当前位置:文档之家› 连续介质力学几个定律

连续介质力学几个定律

连续介质力学几个定律
连续介质力学几个定律

第二章 连续介质力学的基本定律

在第一章中,我们仅考察了连续介质运动的运动学描述,而没有考虑到引起运动和变形的因素。本章我们将引入应力等概念,并给出连续介质力学的基本定律:质量守恒定律、动量平衡定律、动量矩平衡定律、能量守恒定律及熵不等式。

2.1 应力矢量与应力张量

在物体的运动中,物体的两部分之间或物体与其外界间的力学作用是通过力来描述的。在连续介质力学中我们主要研究三种类型的力:(1)一个物体的两部分之间的接触力;(2)由外界作用于物体边界上的接触力;(3)由外界作用于物体内部点的非接触力(如重力、离心力等)。在另一方面,由于(1)(2)型的力总是通过某一接触面发生作用的,因此通常把作用于单位接触面积上的接触力称为表面力,或简称面力;由于(3)型力作用于物体整个体积内所含的物质点,因此通常把它称为体积力,或简称体力。

在连续介质力学中重要的公理之一就是关于接触力形式的柯西假设。柯西假设在运动过程中的时刻t 对于任何物质坐标X 和与之对应的接触面S 上的单位法矢量n ,表面力的存在形式为

()n t X t t ,,= (2.101) 通常,我们规定()n t X t t ,,=指向接触面S 的外法向时为正,反之为负(见图2.1). 现在不管在X 和S 面与S'面的曲率相差多少。

为了研究物体内部的力学状态,我们把一物体用一假想平面S 截断成两部分A 和B ,如图2.3所示。此时S 面就是A 和B 相互作用的接触面,B 部分对A 部分一点的作用,便可以用A 部分截面上的表面力t n 来表征,我们称之为应力矢量。反过来,考虑A 部分对B 部分作用,按照牛顿的作用与反作用定律可得应力矢量t n -。它与t n 作用于同一平面上的同一点处,并且大小相等,方向相反。即

t t n n =- (2.102) 对于物体内部的一点P ,通过它可以有无穷多个方向的截面,而对于不同方向的截面,应力矢量也就不同,这种复杂情况只有引进应力张量的概念才能充分地加以描述。为了刻画一点的应力状态,设想在一点P 的附近任意给定一个单位法矢量为

(),cos ,cos ,cos 321ααα=n

()n e n e n e ???=321,, (2.103) 的平截面。相应地,过P 点沿活动标架作三个坐标平面。于是它们在物体内截得一个微小四面体,如图2.4所示。在这个微小四面体的每一个面上,都受有物体的其余部分给它的作用力,不妨设在ABC 上受到的作用力为t A ?,在PBC ,PCA 与PAB 上的作用力分别为-t A 11?、-t A 22?与-t A 33?,其中?A 与?A i 分别为各微小平面的面积,作用于微小四面体ABCP 上单位质量的体力为b 。

现在假设对物体的任何部分,特别是对微小四面体ABCP 而言,动量的变化率与作用的合力成正比。虽然这是个很自然且牛顿第二定律更强的新假设(因为牛顿第二定律只适用于整个物体),然而,它却不能用实验直接验证,因为不可

能做内部表面接触力的直接测定,这种力的存在与大小只能由其它量的观测推知。描述一点是应力张量,描述通过一点的某一截面是应力矢量。

对于微小四面体ABCP ,柯西定律给出 t A t A t A t A b V ?????---+112233ρ =-+t A t A b V i i ???ρ

=-+t A t A bh V i i ???cos αρ1

3

==tma Va ρ?

=1

3

ρh Aa ? (2.104)

其中ρ为物体的密度,h 为P 点到ABC 面的距离,并且考虑到微小四面体的体积.

??V h A =13

(2.105) 2.104式也可写成

t t bh ha i i

-+=cos αρρ131

3

(2.106) 当微小四面体体积趋于零时,即?A →0,?h →0,则有

t t i i =cos α (2.107) 考虑到2.103式,并令

t T e T e T e i i i i =++112233

=T e ij i (2.108) 则式2.107可写成

()()j ij i i i e T e n t t ?==αcos

()T

n e e T n j i ij ?=?=

()()n e e T t i j ij i i ?==αcos

()n T n e e T T j i ij ?=?= (2.109)

当T 对称时,则

t n T T n =?=? (2.110) 其中

j i ij e e T T = (2.111) 称为应力张量,其矩阵形式为

[]??

???

?????=333231232221131211T T T T T T T T T T (2.112) 如果物体中一点处的应力张量已知,那么由式2.112可以得到通过该点的任

何截面上的应力矢量,因此应力张量完全地刻画了物体中一点的应力状态。 由A i 面上的应力矢量t i 的定义可知,()t X t t i i ,=,而由式2.108知

()t X T T ij ij ,=,因此式2.109变为

()()t X T n n t X t ,,,?= (2.113) 上式就是柯西假设的具体形式,常称之为柯西基本定理。 下面我们研究应力张量T 的各分量的力学意义。考虑到

T e T e t e ij i j i j =??=?

故知,T ij 代表作用于e i 方向截面上的应力矢量t i 在e j 方向上的分量,如图2.5所示。

我们从图2.5看到,应力张量T 的对角线元素()j i T ij =位于所作用平面的法线方向内,故称之为法向应力分量;应力张量T 的非对角线元素()j i T ij ≠位于所作用的平面内,故称为剪切应力分量。

2.2 质量守恒定律

物质无论经过怎样形式运动,其总质量是不变的,这就是古典连续介质力学中的最重要规律之一—质量守恒定律。下面我们研究质量守恒定律的数学表达式。

设ρ为物体的密度,dV 表示物质点的体积,由于在运动过程中质量保持不变,所以

()0=dV Dt

D

ρ (2.201) 展开有

()0=+dV Dt

D dV Dt D

ρρ (2.202) 又由式

()()dV divv dV x v dV Dt D

i

i ==?? (2.203)

于是式2.202可写成

D Dt v

x i i

ρρ??+=0 (2.204) 其不变性形式为

D Dt

divv ρ

ρ+=0 (2.205) 其中

D Dt t v x i i

ρ?ρ??ρ?=+ (2.206) v t

ρ?=+?? 把上式代入式2.204,则得

()0=+i

i x v t ?ρ???ρ (2.207) 其不变性形式为 ()0div v v t

ρρ?+=注明是张量,只是一个函数,既不是矢量,又不是张量 (2.208)

式2.205和式2.208就是质量守恒定律的数学表达式质量守恒方程,在连续介质力学中常称为连续性方程。

在正交曲线坐标系中,利用式:j i i g g H ?=,连续性方程可写为

()()()[]01

2133312232113

21=+++

H H v H H v H H v H H H t ρ?ρ?ρ???ρ (2.209) 在直角坐标系中,连续性方程为

()()()0=+++z

v y v x v t z y x ?ρ??ρ??ρ???ρ (2.210) 在柱面坐标系中,利用第第一部分二章式2.13.03,连续性方程为

()()()011=+++z

v v r r rv r t z r ?ρ??θρ??ρ???ρθ (2.211) 在球面坐标系中,利用第一部分二章式式2.13.04,连续性方程为

()

()()0sin 1sin sin 1122=+++??

