。

为了更快更准确的测量幅频特性,必须根据不同幅频特性类型,选择不同的测量技巧。对于(a)可先测出中频区的输出电压值,然后调高或调低频率使输出电压降到中频电压值的0.707倍,从而找到f L和f H,然后在f L和f H之间和左右找3至5个点进行测量,即可较准确的绘制曲线。(b)和(c)也可参考这种方式来测量。对于(d)可从较低的频率值逐步增加频率,用交流毫伏表或示波器测量输出信号,刚开始输出信号幅度随着频率的增加而增加,当增加到某一个频率时,输出信号幅度随着频率的增加开始减小,则该频率为中心频率,记下该频率对应的幅度,然后调高或调低频率使输出电压降到中心频率电压的0.707倍,从而找到f L 和f H。

四、预习思考:

1、器件资料:

上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:

封装示意图:

参数符号参数值参数意义及设计时应该如何考虑

2、偏置电路:

图3-1中偏置电路的名称是什么?简单解释是如何自动调节晶体管的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么?

答:

分压偏置。

由于R1、R2起到分压的作用,确保电路的静态工作点,从而使得Ic,Ib稳定。

如果R1、R2取值过大,导致R1,R2电路中电流小,从而会影响到流入基极的电流,不稳定直流工作点。

3、电压增益:

(I)对于一个低频电压放大器,一般希望电压增益足够大,根据您所学的理论知识,分

析有哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。

答:

一级放大器而言,共射和共基和放大倍数是相对较大的,但是缺陷是输出阻抗较大。共集基本没有放大作用,但是输出阻抗远小于共射和共基,在希望有较大的电压增益时一般不会采用。

对于共射的增益

//

c l u

be

R R A

r

β

=-

由于β、

be

r是三极管本身参数而Rl是负载,都无法改变,因此可以通过适当增大Rc 的方法增大增益。

多级放大器级联可以利用共射、共基和共集各自的输入输出特性,组成级联放大电路,从而使得电路的特性达到最优化,但是具体的电路参数要根据实际的要求来决定。

(II)实验中测量电压增益的时候用到交流毫伏表,试问能否用万用表或示波器,为什么?

答:

不能。原因是实验中所测的信号幅度都很小,而万用表和示波器测量时本身的信号干扰等误差是不可避免的,会导致信号有很大毛刺,想比较而言交流毫伏表测量的干扰就要小很多。

4、输入阻抗:

(I)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内阻

为R S,试画出图3-1中放大电路的输入等效电路图,通过连线回答下面的问题,并

做简单解释:

R i= R S放大器从信号源获取较大电压

R i<

R i>>R S放大器从信号源获取最大功率

答:

R i= R S放大器从信号源获取最大功率

R i<

R i>>R S放大器从信号源获取较大电压

当R i= R S,由于P=[Us/(Ri+Rs)]2Ri,此时P最大。

当R i<

当R i>>R S,输入阻抗较大,由U=Us/(Ri+Rs)*Ri,此时分得电压较大。

(II)图3-3是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S的取值不能太大也不能太小。

图3-3 放大器输入阻抗测量原理图

答:

因为必须保证器件正常工作,所以放大器的输入电压电流等受到限制。

(III)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高图3-1中放大电路的输入阻抗。

答:

由于分压式共射放大电路的输入阻抗Ri=R1//R2//rbe,其中rbe是三极管的本身属性无法改变,因此要增大输入阻抗,同时要保持静态工作点不变,可以适当的同比例增大R1、R2。

5、输出阻抗:

(I)放大器输出电阻R O的大小反映了它带负载的能力,试分析图3-1中放大电路的输出

阻抗受那些参数的影响,设负载为R L,画出输出等效电路图,通过连线回答下面的问题,并做简单解释。

R O= R L负载从放大器获取较大电压

R O<

R O>>R L负载从放大器获取最大功率

答:

R O= R L,负载从放大器获取最大功率。

R O<

R O>>R L,负载从放大器获取较大电压。

原理与上面输入阻抗部分是一致的,只是将输出阻抗看成Rs,负载看成输入。

(II)图3-4是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L的取值不能太大也不能太小。

图3-4 放大器输出阻抗测量原理图

答:

()o o o l I U '/R R =+,()o o l o l U U '*R /R R =+。要保证这两个值都不太小,就必须

保证Rl 适中。若Rl 过小则Uo 会很小,若Rl 过大则导致Io 较小。

(III) 对于小信号电压放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分

析有哪些方法可以减小图3-1中放大电路的输出阻抗。 答:

由在后面串入一共集放大电路,减小输出阻抗。

6、 计算图3-1中各元件参数的理论值,其中

已知:V CC =12V ,U i =5mV ,R L =3K Ω,R S =50Ω, T 为9013

指标要求:A u >50,R i >1 K Ω,R O <3K Ω,f L <100Hz ,f H >100kHz (建议I C 取2mA ) 用Multisim 软件对电路进行仿真实验,仿真结果填写在预习报告中。 答:

我们用SXT2907A 代替。实际测得9013的bf 为140,Multisim 中查得SXT2907A 的bf 为100~300。

经过测试,在信号源置零时,将RW 调节至12.68k Ω时,Ic 为2mA 。此时的静态工作点测试如下:

Uc=5.85V ,Ub=2.70V ,Ue=2.06V 。

在外加信号源的情况下:

当输入信号(Ui )有效值为5mV 时,测得此时的电源电压Us 和输出电压Uo 分别为18.374mV 和500.59mV 。而如果输出开路,则测得开路电压Uo ’为726.17mV 。

输入输出信号的波形如图所示:

利用波特仪测得幅频特性曲线如图所示:

7、 对于小信号放大器来说一般希望上限频率足够大,下限频率足够小,根据您所学的理论

知识,分析有哪些方法可以增加图3-1中放大电路的上限频率,那些方法可以降低其下限频率。 答:

根据f H 和f L 表达式,增大的方法是减小R1和R2(同比例)。 f L 主要受C 1、C 2、C E 的影响

()()1

21

103C r R f be S L ?+?≥π~,

()

()2

21

103C R R f L C L ?+?≥π~,

()

E

be

S E L C r R R f ?++?≥)//(~β

π121

31

因此可以通过适当增大C 1、C 2、C E 减小

8、 负反馈对放大器性能的影响

答:

在共射放大电路上增加负反馈之后,增益减小,但是其他性能都有所提高,

如输入阻抗、

输出阻抗都会增大,另外能够增大带宽,并对噪声,干扰和温漂具有一定的抑制作用。

五、基本实验内容

1、研究静态工作点变化对放大器性能的影响

(1)调整R W,使静态集电极电流I CQ=2mA,测量静态时晶体管集电极—发射极之间电压U CEQ。

记入表3-1中。

(2)在放大器输入端输入频率为f=1kHz的正弦信号,调节信号源输出电压U S使Ui=5mV,

测量并记录U S、U O和U O’表3-1中。注意:用双综示波器监视U O及Ui的波形时,必须确保在U O基本不失真时读数。

(3)重新调整R W,使I CQ分别为1.5mA和2.5mA,重复上述测量,将测量结果记入表3-1中。

(4)根据测量结果计算放大器的A u、Ri、Ro。

实验结果分析:

误差分析:基本上误差还是在允许范围内,静态工作点部分可能存在一些的误差,误差主要在输入阻抗上,原因是在测量Us时已经有不小的误差,电阻并不是精密电阻,存在误差,利用Us和Ui计算Ri时又将这部分误差放大,导致最后得到的结果不太理想。

实验结论:从两组数据的对比可以看到,静态工作点对输入输出阻抗,电压增益等参数都有非常大的影响,因此合理选择静态工作的重要性不言而喻。后面还会提到饱和失真和截止失真的问题,同样也跟静态工作点紧密联系。

由三极管的Ic和Uce图像可知,三极管的静态工作点会影响三极管出现饱和失真和截止失真这两种情况,这也是我们在实验中所要关注的地方。

2、观察不同静态工作点对输出波形的影响

(1) 改变R W的阻值,使输出电压波形出现截止失真,绘出失真波形,并将测量值记录

表3-2中。

(2) 改变R W的阻值,使输出电压波形出现饱和失真,绘出失真波形,并将测量值记录

表3-2中。

表3-2 不同静态工作点对输出波形的影响

图1截止失真输入输出波形:

图2 完全截止失真输入输出波形(实验提示:此时可以加大输入信号幅度):图3 饱和失真输入输出波形:

实验结果分析:

由实验数据,可以发现静态工作点(这里指I CQ)升高时,容易出现饱和失真,而静态工作点Uce降低时,容易出现饱和失真。这里静态工作点的调节是通过调节R1实现的。而饱和失真和截止失真可以分别看成完全饱和与完全截止到放大区中间的过渡阶段。