ρ?θ?θθρ?θ?ρ???ρ?θv r v r r v r r t r (2.212) 连续性方程也可用物质描述法表示。在这种情况下质量定恒定律要求

()()dV t x dV t X V V ,,000ρρ??= (2.213)

其中V 是物质在现时刻所占据的体积,而V 0是物质在时刻t 0所占据的体积。于是 ()()[]000,,,00JdV t t X x dV t X V V ρρ??=

()0,0JdV t X V ρ?= (2.214) 因为这个关系式对任意体积V 0都必须成立,故得

ρρ0=J (2.215) 它表示ρJ 与时间无关,即

ρJ const = (2.216) 这就是物质形式的连续性方程。

2.3 动量平衡定律

欧拉把下列关系作为在连续介质中普遍成立的一般性原理:

Dm

Dt

f = (2.301) 它称为欧拉第一运动定律。上式说明任意物体具有的动量的变化率等于作用于该物体上的合力f 。

设所研究物体在其体积V 上受有连续分布的体力和在其体积的边界面S 上连续分布的接触力f c ,因此物体上所受合力为

f f f b c =+ (2.302) 其中

bdV f V b ρ?= (2.303) tdS f S c ?= (2.304) 物体的动量为

vdV m V ρ?= (2.305) dV Dt

Dx

V ρ

?=

于是将式2.302和式2.305代入式2.301则

bdV tdS adV V S V ρρ???+= (2.306)

其中a D x

Dt =22

表示x 点的加速度。由式2.109,可将上式改写为

adV bdV TdS n V V S ρρ???=+? (2.307)

利用高斯公式

TdV TdS n V S ??=??? (2.308) 则得

adV bdV TdV V V S ρρ???=+?? (2.309) 即

()0=-+???dV a b T V ρρ (2.310) 考虑到V 的任意性,则

??+-=T b a ρρ0 (2.311) 即

divT b a +=ρρ (2.312) 需要指出的是,这里的散度是对于空间坐标的。上式称为柯西第一运动定律。其指标形式为

T b a ji i i i ;+=ρρ (2.313) 展开得

??????ρρT x T x T

x b a 11121231311+++= (2.314)

??????ρρT x T x T

x b a 12122232322+++= (2.315)

??????ρρT x T x T

x b a 131232333

33+++= (2.316)

特别地,在静止的情况下,物体的加速度为零,则式2.313化为

divT b +=ρ0 (2.317) 在弹性力学中,上式称为平衡方程。

在柱面坐标系中,利用第一部分第二章2.13.4.d 可得上式化为

????θ??ρθθθ

T r r T T z T T r b rr r zr rr r +++-+=10 (2.318) ????θ??ρθθθθθθθT r r T T z T T r b r z r r

+

++-+=10 (2.319) ????θ??ρθT r r T T z T r

b rz z zz rz

z +

+++=10 (2.320) 在球面坐标系中,利用第一部分第二章2.13.4.e ,则2.317式可化为

()0cot 21sin 11=+--++++r r rr r r rr b T T T T r T r T r r T ρθ???θ?θ?????θθθ?θ (2.321)

()[]

0cot 21sin 11=+-+++++θ??θθθθθθθθθρ???θ?θ???b T T T T r

T r T r r T r r r (2.322)

()[]0cot 21

sin 11=+-+++++??θθ?????θ??ρθ???θ?θ???b T T T T r

T r T r r T r r r (2.323)

2.4 动量矩平衡定律

对于任意物体下列关系式成立:

DM Dt

l x x 0

0= (2.401) 其中M x 0表示物体绕x 0点的动量矩,l x 0表示作用于物体上的力对x 0点的合力矩。上式称为欧拉第二运动定律。

设作用于物体上的力矩只是由体力和接触力引起的,故其合力矩为

()()000S x V S l x x bdV x x td ρ=-?+-??? (2.402) 而物体的动量矩为 ()dV Dt

Dx

x x M V x ?

-=?00ρ (2.403) 将式2.402和式2.403代入式2.401,并考虑到

()0V D Dx

x x dV Dt Dt ρ-?? (2.404) ()()()()20002V V V D x x Dx D x Dx D

dV x x dV x x dV Dt Dt Dt Dt Dt

ρρρ-=?+-?+-????

()()()200200

V V V Dx Dx D x Dx dV x x dV x x Dt Dt Dt D D dV Dt

t ρρρ=?+-?+-????张量本身叉乘是质量守恒

()202V D x

x x dV Dt

ρ=-?? (2.405)

可得

()()()000S V V S x x adV x x bdV x x td ρρ-?=-?+-???? (2.406)

其中a D x

Dt =22

表示x 点的加速度。考虑到式2.110和高斯公式,则

()()()()()()0000V 0S S

S V S V S x x bdV x x td x x ad x x td x x n T d V ρρ-?-?+--?=-??-?????可知

()()()()adV x x dS T n x x bdV x x V S V ?--??-+?-=???000ρρ ()()()00V S x x b a dV n T x x dS ρ=-?-+??-??混合积互换 ()()(){}

00V x x b a T x x dV ρ=-?-+???-?????积分定理

()()(){}

00V ljk l l j j k i ij l l jlk k x x b a e T x x e dV ρε?ε??=-?-+??-???张量运算 ()()()[]{}dV x x T a b x x e l l ij i j j l l k ljk V 00-+-?-=??ρε

()()()()[]dV x x T x x T a b x x e l l i ij l l i ij j j l l k ljk V 00;0-+-+-?-=??ρε

()()0;0V ljk k l ij i j l j il j i T b a e x x T dV εδρρ??=-?+??+-?根据平衡方程,红色部分为

dV e T k il ij ljk V δε?=

dV e T k ij ijk V

ε?

=

=0 (2.407) 考虑到体积V 的任意性,得

εijk ij T =0 (2.408) 因此,T ij 必须对称张量,即

T T ij ji = (2.409) 或

T T T

= (2.410) 上式叫做柯西第二运动定律。柯西第二运动定律限定应力张量为对称张量,其中只有六个独立分量。

2.5 能量守恒定律

在连续介质中,如果只研究力学量的影响,而不考虑热学效应,那么连续介质的能量守恒定律可以直接由运动方程导出。首先,将运动方程

??+=T b Dv

Dt

ρρ (2.501)

点乘速度矢量v

()Dt

Dv

v b v T v ?=?+???ρρ (2.502)

在体积V 上积分

()bdV v dV T v Dt Dv

v V V V ?+???=?

??

?ρρ (2.503) 考虑到

dV v v Dt D Dt Dv v V V ??

?

???=???21ρρ

()1202V V

D v vdV v v D D dV Dt t ρρ??

=?-? ?????质量守恒 vdV v Dt D V

?=?ρ21

dV v Dt D V 2

2

1ρ?= =DK

Dt

(2.504)

上式表示在体积V 中的总动能dV v K V 22

1

ρ?=的时间变化率。另外,考虑到

()i ij j T v T v ;=??? ()

ij i j i

ij

j T v T v ;,-=

()()T v v T :?-???=

()()T W D v T :+-???=

()::W T T v D T =???--反对陈与对称双点乘是0

()T D v T :-???= (2.505) 这里利用了反称张量W 与对称张量T 之间的双重点积为零的性质。 把式2.504和式2.505代回到式2.503中去,则得

()bdV v dV v T TdV D Dt DK

V V V ?+???=+??