由理论知识可知,对于Uce与Ic关系图,i C=0时截止,i C=U CEQ/R C≈VCC/R C时饱和。而i C=I C+i c,因此如果I C较大,则加上正弦交流信号i c后i C上下的幅度都有所增加,最大值更容易达到VCC/R C而产生饱和失真,如果I C较小,则加上正弦交流信号i c后i C的最小值更容易达到0而产生截止失真。

因此在选择静态工作点时,因尽量选在0~VCC/R C中间的位置。尽可能避免失真出现。

3、测量放大器的最大不失真输出电压

分别调节R W和U S,用示波器观察输出电压U O波形,使输出波形为最大不失真正弦波。测量此时静态集电极电流I CQ和输出电压的峰峰值U OP-P。

带负载时测量 I CQ=2.34mA ,U OP-P =5.82V

实验结果分析:

当I CQ=2.34时,得到最大不失真输出U OP-P=5.82V,再增大输入信号源电压Us即同时出现饱和失真和截止失真。

在选取静态工作点时,调节R1的值,应尽量选在这个值附近,以保证能够对比较大的信号进行放大而不出现失真。

3、测量放大器幅频特性曲线

调整I CQ=x(设计值),保持Ui=5mV不变,改变信号频率,用逐点法测量不同频率下的U O值,计入表3-3中,并画出幅频特性曲线,记录下限频率f L、上限频率f H,计算带宽BW。

幅频特性曲线

下限频率f L=160Hz上限频率f H=500kHz带宽BW =500kHz

实验结果分析:

由测得数据绘得的幅频特性曲线与理想曲线符合的较好。由于此时保持输入信号Ui=5mV,因此得到的输出电压有效值与Au是成正比的,当f=10kHz时,输出电压最大,即放大倍数最大,中频放大倍数在这附近取到。在f=160Hz和500kHz时的输出电压为中频输出电压的0.707倍左右,此时即下限频率和上限频率。

六、提高实验内容

1、相位测量

a)输入Ui=5mV,f=f L,用示波器双踪显示输入输出波形,记录波形,并测量两者间的相位差;

答:Vi超前Vo φ = ?t/T ?3600 =146.16°

f=f L 时的输入输出波形图:

实验结果分析:

实际与理论的误差为34°左右,可见相位差减小。 根据放大相量公式:

,(1)(1)

L

us usm L H

f j

f A A f f j j f f ??

=?

++

在低频f=f L 情况,经过化简可得此时(1)

us usm j

A A j ??

=?

+,相位提前,与实际情况相

符。在下限频率时提前的相位应该是45°,实际测得的相位差偏小,可能是由于中频和下限频率的测量有偏差。

b ) 输入Ui=5mV ,f =f H ,用示波器双踪显示输入输出波形,记录波形,并测量两者间的

相位差。

答:Vi 超前Vo φ = ?t/T ?3600

=213.84°

f=f H 时的输入输出波形图:

实验结果分析:

由图像我们可知,高频时的相位应该比180°落后45°。

这里测得的与低频时提前的相

位很接近,可能是电容充放电问题,及噪声干扰导致中频区测量有问题,导致低频和高频的值都有偏差。

2、负反馈对放大器性能的影响

在实验电路图3-1中增加反馈电阻R F=10Ω,构成电流串联负反馈放大器,如图3-5所示。调整I CQ=x(设计值),测量该电路的增益、输入阻抗、输出阻抗、下限频率f L、上限频率f H、带宽BW,并和前面实验测量的结果进行分析比较。

图3-5 电流串联负反馈放大电路

静态工作点测量

I CQ=2mA时,测得静态工作点V EQ=2.260V,V BQ=2.594V,V CQ=5.98V。

动态输入输出测量

输入电压U i为1kHz,有效值U i为5mV时,测得电源电压U S=6.85mV,U O=304mV,U O’=600mV。

幅频特性曲线

根据以上数据,通过与基础部分同样的计算分析可得:

电路的增益Vo=60.8输入阻抗Ri=8.11k输出阻抗Ro=3k

下限频率f L=80Hz 上限频率f H=480kHz带宽BW =560kHz

实验结果分析:

实验结果与理论相符合,在增加负反馈之后,电路的增益减小,同时输入阻抗输出阻抗都有所增大。下限频率减小,上限频率增大,从而带宽增大。

引入电压串联负反馈,相应地提升了输入输出阻抗和带宽,但是代价就是减小了增益。其他对电路的修改也都有类似的变化,我们需要熟知各个模块的特点与其应用的地方,但更重要的是要根据实际情况的需要相应的设置电路,改变设计的参数,达到电路所要求的性能特点。

七、发挥实验内容

自己设计。

注意事项:

1、各仪器的地线应与电路的地相连接。

2、稳压电源的输出电压应预先调到所需的电压值再接入实验电路中。

3、若电路存在自激,可改变元件的接线位置或走向,并注意电解电容的极性。

4、在测幅频特性时,随着频率升高,信号发生器的输出幅度可能会下降,从而出现输入信

号Ui与输出信号Uo同时下降的现象。所以在实验中要经常测量输入电压值,使其维持5mV不变。

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

单级放大电路

实验二 单级放大电路 一、实验目的 1. 掌握放大器静态工作点的调试方法,学会分析静态工作点对放大器性能的影响。 2. 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3. 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验仪器及器材 双踪示波器、低频函数信号发生器、低频交流毫伏表、数字万用表、模拟电路实验箱 三、实验原理 图2-1 共射极单管放大器 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B2和R B1 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算,U CC 为供电电源,此为+12V 。 CC B B B B U R R R U 2 11 +≈ (2-1) C E BE B E I R U U I ≈-= (2-2) )(E C C CC CE R R I U U +-= (2-3) 电压放大倍数 be L C V r R R A β -= (2-4)

输入电阻 be B B i r R R R 21= (2-5) 输出电阻 C R R ≈0 (2-6) 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号U i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的数字万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=, 由U C 确定I C ),同时也能算出E C CE E B BE U U U U U U -=-=,。 2) 静态工作点的调试 放大器静态工作点的调试是指对三极管集电极电流I C (或U CE )调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大的影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a )所示,如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b )所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a)饱和失真 (b)截止失真 图2-2 静态工作点对U0波形失真的影响 改变电路参数U CC ,R C ,R B (R B1,R B2)都会引起静态工作点的变化,如图2-3所示,但通常多采用调节偏电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。 最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切的说,产生波形失真是信号幅度与静态工作点设置配合不当所致。如须满足较大信号的要求,静态工作点最好尽量靠近交流负载线的中点。

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

第2章基本放大电路课案

题目部分: 一、选择题(15小题) (02 分)1.从括号内选择正确答案,用A 、B 、C …填空。 在某双极型晶体管放大电路中,测得)s i n 20680(t u BE ω+=mV , )sin 2050(t i B ω+=μA ,则该放大电路中晶体管的≈be r ____(A .13.6 KΩ,B .34 KΩ, C . 0.4 KΩ, D .1 KΩ, E .10KΩKΩ),该晶体管是____。(F .硅管, G .锗管)。 (02 分)2.从括号内选择正确答案,用A 、B 、C …填空。 在某双极型晶体管放大电路中,测得)sin 20280(t u BE ω+= mV , )sin 2040(t i B ω+=μA ,则该放大电路中晶体管的≈be r __________(A .7 KΩ, B .5 KΩ, C .1 KΩ, D .0.5 KΩ, E .14 KΩ),该晶体管是____。(F .硅管, G .锗管)。 (03 分)3.判断下列计算图示电路的输出电阻o R 的公式哪个是正确的。 A .e o R R = B .L e o R R R //= C .β+=1// 0be e r R R D .β++=1// 0b be e R r R R E .β +=1////0b be e R r R R (03 分)4.选择正确答案用A 、B 、C 填空。(A .共射组态, B .共集组态, C .共基组态) 在共射、共集、共基三种组态的放大电路中____的电压放大倍数u A 一定小于1,____的电流放大倍数i A 一定小于1,____的输出电压与输入电压反相。 (02 分)5.选择正确答案,用A 、B 填空。(A .共源组态, B .共漏组态) 在共源组态和共漏组态两种放大电路中,_____的电压放大倍数u A 比较大,_____的输出电阻比较小。____的输出电压与输入电压是同相的。 (02 分)6.选择正确答案,用A 、B 填空。(A .共源组态, B .共漏组态) 在共源组态和共漏组态两种放大电路中,电压放大倍数u A 一定小于1的是____,输出电压与输入电压反相的是____,输出电阻比较小的是____。 (02 分)7.选择正确答案,用A 、B 填空。(A .共源组态 B .共漏组态) 在共源、共漏两种组态的放大电路中,希望电压放大倍数u A 大应选用____,希望带