?ρ: (2.506) 运用高斯公式把上式右边第一体积分化为面积分,并利用柯西假设t =t n T =?,则

()()()V S T v dV n T v dS ???=????添加取掉无影响

vdS t S ?=? (2.507)

将上式代入式2.506,于是我们得到在纯力学作用下的能量方程

:D V S V DK

D TdV t vdS b vdV Dt ρ+=?+????其中是速度梯度的对称部分 (2.508)

其中方程左边两项分别表示连续介质的动能和内能(应力生热)的时间变化率,右边两项分别表示接触力和体力所做的功率。若令U 表示内能,则能量方程5.508也可简洁地写成

DK Dt DU Dt DW

Dt += (2.509) 其中DW Dt

表示接触力和体力的功率,记号D 表示这个量不一定能写成某个函数

的全微分形式。

如果同时考虑机械能和非机械能,那么就必须用能量守恒定律的一般形式。能量守恒定律的一般形式可以表述为:动能加上内能对时间的变化率等于总功率加上在单位时间内供给物体的各种其它形式的能量。这些能量包括热能、化学能、电磁能等等。本书只考虑机械能和热能,于是能量守恒定律就化为著名的热力学第一定律的形式。

对于热力连续介质(thermomechanical continua)来说,通常把内能的时间变化率写成

?=udV Dt

D

Dt DU V ρ ()0V V Du dV u D dV Dt Dt ρρ=+??是 ?=dV Dt

Du

V ρ (2.510) 其中u 称为比内能,表示每单位质量的内能密度。另外,我们定义矢量f 为在单位时间内每单位面积的热通量,函数q 为在单位时间内每单位质量的热辐射量,于是物体总热量的增量变化率为

qdV ndS f Dt

Q

D V S ρ??+?-= (2.511) 其中n 为物体表面的外法向,热通量矢量f 由傅立叶定律给出,即

f k T =? (2.512)

这里k 为热传导系数,T 为温度。

于是热力连续介质的能量方程可以写成

DK Dt DU Dt DW Dt DQ

Dt +=+ (2.513) 或写成积分形式

qdV ndS f bdV v vdS t dV Dt Du

vdV v Dt D V S V S V V ρρρρ??????+?-?+?=+?2

1 (2.514) 把上式右边面积分化为体积分后再移到左端,则有

()()12V V D v v Du dV T v v b f q dV Dt Dt ρρρρ???

+=???+?-??+??????????高斯公式 (2.515)

由于体积V 是任意的,故有

()q f b v v T u v v Dt D +??-?+???=???

??+?ρρ

112 (2.516) 利用式2.505,则上式化为

()[]q f b v T v T D Dt Du Dt Dv v +??-?+???+=+?ρ

ρ1

:1 (2.517)

整理得

111:0Dv T b Du D T f t v D q Dt ρρρρρ????+- ???=-??++?平衡方程

(2.518)

考虑到运动方程成立,则有

Du Dt D T f q =-??+11

ρρ: (2.519) 或

Du Dt D T f x q ij ij i

i

=-+11ρρ?? (2.520) 上式表示物体内能的时间变化率等于应力功率和吸收的热量之和。 式2.513、式2.514、和式2.519都是能量守恒定律的表现形式。

2.6 状态方程熵定律

完整地表征一个热力学统称做是对这个系统状态的描述。用来描述这个状态的物理量称状态参数。状态参数随着时间变化表征一个热力学过程。但是,在一般情况下,这些状态参数并不全是独立的,它们之间存在着某种关系。这种关系就称为状态方程。如果某个状态参数可以通过其它几个状态参数表出,则称它为状态函数。

现在,我们考虑一个均匀的热力学系统,它处于平衡状态,即在没有外界影响的条件下,系统的各部分在长时间内不发生任何变化。描述这样一个热力学系统的状态参数为:几何参数V(体积)、力学参数p(压力)及热力学参数T(温度)。联系这三个量的关系的状态方程可写成

()0,,=T V p F (2.601)

这里需要指出的是,对于一定的物质来说,状态方程是普遍适用的,也就是说,构成热力学系统的物质一经选定,状态方程的具体形式也就确定了。 例如对于完全气体而言,状态方程的具体形式可写成

pV m M

R T =0 (2.602) 其中m 为气体的质量,M 为分子量,R 0是克分子气体常数。

在上一节我们曾叙述过热力学第一定律,它公设机械能和热能可以互相转换,但是,只根据热力学第一定律还不能判定这种转换过程是否可逆。事实上,所有的真实过程都是不可逆的,但可逆过程却是一个非常有用的假设,因为在许多情况下,能量耗损是可以忽略不计的。可逆性判据由热力学第二定律给出。

热力学第二定律公设存在两个独立状态函数:绝对温度T 和熵S 。它们有如下性质:绝对温度T 为一正量,它仅仅是经验温度θ(即我们通常见到的温度)的函数,熵S 和体积V 一样,是一个广延量,而温度是与熵相对应的强度量,正如压强是与体积相对应的强度量一样。一个物体的强度量代表物质的内在性质,与物体的质量大小无关,而一个物体的广延量则可分解为物体上各个子部分上的广延量之和。因此,一连续介质的总熵S 可写成下列形式:

sdV S V ρ?= (2.603) 这里s 表示连续介质中的熵密度,即每单位质量中的熵。

一个系统的熵既可由于与外界相互作用而发生改变,也可由于系统内部发生变化而改变,因此 ()()i e ds ds ds += (2.604) 这里ds 是熵密度的增量,()e ds 是由于与外部相互作用而引起的熵密度增量。()i ds 是由于系统内部发生变化而引起的熵密度的增量。()i ds 决不能为负值。它在可逆过程中为零,在不可逆过程中为正,即

()0>i ds (不可逆过程) (2.605) ()0=i ds (可逆过程) (2.606) 在可逆过程中,如果令()R dq 表示供给系统的每单位质量的热量,则()e ds 可表示为 ()()

T

dq ds R e =

(可逆过程) (2.607)

按照热力学第二定律,在连续介质所占据的物理空间中总熵的时间变率不小于通过连续介质表面流入的熵与连续体内部源产生的熵之和。在数学上,这个熵原理可以以积分形式表示为

dS T

n f edV sdV dt d

S

V V ????-≥ρρ (2.608) 称之为克劳修斯—杜姆不等式,其中e 为单位质量中的局部熵源。上式中的等号成立时表示可逆过程,不等号成立时代表不可逆过程。 利用质量守恒定律

()dV dt

d

S dV dt ds sdV dt d V V

V ρρρ???+= dV dt

ds

V

ρ?=

和高斯公式

dV T f dS T n f V V ????

?

????=?

考虑到体积V 的任意性,则由式2.608可得克劳修斯—杜姆不等式的微分形式

01≥???

????--T f e dt ds ρ (2.609)

2.7 主应力最大剪应力

t n T =?表示物体中一点周围不同方向上的应力矢量公式,当应力张量已知时,在给定的任何一个方向n 上的应力矢量就由t n T =?给出。下面,我们将要讨论的问题是,对于某给定点来说,在什么方向上法向应力T n 取驻值。这个问题归结为在n 为单位矢量的条件下,即

n n n n n n 2122232

=?=++

==n n k k 1 (2.701) 时,求T n 的条件极值问题。运用大家所熟知的拉格朗日乘子法,有

??λ??T n f

n n i i

-=0 (2.702) 其中f 为约束条件

()011=-=-?=k k n n n n n f (2.703) 考虑到T T ij ji =,则由式2.110可得 T n t n T n n =?=??

()()()l l q p pq k k e n e e T e n ??= =δδkp k pq l ql n T n

=n T n p pq q (2.704) 将上式代入式2.702,则

??λ??T n f

n n i i

- ()()1---

=k k i q pq p i n n n n T n n ??λ??

=+-????λ??n n T n n T n n n n n p i pq q p pq

q i k i

k 2 =+-δδλδpi pq q p pq qi ki k T n n T n 2

()02=-=i q iq n n T λ (2.705)

或写成不变性形式,即

T n n ?=λ (2.706) 或

()0=?-n I T λ (2.707) 写成展开形式,则为

()0313212111=++-n T n T n T λ ()0323222121=+-+n T n T n T λ

()0333232131=-++n T n T n T λ (2.708) 上列方程中n 具有非零解的充分必要条件是它的系数行列式为零,即

T ij ij -=λδ0 (2.709) 或

λλλ312

230-+-=I I I (2.710) 其中

I T T T T trT ii 1112233=++== (2.711)

I T T T T T T T T T T T T 211122122111331332223

3233=++

()ij jj ii T T T -=21

()[]

22

2

1trT trT -= (2.712)

I T T T T T T T T T T T ij 3111213

122223313233

===det (2.713)

这里I 1,I 2,I 3是应力张量T 的三个主不变量,分别称为第一、第二、第三应力

不变量。方程的解λ1,λ2,λ3为特征值,n 1,n 2,n 3

为特征矢量。其中若λλi j ≠,则n n i j ⊥。

事实上,在n i 方向上法向应力值就是n i 所对应的特征值。将式2.706与n i

点乘,得

λλi i i i i i i i

n n n T n t n =?=??=? (2.714)

则λi 就是n i 方向上的应力,称为主应力,而n i

称为主方向,主方向所确定的平面称为主平面。

若n i 和n j 不两个不同的主方向()j i ≠,则在n i 面上n j

方向的剪应力T ij 为

T n T n n n ij i j i i j

=??==λ0 (2.715)

故主应力平面上的剪应力为零。若以(n 1,n 2,n 3

)为坐标单位基矢量,并令λi i T =,则应力张量矩阵具有下列形式:

[]??