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

两级放大电路的设计(参考版)

设计指标: A V >250,R i ≥10kΩ,R L =5.1kΩ, BW=50Hz~50kHz ,D<5% 。 设计条件: 输入信号(正弦信号):2mV≤V i ≤5mV ,信号源内阻:R s =50Ω,电源电压:V CC =12V ; 半导体三极管9013,参数:β=100,r bb ’=300Ω,C μ=5pF ,f T =150MHz ,3V≤V CC ≤20V , P CM =625mW ,I CM =500mA ,V (BR)CEO =40V 。 1.电路选型: 小信号放大电路选用如图1所示两级阻容耦合放大电路,偏置电路采用射极偏置方式,为了提高输入电阻及减小失真,满足失真度D<5%的要求,各级射极引入了交流串联负反馈电阻。 2.指标分配: 要求A V >250,设计计算取A V =300,其中T 1级A V1=12,A V2=25;R i ≥10kΩ要求较高,一般,T 1级需引入交流串联负反馈。 3.半导体器件的选定 指标中,对电路噪声没有特别要求,无需选低噪声管;电路为小信号放大,上限频率f H =50kHz ,要求不高,故可选一般的小功率管。现选取NPN 型管9013,取β=100。 4.各级静态工作点设定 动态范围估算:T 1级:im1imax V1252mV, 12,V V A === om1V1im1125284mV V A V ==?=。 T 2级:im2om1V284mV , 25V V A ===, om2V2im22584 2.1V V A V ==?=。

为避免饱和失真,应选:CEQ om CE(sat)C V V ≥+ ;可见 T 1级V CEQ1可选小些,T 2级V CEQ2可选大些。 CQ CQ CM CEQ CM T T I I I I I ≥+12取值考虑:设定主要根据,由于小信号电压放大电路较小; 另从减小噪声及降低直流功率损耗出发,、工作电流应选小些。 T 1级静态工作点确定: T CQ1 T CQ1T CQ1CQ1CQ1BQ1CEQ13k Ω, ',100'30026mV ' 10026 0.963mA 3000300 0.7mA 0.07mA , V 2V>0.12V V r r r I V I r V r r I I I I ββββ ≥=+= ===-?≤ =-====be1be1bb bb be1bb 取依可推得其中,,可求得选, T 2级静态工作点确定: 一般应取CQ2CQ1I I > ,CEQ2CEQ1V V > 选 :CQ2 CQ2BQ2CEQ21.2mA , 0.012mA , V 4V>3V I I I β == == 5.偏置电路设计计算(设BEQ 0.7V V =) T 1级偏置电路计算: Rb1BQ1BQ1CC 10100.0070.07mA 11 124V 33I I V V ==?===?=取 故:CC BQ1 b1b1 124 114.286k Ω0.07 V V R I --= = = 取标称值120 kΩ 22Rb1b1b110.071200.588mW

常规放大电路和差分放大电路

常规放大电路和差分放大电路 0、小叙闲言 有一个两相四线的步进电机,需测量其A、B两相的电流大小,电机线圈的电阻为0.6Ω,电感为2.2mH。打算在A、B相各串接一个0.1Ω的采样电阻,然后通过放大电路,送到单片机采样(STM32,12位AD采样),放大的电压值是最大应为3v。电路如下。我在这里讨论其中的采样放大电路。很多东西平时在书本上学到烂熟,但真正在实战时,还是碰到了不少问题。纸上得来终觉浅,绝知此事要躬行。因此,在这里总结一下,供自己学习之用,或许也可给大家一点点帮助。

图1 步进电机系统结构图 1、常规放大电路 这里暂时不讨论放大电路的工作原理,直接使用放大器的虚短(短路)和虚断(断路)性质来分析这一类电路,之所以在前面加个虚字,是因为放大器的两端并不是真正的短路或断路。如下图所示,虚短:UP=UN,虚断:IP=0; IN=0。无论放大器接在何种电路中,这两个式子都是成立的。

图2 放大器性质 1.1、电压跟随器 电压跟随,听名字应该就能想到,它的作用就是输出电压Uo应该是随着输入电压Ui变化而变化的(Uo=Ui),如下图所示,由上面讲到的虚短性质, 很容易得到Ui=Up=Un=Uo。有人会疑问,直接把Ui接到Uo,岂不是更加方便,要这个做什么。这个就要看电路需求而定了。电压跟随器的作用一般

是起到隔离的作用,输入的电流太大的话,也不影响到输出的电流。 图3 电压跟随器电路图1.2、电压放大电路

说了这么多,也没有看到放大器起到放大的作用,那么它是如下做到放大的电压作用的呢,且看下面这个电路。

图4 电压放大电路 从图4可以看到电路将输入电压放大了-3倍,这个负号来源,在图4中的公式推导已经说得很明白了。充分利用虚短和虚断的性质,加上外接电路,可以实现放大电压的功能(当然也可以缩小电压)。这个电路有一个小小的问题,就是它放大电压后有一个负号,平时我们要的都是输出电压与输入电压同符号,那么如何做到输出电压与同向呢,其实也很容易,且看下面电路图5。它的放大倍数也很好计算,元器件没有比上面多。但是这里又引是入一个新的问题,从下图4的公式推导中,可以明显看到,Uo/Ui>1,那么在我们需要将电压值缩小的场合,这个电路将不再适用。

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

电压放大电路模型

电压放大电路模型 如上一知识点所述,根据实际的输入信号和所需的输出信号是电压或者电流,放大电路可分为四种类型,即:电压放大、电流放大、互阻放大和互导放大。为了进一步讨论这四类放大电路的性能指标,可以建立起四种不同的双口网络作为相应类型放大电路模型。这些模型采用一些基本的元件来构成电路,只是为了等效放大电路的输入和输出特性,而忽略各种实际放大电路的内部结构。 <?XML:NAMESPACE PREFIX = V /><?XML:NAMESPACE PREFIX = O />

图1 图1虚线框内的电路是一般化的电压放大电路模型,它由输入电阻Ri、输出电阻Ro和受控电压源三个基本元件构成,其中为输入电压,为输出开路(RL = ¥)时的电压增益。图中放大电路模型与电压信号源、信号源内阻Rs以及负载电阻RL的组合,可在RL两端得到对应的输出信号。 从图1可以看出,由于Ro与RL的分压作用,使负载电阻RL上的电压信号小于受控电压源的信号幅值,即 可见,其电压增益为 的恒定性受到RL变化的影响,随RL的减小而降低。这就要求在电路设计时努力使Ro<<RL,以尽量减小信号的衰减。理想电压放大电路的输出电阻应为Ro=0。

信号衰减的另一个环节在输入电路。信号源内阻Rs和放大电路输入电阻Ri的分压作用,致使到达放大电路输入端的实际电压只有 只有当Ri>>R。 图2 然而,当前有许多工业控制设备及医疗设备,为了提高安全性和抗干扰能力,在前级信号预放大中,普遍采用所谓的隔离放大,即放大电路的输入与输出电路(包括供电电源)相互绝缘,输入与输出信号之

单级低频放大电路

实验三单级低频放大电路 1.实验目的 (1)研究单管低频小信号放大电路静态工作点的意义。 (2)掌握放大电路静态工作点的调整与测量方法。 (3)掌握放大电路主要性能指标的测试方法。 2.实验涉及的理论知识和实验知识 本实验体现了三极管的工作原理、放大电路的静态工作点调试方法以及放大器性能指标的基本测试方法。 3.实验仪器 信号发生器、示波器、直流稳压电源、电压表 4.实验电路 实验电路如图3.1.1所示。图中电位器R W是为调节晶体管静态工作点而设置的。 O 图3.1.1单级共发射极放大电路 5. 实验原理 在电子系统中,放大电路是信号处理的基本电路。其作用是将微弱信号增强到所需要的数值,单级低频放大电路是放大电路中最基本的结构形式,是组成各种复杂电路的单元和基础。因此它的分析方法、电路调整技术以及参数的测量方法等具有普遍意义。 实验电路采用由NPN型硅材料三极管以及若干电阻、电容组成的共发射极放大电路,以图3.1.1所示电路为例进行研究。 (1)电路组成原则 放大是最基本的模拟信号处理功能,它是通过放大电路实现的,电子技术里的“放大”有两方面的含义。一是能将微弱的电信号增强到所需要的数值,即放大电信号,以便于测量和使用。二是要求放大后的信号波形与放大前的波形的形状相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。 因此,电路组成原则是首先要给电路中的晶体管施加合适的直流偏置,即发射结正偏、集电结反偏,使其工作在放大状态,而且还要有一个合适的工作电压和电流,即合适的静态工作点。其次要保证信号发生器、放大电路和负载之间信号能够正常传输,即有u i时,应该有输出响应u o。