???

?????=321000000T T T T (2.716) 即

T Tn n i i i

= (2.717) 现在我们来讨论最大剪切应力问题。为了计算方便,不妨将坐标系选取在主方向上,即取(e 1,e 2,e 3)为主方向。设n 是通过物体内一点的某一平面的单位法向矢量,则

n n e n e n e n e k k =++=112233 (2.718) 作用于该平面的应力矢量分量为 t n T n e Te e k k i i i =?=? (2.719) n T e n Te k i ki i i i i δ= (2.720) 在该平面上的法向应力为

T t n n Te n e n i i i j j =?=?? =n n T i j i ij δ

2i i n T = (2.721) 若以T S 表示该平面的总剪应力的大小(如图2.6),则

T t T S n 22

2

=- (2.722) 即

T t t T S n 22

=?-

()2

i i i j j j i i i T n n e T n e T n -?=

()

2

2i i i i i i T n n T n n -= (2.723) 222i i n n T T =-

我们仍运用拉格朗日乘子法计算T S 2

的驻值,考虑到n 为单位矢量,令

()011=-=-?=i i n n n n n f (2.724)

??λ??T n f

n S k k

20+= (2.725) 其中

??????T n n T n n T T n S k i i i k n

n k

2222=- 2

222i i i ik n i i

k n nT T nT n ?δ???=- ??

? ()224i i ik n i i ik n T T n T δδ=-

224k i k n i n T n T T =-

()222k i i n n T TT =- (2.726)

()1-=

i i k

k n n n n f ??

?? ===222n n n n n i

i

k

i ik k ??δ (2.727) 于是

()2220k i i n n T TT λ-+= (2.729) 即

(

)0221211=+-λT T T n n

()0222

222=+-λT T T n n

()0223

23

3

=+-λT T T

n n (2.730)

利用条件2.724,则方程组2.730显然有一组解 n 11=±,n n 230== n 21=±,n n 130==

n 31=±,n n 120== (2.731)

但是这组解所确定的平面就是主平面,而在主平面上T S 2

0=,这不是我们所要求的解。

假定在式2.730中n 10≠,n 20≠,n 30=,则

T T T n 12

120-+=λ

T T T n 22

220-+=λ (2.732) 将上列两式相减,则有

()02212221=---T T T T T n (2.733) 故得

T T T n =

-12

2

(2.734) 把它代入式2.721中并与n n 1222

1+=联立,则可解得

n 11

2

=±,n 212=±,n 30= (2.735)

这时n 方向与主方向e 2,e 3成45度角。

同样,若设n 10≠,n 20=,n 30≠和n 10=,n 20≠,n 30≠则对应的n 值分别为

n 11

2

=±,n 20=,n 312=± (2.736)

n 10=,n 212=±,n 31

2

=± (2.737)

考虑到上列三组驻值,则

当()212

1

e e n +±

=时,()2121T T T S -±= (2.738) 当()132

1

e e n +±

=时,()1321T T T S -±= (2.739) 当()122

1

e e n +±

=时,()3221T T T S -±= (2.740) 因此,剪切应力的最大值由下列三个值中的最大值给出

T T 122-,T T 312-,T T 23

2

- (2.741)

()()()2

min

max max n n S T T T -= (2.742)

《连续介质力学》期末复习提纲-总

<连续介质力学> QM 复习提纲(2010.12) 一、基本要求 1、掌握自由指标与哑指标的判别方法及表达式按指标展开; 2、掌握ij 与ijk e 的定义、性质及相互关系; 3、掌握二阶张量坐标转换的计算; 4、掌握二阶张量特征值、特征向量与三个不变量的计算方法; 5、掌握哈密顿微分算子及其基本计算; 6、掌握小变形应变张量、转动张量及转动向量的计算; 7、掌握正应变的计算; 8、掌握正应力、剪应力及应力向量的计算; 9、掌握应力张量与应变张量的对称性; 10、掌握能量密度及能通量密度向量的计算; 11、掌握各向同性线弹性体的广义胡克定律的两种形式; 12、掌握应力张量与体积膨胀率的关系; 13、掌握各向同性线弹性体的应变能密度函数; 14、会对材料的各个弹性参数之间的关系进行相互推导; 15、掌握从质点的运动方程推导Navier 方程的过程; 16、掌握从质点的运动方程出发推导纵横波的方程的过程; 17、掌握地震波速度与泊松比的关系; 18、掌握非均匀平面简谐波的传播特征; 19、掌握P 波、SV 波入射到自由界面上的传播特征; 20、掌握利用自由界面边界条件确定反射系数和反射波位移场的方法; 21、掌握Reilaygh 波和Stonely 波的传播特征; 22、掌握P 波入射到两种弹性体接触面上的反射系数和透射系数的计算方法; 二、复习题 简答论述题 1、试解释“连续介质”所必须满足的条件。 2、简述弹性动力学基本假设。 3、说明应力、应变、正应力、正应变、剪应力及剪应变的含义。 4、说明杨氏模量、泊松比、体积模量与剪切模量的物理含义。 5、简述小变形应变张量的几何解释。

哈工大材料力学性能大作业-铁碳马氏体的强化机制

铁碳马氏体的强化机制 摘要:钢中铁碳马氏体的最主要特性是高强度、高硬度,其硬度随碳含量的增加而升高。马氏体的强化机制是多种强化机制共同作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和综合强化等。本文介绍了铁碳马氏体及其金相组织和力学特性,着重深入分析马氏体的强化机制。 关键词:铁碳马氏体强化机制 1.马氏体的概念,组织及力学特性 1.1马氏体的概念 马氏体,也有称为麻田散铁,是纯金属或合金从某一固相转变成另一固相时的产物;在转变过程中,原子不扩散,化学成分不改变,但晶格发生变化,同时新旧相间维持一定的位向关系并且具有切变共格的特征。 马氏体最先在淬火钢中发现,是由奥氏体转变成的,是碳在α铁中的过饱和固溶体。以德国冶金学家阿道夫·马登斯(A.Martens)的名字命名;现在马氏体型相变的产物统称为“马氏体”。马氏体的开始和终止温度,分别称为M始点和M终点;钢中的马氏体在显微镜下常呈针状,并伴有未经转变的奥氏体(残留奥氏体);钢中的马氏体的硬度随碳量增加而增高;高碳钢的马氏体的硬度高而脆,而低碳钢的马氏体具有较高的韧性。 1.3马氏体的力学特性 铁碳马氏体最主要的性质就是高硬度、高强度,其硬度随碳含量的增加而增加。但是当碳含量达到6%时,淬火钢的硬度达到最大值,这是因为碳含量进一步提高,虽然马氏体的硬度会提高但是由于残余奥氏体量的增加,使钢的硬度反而下降。 2.铁碳马氏体的晶体学特性和金相形貌 钢经马氏体转变形成的产物。绝大多数工业用钢中马氏体属于铁碳马氏体,是碳在体心立方结构铁中的过饱和固溶体。 铁碳合金的奥氏体具有很宽的碳含量范围,所形成的马氏体在晶体学特性、亚结构和金相形貌方面差别很大。可以把铁碳马氏体按碳含量分为5个组别(见表)【1】。