小信号多级放大电路设计-模电课程设计报告

机械与电气工程学院 《模拟电子技术》课程设计报告 姓名: 学号: 班级: 指导教师:

课题名称:小信号多级放大电路设计 一、设计目的 1.通过本课程设计,掌握晶体管放大电路工作原理。 2.熟悉简单模拟电路的设计方法和主要流程。 3.学习模拟电路的制作与调试方法。 二、设计要求 1.输入电压:Vi p-p =30mV。 2.输入电阻:10k~40k。 3.频率特性:100HZ~100kHZ。 4.总谐波失真度(THD)≦3%。 5.供电电压:15V。 6.电压增益:100倍。 7.全部用分立元器件组成,不得使用集成运算放大器等集成电路。核心部分必须包含两级共射放大电路,耦合方式自选,在确保指标的前提下可自行添加其他电路。 8. 所有元器件必须为标准件,且平均每级电路中包含的电位器个数不得超过1个(其中指标为增益可调的电路,每个电路的电位器总个数可增加1个),最多不超过3个。 三、方案设计 1.负反馈的类型 在输出端,取样方式分为电压取样(电压反馈)和电流取样(电流反馈),在输入端,比较方式分为串联比较(串联反馈)和并联比较(并联反馈)。因此负反馈放大电路有四种类型:电压串联、电压并联、电流串联、电流并联。 2.负反馈对放大电路性能的影响 (1)引入负反馈使增益下降 闭环增益表达式为 =A/(1+AF) A f 其中D=1+AF为反馈深度。深度负反馈D>>1条件下

A f ≈1/F (2)负反馈提高增益的稳定性易得: d A f / A f =d A/(1+AF)*A=d A/D*A 上式表明,反馈越深,闭环增益的稳定性越好。(3)负反馈对输入电阻和输出电阻的影响 串联负反馈使R i 增加,并联负反馈使R i 下降。程度取决于反馈深度: R if =(1+AF)R i (串联负反馈) R if = R i /(1+AF)(并联负反馈) 电压负反馈使R o 下降,电流负反馈使R o 增加。程度上取决于反馈深度: R of =(1+AF)R o (电流负反馈) R of =R o /(1+AF) (电压负反馈) (4)负反馈展宽频带 基本放大电路高、低频响应均只有一个极点时,闭环上、下限截止频率为: f Hf =(1+AF)f H f Lf =f L /(1+AF) 3.方案确定 输入电阻:10k~40k,分析可知电路具有输入电阻较大的特点,则电路第一级要引入共集电路提高输入电阻。输出电阻:<1k,不是太小,则输出级不需要引入共集电路。电压增益:100倍,且题目要求必须要有两级共射电路,则电路分为两级共射放大。频率特性:100HZ~100kHZ,每一级的电容耦合,本来用10uF,但是通频带在仿真的时候下限只能达到290HZ,上限能达到4.5MHZ。所以用47uF电容耦合,能展宽通频带。 四、电路设计 设计电路图如图1所示

调谐小信号放大器分析设计方案与仿真

实验室 时间段 座位号 实验报告 实验课程 实验名称 班级 姓名 学号 指导老师

小信号调谐放大器预习报告 一.实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器的基本工作原理; 3.掌握测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态范围的概念和测量方法。 二.实验内容 调谐放大器的频率特性如图所示。 图1-1 调谐放大器的频率特性 调谐放大器主要由放大器和调谐回路两部分组成。因此,调谐放大器不仅有放大作用,而且还有选频作用。本章讨论的小信号调谐放大器,一般工作在甲类状态,多用在接收机中做高频和中频放大,对它的主要指标要求是:有足够的增益,满足通频带和选择性要求,工作稳定等。 二.单调谐放大器 共发射极单调谐放大器原理电路如图1-2所示。 放大倍数f o f 1f K 0.7o K o K 2o f ?通频带f ?2o f ?2o f ?

图1-2 图中晶体管T 起放大信号的作用,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E 是R E 的旁路电容,C B 、C C 是输入、输出耦合电容,L 、C 是谐振回路作为放大器的集电极负载起选频作用,它采用抽头接入法,以减轻晶体管输出电阻对谐振回路Q 值的影响,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。 三.双调谐回路放大器 图中,R B1、R B2、R E 为直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态,E C 为E R 的旁通电容,B C 和C C 为输入、输出耦合电容。图中两个谐振回路:11L C 、组成了初级回路,22L C 、组成了次级回路。两者之间并无互感耦合(必要时,可分别对12L L 、加以屏蔽),而是由电容3C 进行耦合,故称为电容耦合。 本次实验需做内容

单级低频电压放大电路(基础)实验报告模板

东南大学电工电子实验中心 实验报告 课程名称: 第次实验 实验名称: 院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间:年月日评定成绩:审阅教师:

实验三单级低频电压放大电路(基础) 一、实验目的 1、掌握单级放大电路的工程估算、安装和调试; 2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频 特性等的基本概念以及测量方法; 3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、 函数发生器的使用技能训练。 二、实验原理 三、预习思考 1、器件资料: 上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表: 2 教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么? 答: 3、电压增益: (I)对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有 哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。 答: (II)实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。 答:

4、输入阻抗: (I)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内阻 为R S,试画出图1-3中放大电路的输入等效电路图,回答下面的连线题,并做简单解释: R i = R S放大器从信号源获取较大电压 R i << R S放大器从信号源吸取较大电流 R i >> R S放大器从信号源获取最大功率答: (II)教材图1-4是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串接电阻R S的取值不能太大也不能太小。 答: (III)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析有哪些方法可以提高教材图1-3中放大电路的输入阻抗。 答: 5、输出阻抗: (I)放大器输出电阻R O的大小反映了它带负载的能力,试分析教材图1-3中放大电路的 输入阻抗受那些参数的影响,设负载为R L,画出输出等效电路图,回答下面的连线题,并做简单解释。 R O = R L负载从放大器获取较大电压 R O << R L负载从放大器吸取较大电流 R O >> R L负载从放大器获取最大功率答: (II)教材图1-5是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电阻R L的取值不能太大也不能太小。 答: (III)对于小信号放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,分析有哪些方法可以减小教材图1-3中放大电路的输出阻抗。 答: 6、计算教材图1-3中各元件参数的理论值,其中 已知:V CC=12V,V i=5mV,R L=3KΩ,R S=50Ω,T为9013 指标要求:A V>50,R i>1 KΩ,R O<3KΩ,f L<100Hz,f H>100kHz(建议I C取2mA) 答: 四、实验内容 1、除1-(1)外的全部实验(所有波形必须定量记录,包括幅度、频率等,输入和输出波形 必须记录在同一坐标内)。 2、实验修改内容

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

电子课程设计--二级晶体管放大电路

电子课程设计--二级晶体管放大电路

五邑大学 电子技术课程设计报告题目:二级晶体管放大电路 院系机电工程学院 专业机械工程及其自动化 学号 AP100 学生姓名 指导教师黄东 完成日期 2 0 1 2 / 1 / 7

一、设计题目:晶体管放大电路 (1)设计一级晶体管放大电路,输入信号幅度≥20mv, 频率为1KHz,电源电压+5V,要求完成下面的技术指标: a. 电压增益A u ≥20 b. 输入电阻Ri ≥2KΩ c. 输出电阻Ro ≤50Ω (2)测量出输入电阻值,并说明该值于那些元件有关系。 (3)可选用的器件与元件 二、方案的论证和设计 1)工作原理: 输入信号加到前级的输入端,经过前级放大后加到后级的输入端,再经后级放大。在两级放大器中,放大器的输入端事实上就是前级的输入端,前级的输出也就是后级的输入,后级的输出也就是两级放大的输出;前级是后级的信号源,后级是前级的负载。因此,两极放大的线性电压放大倍数就等于前后两级放大倍数的乘积;放大器的输入电阻就是前级的输入电阻;放大器的输出电阻就是后级的输出电阻。 2)设计电路的主要功能 该电路具有实现输入信号放大的功能,能将较小的输入信号通过二级放大电路实现信号放大,从而获得必要的电压幅值或足够的功率,最终达到推动负载工作的使用要求。

3)设计原理图 4)参数的设定 1.计算后级电路电阻参数 节点B 电流方程为 1R I =2R I +B I 为了稳定静态工作点,令参数满足1R I >>B I 因此,B 点位为 CC B B B BE U R R R U 2 12 +≈ 取1E I =1.mA ,并选β=91,则 1 26) 1(200E be I r β++= =200+(1+91)*26/1=2.592k 第一级的放大倍数是 be L C r R R A //u1β -= 取1U A =120,取Ω=5101E R ,代入公式求出=C R 3.6k ?

运算放大器11种经典电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所收获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出 Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

相关主题
文本预览
相关文档 最新文档