材料力学上机大作业(哈工大)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 材料力学上机报告 课程名称:材料力学 设计题目:二向应力状态分析 院系:XXXXXX 班级:XXXXXX 设计者:XXXXXX 学号:XXXXXX 设计时间:2013.06.18 哈尔滨工业大学

二向应力状态分析 一:课题要求 1.输入:任意一点的应力状态:(σx、σy、τxy);某截面方位角α 2.输出:输入点的主应力(σ1、σ2、σ3),方位角α斜截面上的应力σ α、τα。 及主方向角α 3.画出应力圆示意图。 4.程序运行时为界面显示形式。 二:程序框图 三:所编程序 x=str2double(get(handles.edit1,'string')); y=str2double(get(handles.edit2,'string')); xy=str2double(get(handles.edit3,'string'));

M=str2double(get(handles.edit4,'string')); %将窗口输入值分别赋给x,y,xy,M b=sqrt((x/2-y/2)^2+xy^2);x1=(x+y)/2+b;x3=(x+y)/2-b; x2=0; if x1<0 x2=x1; x1=0; end t=(x1-x3)/2; M=M*pi/180; b1=(x+y)/2+(x-y)*cos(2*M)/2-xy*sin(2*M); b2=(x-y)*sin(2*M)/2+xy*cos(2*M); b3=90*atan((-2*xy)/(x+y))/pi;%计算输出的主切应力大小、方向和截面上的应力并赋值set(handles.edit5,'string',x1); set(handles.edit6,'string',x2); set(handles.edit7,'string',x3); set(handles.edit9,'string',t); set(handles.edit10,'string',b3); set(handles.edit11,'string',b1); set(handles.edit12,'string',b2);%在输出窗口显示主切应力大小、方向和截面上应力 b4=sqrt(b.^2+t.^2); v1=(x+y)/2-b4:0.001:(x+y)/2+b4; b11=sqrt(b4.^2-(v1-(x+y)/2).^2);b12=-sqrt(b4.^2-(v1-(x+y)/2).^2); %绘制应力圆上的点 axes(handles.axes1); %选择应力圆的输出地址 plot(v1,b11,v1,b12);grid on%绘制应力圆 以上程序为在matlab中使用GUI编程时的主代码,界面代码请见m文件。四:运行过程、结果和应力圆 在matlab中打开m文件,按F5使程序运行,显示窗口如下: 左侧为输入窗口,中间为相应的主切应力和斜截面应力的输出窗口,右侧为二向

张量分析在弹性力学中的应用

张量分析在弹性力学中的应用 自然界的许多问题用数学语言来描述时都需要引入坐标系,但其本质又与坐标无关。当有些自然规律用坐标形式表达后,由于复杂的方程式往往使得人们忽略了它的内在本质。张量是一种特殊的数学表达形式,它描述的结果不会因为坐标系的变化而发生变化[1],因此可以摆脱坐标系的影响,反应事物的本质。此外通过爱因斯坦求和约定、相关记法的规定等常用的表示方法,使得张量的表达形式变得十分简洁。 弹性力学,又称弹性理论,主要是研究弹性体在外力和其它外界因素作用下产生的应力、形变和位移,广泛应用于建筑、机械、化工、航天等工程领域。为了求得一定边界条件下物体的应力、应变和位移,先对构成物体的材料以及物体的变形作了五条基本假设,即:连续性假设、均匀性假设、各向同性假设、完全弹性假设和小变形假设,然后分别从问题的静力学、几何学和物理学方面出发,导得弹性力学的基本方程,即平衡微分方程、几何方程和本构方程,共15个方程[2]。由于方程数目的众多,使得我们在分析过程中往往将大部分注意力集中在了方程的形式上,从而忽略问题的本质。 如果将张量引入到物体的应力、应变和位移中,关于弹性问题的15个方程都可以用相关的符号而不是展开式来表示,一方面可以使得书写简便,更重要的是可以将大部分注意力集中在物理原理上而不是方程本身,从而深化对问题的分析[3,4]。 由于表达简洁、不会改变方程式的本质,张量分析得到了广泛的应用。黄勇对张量的概念做出了具体的分析[5];林诚之利用张量的概念推导了形状比能的表达式[6];赵超先[7]、黄晓琴[8]将张量应用于物理学中,利用应力张量对麦克斯韦磁场力进行了重新推导;明华军等利用监测得到的张量结果得到了岩体破裂面空间方位的计算方法[9];杨天鸿等以现场岩体渗透结构面概率模型统计资料为依据,采用离散介质方法建立典型裂隙网络模型,提出计算岩体结构面网络的等效渗透系数张量方法[10]。 本文的目的并不是概述张量在工程中的应用,而是主要介绍张量在弹性力学中的应用,具体介绍弹性力学中基本方程的张量表达形式以及用张量概念推导的弹性应变能函数的表达式。 2 弹性力学中基本方程的张量表达形式[2,3,4] 2.1 用张量表示弹性力学中的基本物理量 对于空间问题,受力物体在外力作用下,物体的各个点都会长生相应的应 来表示 力、应变和位移。将受力物体上一点的应力状态用应力张量 ij

如何学习《连续介质力学》

发信人: Rubik (韦小宝@好事多磨), 信区: Mathematics 标题: 个人体会-如何学习《连续介质力学》-基本概念zz 发信站: 吉林大学牡丹园站(2008年04月07日00:04:04 星期一), 站内信件 作者为baibing@SimWe 连续介质力学,也叫连续统理论,或者叫理性力学。叫连续介质力学,是因为他的框 架内一个最重要得假设是“介质是宏观连续的”,可以用连续的数学理论来处理,显 然这种命名方法带有物理,力学的的痕迹。 叫连续统理论,实际上是借用了数学上的概念。学数学的人都知道,数学中就有“连 续统”的概念,比如,连续的线段,连续的曲面,和连续的体。由于数学上这些概念 都是抽象出来的,没有物理意义的,可以叫连续统。很多人不知道连续统,连续介质 ,我想实际上可以理解为不同学科的不同称呼。但是,说连续介质,实际上表示考虑了具体物理特性的连续统。 叫理性力学,实际上是从力学研究的方法论上来命名的。以那种理性的,数学化的, 公理化的思维和方法来研究力学。看过连续介质力学书籍的人应该是深有体会的。里 面到处充满这理性的思维的魅力。 说明:本人2004年在中国科学院研究生院学习了王文标教授的《连续介质力学基础》课程。这是本人一年后的感悟,欢迎我得同学一同加入进来讨论。 不知道从什么时候开始,我养成了一个习惯,那就是每接触一个新的学科,总是希望 获得这门学科最权威而且是最经典,最全面的书籍。当然这样的书籍是找不到的。但是,相对而样比较好的书籍还是有的,力学更是这样。 《非线性连续统力学》,北航出版社,李松年,黄执中的作品,80年代中期写的。这本书我第一次看到的时候,惊为天人所写,前半部分写的是张量分析,后面是连续统 力学,两方面都比一般的连续介质力学全面,而且讲解浅显易懂。特别是其前言和结语写的尤为出色,不仅概括了这门学科的梗概,而且指出了这门学科的前景,真是绝 佳的资料。 A.C.ERIGEN的《连续统力学》,这是我目前见到的最经典的书,实际上前面一本书很大一部分是参考了这本书编写的,当然,加入了自己的内容(这是我读后才知道的) 。这一点都不奇怪, A.C.ERIGEN是连续统力学的鼻祖人物,也是集大成者。和钱伟长先生关系很好。 英国东英格兰大学的查德威克先生写的《连续介质力学简明理论和例题》,虽然这本书只有短短一百多页,但是用逼一般力学书籍夺得数学,比数学书籍少得多的数学非 常准确地阐释了连续介质力学理论,尤其是和数学地结合方面,能够让你从本质上, 从数学的角度认识和理解连续介质力学。而且有大量的习题。 陈志达先生的《理性力学》。大家都知道陈志达先生吧,中国矿业大学的老师,98年

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

材料力学重修课大作业

一、概念性题型 1.据均匀性假设,可认为构件的下列各量中的某个量在各点处都相同: (A ) 应力; (B )应变; (C ) 材料的弹性常数; (D )位移; 正确答案是 。 2.根据各向同性假设,可认为构件的下列各量中的某一种量在各方向都相同: (A) 应力; (B ) 应变; (C )材料的弹性常数; (D ) 位移; 正确答案是 。 3.关于确定截面内力的截面法的适用范围,有下列四种说法: (A) 仅适用于等截面直杆; (B) 仅适用于直杆承受基本变形; (C) 适用于不论基本变形还是组合变形,但限于直杆的横截面; (D) 适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况; 正确答案是 。 4.判断下列结论的正确性: (A ) 杆件某截面上的内力是该截面上应力的代数和; (B ) 杆件某截面上的应力是该截面上内力的平均值; (C ) 应力是内力的集度; (D ) 内力必大于应力; 正确答案是 。 5.甲、乙两杆,几何尺寸相同,轴向拉力P 相同,材料不同,它们的应力和变形有四种可能: (A ) 应力σ和变形l ?相同; (B ) 应力σ不同和变形l ?相同; (C ) 应力σ相同和变形l ?不同; (D ) 应力σ不同和变形l ?不同; 正确答案是 。 6.关于下列结论: 1) 应变分为线应变和角应变 ; 2) 应变为无量纲量; 3) 若物体的各部分均无变形,则物体内各点的应变均为零; 4) 若物体内各点的应变均为零,则物体无位移; 现有四种答案:(A )1、2对;(B )3、4对; (C )1、2、3对; (D )全对; 正确答案是 。 7.等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉 伸理论告诉我们,影响该杆横截面上应力的因素是: (A )E 、ν、P ; (B )l 、A 、P ; (C )l 、A 、E 、ν、P ; (D ) A 、P ; 正确答案是 。 8.低碳钢试件拉伸时,其横截面上的应力公式 A N =σ; (A ) 只适用于σp σ≤;(B) 只适用于θσσ≤;(C ) 只适用于s σσ≤; (D ) 在试件拉断前都适用; 正确答案是 。 9.当低碳钢试件的试验应力s σσ=时,试件将: (A ) 完全失去承载能力;(B ) 破断; (C ) 发生局部颈缩现象;(D ) 产生很大的塑性变形;正确答案是 。 10.伸长率(延伸率)公式 ()?-=l l 1δ100% 中 1l 指的是什么? (A ) 断裂时试件的长度; (B ) 断裂后试件的长度; (C ) 断裂时试验段的长度; (D ) 断裂后试验段的长度; 正确答案是 。 11.低碳钢拉伸经过冷作硬化后,以下四种指标中哪种得到提高: (A ) 强度极限; (B ) 比例极限; (C ) 断面收缩率; (D ) 伸长率; 正确答案是 。 12.脆性材料具有以下哪种力学性质: (A ) 试件拉伸过程中出现屈服现象; (B ) 压缩强度极限比拉伸强度极限大得多; (C ) 抗冲击性能比塑性材料好; (D ) 若构件因开孔造成应力集中现象,对强度无明显影响; 正确答案是 。

《连续介质力学》期末复习提纲--弹性力学部分.docx

〈连续介质力学〉期末复习提纲一弹性力学部分 1、自由指标与哑指标判别(★) 2、自由指标与哑指标的取值范围约定 3、自由指标与哑指标规则 4> Einstein 求和约定(★) 5、Kronecker-delta 符号(★) 、、, f 0, i j 定乂:廿 性质:(1) §ij= Eji (2)e f -e)= % (3)戈=久+爲2+爲3=3 (6) S ik5kj=S ij 6、Ricci符号(置换符号或排列符号)(★) 1,北为1,2,3的偶排列 定义:e..k = -1, ■从为1,2,3的奇排列 0, 门,舛任两个相等 性质:(1) e ijk = e jki = e kij = -e Jik = -e ikj = -e kji (2)弓23 =幺23] =?】2 =1 (3)弓32=?2I =勺口=_1 ⑷e^ej=e ijk e k (5) (axb)k = egbj, a、b为向量 7、%与爲的关系(★) 魯i詁0 § ZQ

8、坐标变换(★) 向量情形: 旧坐标系: ox [兀込尹丘,仔,£ 新坐标系: 州兀姿戸心乙列 变换系数: e[?e 尸(3 坐标变换关系: X , i - 0ijXj x t = 0jXj 0厂(角)T 矩阵形式为: 011 012 013 011 0 】2 013 X * = 021 022 023 兀2 或[耳,兀;,堪]=[西,兀2,兀 021 022 023 A.几 2 A.3_ _^3_ .031 032 033. 011 012 013 A 011 012 013 兀2 — 021 022 023 %; 或[西,吃,兀3] = [X ,%;,兀;] 021 022 023 _031 032 033 _ .031 032 033. 张量情形 入芋与A“?是两个二阶张量,角是坐标变换系数矩阵,则有 気=炕0“九 矩阵形式为[匍=[0]|? ]|> ],其中[A J=[A ]T (★) 9、 张量的基本代数运算 (1) 张量的相等 (2) 张量的加减法 (3) 张量的乘积 (4) 张量的缩并 (5) 张量的内积(★) (6) 张量的商法则 10、 几中特殊形式的张量 (1) 零张量 (2) 单位张量

第六章-连续介质力学基础

连续介质力学基础 物质坐标和空间坐标 对于有限个质点组成的质点系统,我们可以采用给质点编号的方式区分各个质点;对于有无限个质点组成的系统,我们就采用坐标识别系统中各个质点。用于标示质点的坐标称为物质坐标132(,,)ξξξ;表示空间中几何点的坐标312(,,)x x x 则称为欧拉坐标。 两种坐标是通过连续介质的运动联系起来的:如果在时刻t 质点132(,,)ξξξ占据空间位置312(,,)x x x ,则二者之间具有函数关系: 123(,,,)k k x x t ξξξ= 由于这个函数必须是一一影射的,其反函数存在并且唯一: 123(,,,) k k x x x t ξξ= 因此,质点的位置矢量、速度等都可以等价地用物质坐标或空间坐标描述: (,)((),)t t =r ξr ξx 当我们采用物质坐标时,相应的基矢量: i i ?ξ ?=?r g 当我们采用空间(Euler )坐标时,相应的基矢量: i i x ?= ?r g 两者之间具有转换关系: k k i k i k i i x x ?x ξξξ ????===????r r g g j j m m ?x ξ?=?g g k k i k i i k i ?x x x ξξξ????===????r r g g j j m m x ?ξ ?=?g g 物质导数 质点的速度: D D k k k k (,t )()x (,t )v t t x t ???==???r r ξr x ξv g 算子D D t 称为物质导数(全导数)。它的含义是保持物质坐标不变时,张量随时间的变

化率。 Euler 坐标基底矢量的物质导数: k k m i i ik m k D v v Dt x ?==Γ?g g g i i k k i m mk k D v v Dt x ?==-Γ?g g g 物质坐标(Langrange )基底矢量的物质导数: ?(,)()i i D t Dt t ξ ??=??g r ξ 欧氏空间中矢量求偏导数的顺序是可以交换的,因此 ?(,)()i i i D t Dt t ξξ ???==???g r ξv 利用协变基与逆变基之间的关系,我们得到: () m i i i m ?D ????Dt ξ ?=??=???g v g g v g () m i i i m ?D ????Dt ξ ?=??=???g v g g g v Langrange 逆变基底矢量的物质导数可以由逆变基的定义式 j j i i ??δ?=g g 求得。显而易见: ??()0i m D Dt ?=g g 因此 i m i i m m ??D D ???Dt Dt ξ ??=-?=-??g g v g g g 该式左端是逆变基物质导数在协变基下的分量,因而 ????()???i i m i m m i i m D Dt ξ ξ ?=-??=-????=-??=-???g v g g g v v g g v g (物质坐标基底矢量的物质导数可表示为速度梯度与基矢量的点积;协变基的导数与哈密顿算子相邻;逆变基的导数与负的速度矢量相邻)

工程力学大作业1(答案)

大作业(一) 一、填空题 1、杆件变形的基本形式有(轴向拉伸和压缩)、(剪切)、(扭转)和(弯曲) 2、材料力学所研究的问题是构件的(强度)、(刚度)和(稳定性)。 3、脆性材料的抗压能力远比抗拉能力(强)。 4、同一种材料,在弹性变形范围内,横向应变ε/和纵向应变ε之间有如下关系:(ε/= -με) 5、(弹性模量E )是反映材料抵抗弹性变形能力的指标。 6、(屈服点σs )和(抗拉强度σb )是反映材料强度的两个指标 7、(伸长率δ)和(断面收缩率ψ)是反映材料塑性的指标,一般把(δ>5%)的材料称为塑性材料,把(δ<5%)的材料称为脆性材料。 8、应力集中的程度可以用(应力集中因数K )来衡量 9、(脆性材料)对应力集中十分敏感,设计时必须考虑应力集中的影响 10、挤压面是外力的作用面,与外力(垂直),挤压面为半圆弧面时,可将构件的直径截面视为(挤压面) 11、如图所示,铆接头的连接板厚度t=d ,则铆钉剪应力τ= ( 2 2d P πτ= ) ,挤压应力σbs =( td P bs 2=σ )。 P/2 P/2 二、选择题 1、构成构件的材料是可变形固体,材料力学中对可变形固体的基本假设不包括(C ) A 、均匀连续性 B 、各向同性假设 C 、平面假设 D 、小变形假设 2、下列力学性能指标中,(B )是强度指标 A 、弹性模量E B 、屈服强度s σ C 、伸长率δ D 、许用应力σ 3、下列力学性能指标中,(C )是反映塑性的指标 A 、比例极限p σ B 、抗拉强度b σ C 、断面收缩率ψ D 、安全系数n 4、下列构件中,( C )不属于轴向拉伸或轴向压缩 A 、 B 、 C 、 D 、

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

力学学科分类---力学是从物理学中独立出来的一个分支学科

力学学科分类---力学是从物理学中独立出来的一个分支学科 力学分类 力学是研究物质机械运动的科学。机械运动亦即力学运动,是物质在时间、空间中的集团变化,包括移动、转动、流动、变形、振动、波动、扩散等。力学原是物理学的一个分支学科,当物理学摆脱了机械(力学) 的自然观而获得进一步发展时,力学则在人类生产和工程技术的推动下按自身逻辑进一步演化和发展,而从物理学中独立出来。它既是探索自然界一般规律的基础科学,又是一门为工程服务的技术科学,担负认识自然和改造自然的任务。力学的研究对象是以天然的或人工的宏观的物质机械运动为主。但由于本学科自身的发展和完善以及现代科技发展所促成的学科的相互渗透,有时力学也涉及微观各层次中的对象及其运动规律的研究。机械运动是物质的最基本的运动形式,但还不能脱离其他运动(热、电磁、原子、分子运动及化学运动等) 形式而独立存在,只是在研究力学问题时突出地甚至单独地考虑机械运动形式而已。如果需要考虑不同运动之间的相互作用,则力学与其他学科之间形成交叉学科或边缘学科。力学产生很早, 古希腊的阿基米德(约公元前287 —212) 是静力学的奠基人。在欧洲文艺复兴运动以后,人们对力和运动之间的关系逐渐有了正确的认识。英国科学家牛顿继承和发展了前人的研究成果,提出了物体运动三定律,标志着力学开始成为一门科学。到了20 世纪,力学更得到蓬勃的发展。到目前为止,已形成了几十个分支学科,诸如一般力学、固体力学、结构力学、物理力学、流体力学、空气动力学、流变学、爆炸力学、计算力学、连续介质力学、应用力学、岩土力学、电磁流体力学、生物力学,等等。为了充分发挥这些力学文献的作用,必须对其进行科学的分类。本文拟对力学文献的分类标准、分类体系和分类方法进行研究。 一、力学文献的分类标准 根据力学文献的属性,其分类标准很多,但根据读者(用户) 的检索需求和文献分类法的立类列类原则,主要采用以下9 种标准: 1.1 根据研究对象分 根据研究各种物体不同的运动,力学就形成了不同的分类。例如:当物体是液体或气体时,就是流体力学;当物体是固体时,就是固体力学;当研究固体在外界加力影响下,内部的变形和应力状态,以及它受力的性能时,就是弹塑性力学;当研究物体的整体运动的时候,而不去仔细考虑物体每一部分的情况便是一般力学。 1.2 根据研究方法分 根据研究方法,力学可以分为实验力学、理论力学、物理力学、理性力学和计算力学等。1.3 根据研究的时代分 根据研究的时代,力学可以分为经典力学和近代力学。从牛顿至哈密顿的理论体系称为经典

连续介质力学几个定律汇总情况

第二章连续介质力学的基本定律 在第一章中,我们仅考察了连续介质运动的运动学描述,而没有考虑到引起运动和变形的因素。本章我们将引入应力等概念,并给出连续介质力学的基本定律:质量守恒定律、动量平衡定律、动量矩平衡定律、能量守恒定律及熵不等式。 2.1 应力矢量与应力张量 在物体的运动中,物体的两部分之间或物体与其外界间的力学作用是通过力来描述的。在连续介质力学中我们主要研究三种类型的力:(1)一个物体的两部分之间的接触力;(2)由外界作用于物体边界上的接触力;(3)由外界作用于物体内部点的非接触力(如重力、离心力等)。在另一方面,由于(1)(2)型的力总是通过某一接触面发生作用的,因此通常把作用于单位接触面积上的接触力称为表面力,或简称面力;由于(3)型力作用于物体整个体积内所含的物质点,因此通常把它称为体积力,或简称体力。 在连续介质力学中重要的公理之一就是关于接触力形式的柯西假设。柯西假设在运动过程中的时刻t对于任何物质坐标X和与之对应的接触面S上的单位法矢量n,表面力的存在形式为 ()n t X t t,, =(2.101) 通常,我们规定()n t X t t,, =指向接触面S的外法向时为正,反之为负(见图2.1). 现在不管在X和S面与S'面的曲率相差多少。 为了研究物体内部的力学状态,我们把一物体用一假想平面S截断成两部分A和B,如图2.3所示。此时S面就是A和B相互作用的接触面,B部分对A部分一 点的作用,便可以用A部分截面上的表面力t n 来表征,我们称之为应力矢量。反过来,考虑A部分对B部分作用,按照牛顿的作用与反作用定律可得应力矢量 t n -。它与t n 作用于同一平面上的同一点处,并且大小相等,方向相反。即 t t n n =-(2.102) 对于物体内部的一点P,通过它可以有无穷多个方向的截面,而对于不同 方向的截面,应力矢量也就不同,这种复杂情况只有引进应力张量的概念才能充分地加以描述。为了刻画一点的应力状态,设想在一点P的附近任意给定一个单位法矢量为

材料力学大作业03。

材料力学大作业03 1.压杆稳定是不是就是偏心受压(压弯组合),不是的话,它和大偏心受压,小偏心受压有什么区别。 答:压杆稳定是指当受拉杆件的应力达到屈服极限或强度极限时,将引起塑性变形或断裂。长度较小的受压短柱也有类似的现象,例如低碳碳钢短柱被压扁,铸铁短柱被压碎。这些都是由于强度不足引起的失效。大偏心受压的破坏就是受拉破坏,小偏心就是受压破坏。大小偏心受压破坏原因就是,大偏心由于压力偏离构件轴心比小偏心要远,受压产生的弯矩比较大,构件就相当于是受弯破坏的。小偏心的偏心距比较小,距离轴心近(可以就理解为压力作用在轴心上),构件就是受压破坏的。 2.简述圣维南原理及其应用。 答:圣维南原理是弹性力学的基础性原理,其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。 圣维南原理在实用上和理论上都有重要意义。在解决具体问题时,如果只关心远离荷载处的应力,就可视计算或实验的方便,改变荷载的分布情况,不过须保持它们的合力和合力矩等于原先给定的值。圣维南原理是定性地说明弹性力学中一大批局部效应的第一个原理。 3.简述应力集中及其应用。 答:应力集中:应力集中是指结构或构件的局部区域的最大应力值比平均应力值高的现象。应用:自行车内胎被刺破后,可用橡胶补块补块一般剪成圆形或椭圆形,而非正方形,且补的边缘剪成斜茬形下面(与内胎粘合面)宽,补块的边缘剪成斜茬形使整个内胎平滑降低应力集中应数,避免在运动中由于应力集中出现补快脱落的情况。 4.简述塑性材料低碳钢受力变形的几个阶段,及其表现。

材料力学大二

材大二:应力与应变分析 题目 材大2-1结构内某点的空间应力状态如图1所示,试计算该点主应力及最大切应力,并按第四强度理论求出该点的相当应力。 图1大2-1 图2大2-2 材大2-2单元体应力状态如图2所示,图中应力单位为MPa。求该点的三个主应力和最大切应力。 材大2-3某单元体如图所示,试利用应力圆的几何关系求: (1) 指定截面上的应力; (2) 主应力的数值。 图2大2-2 图12-41习12-1 材大2-4(习12-1)求如图12-41所示单元体的主应力,并在单元体上标出其作用面的位置。 图12-42习12-2 、两点的应力状态如图12-42所示,试求各点的主应力和最大剪材大2-5(习12-2)A B 应力。 材大2-6(习12-3)已知应力状态如图12-43所示,试求主应力及其方向角,并确定最大剪应力值。

图12-43习12-3 图12-44习12-4 材大2-7(习12-4)如图12-44所示单元体,求: (1)指定斜截面上的应力; (2)主应力大小及方向,并将平面标在单元体图上。 材大2-8(习12-5)如图12-45所示结构中,11kN F =,20.5kN F =,e 1kN m M =?, 50mm d =,求A 点的主应力。 图12-45习12-5 图12-46习12-6 材大2-9(习12-6)某点的应力状态如图12-46所示,求该点的主应力及最大剪应力。 材大2-10(习12-7)如图12-47所示,已知单元体的泊松比0.25μ=,=200GPa E 。试求: (1)主应力; (2)最大剪应力; (3)1σ方向的应变max ε。 图12-47习12-7 图12-49习12-9 材大2-11(习12-9)某点应力状态如图12-49所示。试求该点的主应力及最大剪应力,并画出三向应力圆。 材大2-12(习12-10)直径为d 的实心圆轴,受e M 作用如图12-50所示。测得轴表面A 点与轴线成-45方向的线应变ε,试导出用e M d ε、、表示的剪切弹性模量G 的表达式。 图12-50习12-10 图12-51习12-11 材大2-13 (习12-11)如图12-51所示,直径D 的圆轴,两端受扭转力偶e M 的作用。今测得与轴线成45方向的线应变45ε。已知材料的弹性模量为E ,泊松比μ,求e M 的表达式。

材料力学上机大作业(matlab编)

一、可实现课题 在如图所示的悬臂梁中,杆件为圆杆。杆长为L ,直径为D ,材料弹性模量为E 。输入集中力F 大小,作用点a ,弯矩M ,作用点b ,即可求得悬臂梁的挠度曲线图。 二、程序代码 clear all disp('请给定材料信息'); %输入材料信息 L=input('圆杆长度L(/M)='); D=input('圆杆直径D(/M)='); E=input('弹性模量E(/GPa)='); I=double(D^4*3.14/32); disp('请给定受力情况'); %输入受力情况 F=input('切向集中力大小F(/N)='); a=input('切向集中力作用位置(/M)='); M=input('弯矩大小M(/N*M)='); b=input('弯矩作用位置(/M)='); x1=0:0.01:a; %F 引入的挠度 vx1=(-F*x1.^2*3*a+F*x1.^3)*(1/(6*E*10^9*I)); x2=a:0.01:L; vx2=(-F*a.^2*3*x2+F*a.^3)*(1/(6*E*10^9*I)); v11=[vx1,vx2]; x11=[x1,x2]; x3=0:0.01:b; %M 引入的挠度 vx3=(-M*x3.^2)*(1/(2*E*10^9*I)); x4=b:0.01:L; vx4=(-M*b*x4+M*0.5*b.^2)*(1/(E*10^9*I)); x22=[x3,x4]; v22=[vx3,vx4]; v33=v22+v11; %叠加 plot(x11,v33),xlabel('x /M'),ylabel('v(x) /M') a b L F M

《连续介质力学》期末复习提纲--弹性波理论部分

<连续介质力学> 期末复习提纲—弹性波理论部分 1、无界线弹性体中的波传播 (1)Helmholtz 定理 a. 定理内容 b. 位移场的分解---无旋部分与无散部分 (1)(2u u u =+ ,其中(1)0u ??= ,(2)0u ??= c. 转动向量与体积膨胀率的位移场表示 (2)21122 u ωψ=??=-? , (1)2u θφ=??=? (2)无界线弹性体中的P 波与S 波 a. 体积膨胀率与转动向量满足的波动方程 (★) 2212211 112,f c c c λμ θθ ρ +?+??== 2 2 2222211,2f c c c μωωρ ?+??== b. Helmholtz 势满足的波动方程 222 2 22221211,b B c t c t φφφψ???+=?+=?? c. 位移场无旋部分与无散部分满足的波动方程 2 (1) (1)2 (2) (2) 221 2 1 1 ,u b u u B u c c ?+?=?+??= d. 纵波与横波的相速度及其比值 (★) 2 1121221222) 21c c c c c c c c ν??=- ????===?? ???= -?? ??? ?????? 2、无界线弹性体中的平面波 (1)波阵面、平面波与球面波 (2)一般平面波及其描述 (★)

a. 一般平面波位移场的形式 (★) (,)()u x t f x n ct d =?- b. 纵横波满足的条件及相速度公式 (★) 2 0()()()0d n n d c c P wave S wave c d n d n μρλμ?=±?=---++?= c. 一般平面波的能量密度与能通量密度向量 (★) ① 平面纵波的情况 (★) 能量密度: [][][] 222211112 21111 2211()()22 ()p ij ij i i e u u c f x n c t c f x n c t c f x n c t ετρρρρ=+''=?-+?-'=?- 能通量密度向量:[]2 311()p ij i j u e n c f x n c t ?τρ'=-=?- 二者关系: 1p p c n ?ε= ② 平面横波的情况 (★) 能量密度: [][][] 2222212122 211 12 2 11()()22 ()s ij ij i i e u u c f x n c t c f x n c t c f x n c t ετρρρρ=+''= ?-+?-'=?- 能通量密度向量:[ ]2 321()s ij i j u e n c f x n c t ?τρ'=-=?- 二者关系: 2s s c n ?ε= (2)平面简谐波及其描述 (★) a. 描述平面简谐波的物理量 (★) kc ω=,2T π ω = ,12T ωαπ= =,22c cT k ππ ωΛ=== 2k n n c ωπ==Λ , 22 2i i k k k k k c ω?===

相关主题
文本预览
相关文档 最新文档