当前位置:文档之家› 聚合物加工流变学作业

聚合物加工流变学作业

聚合物加工流变学作业
聚合物加工流变学作业

关于聚合物挤出胀大的本构方程

摘要:聚合物流体(含溶液、熔体)在流动过程中常常呈现出殊异于牛顿流体的行为,如:孔压误差、口模膨胀效应、包轴现象效应、剪切稀化或剪切增稠、弹性湍流等。特别的,在挤出过程中,当高聚物熔体从口模中挤出时,会出现挤出物挤出模口后其横截面大于模口横截面的现象。这种现象称之为挤出胀大。正确理解挤出胀大现象,对于挤出成型至关重要。一般研究途径有两条,一是从连续介质力学理论,用唯象学观点来描述; 二是运用流变学分子理论,根据微观离散的分子力学模型,用非平衡态统计力学和连续介质力学混合的方程,导出描述流体客观力学性质的本构方程。本构方程定量描述了物质因受外力作用而偏离平衡态的响应, 即应力与应变速率的关系。本文就聚合物挤出胀大的本构方程进行归纳总结。

关键词:挤出胀大,本构方程,流变学

Abstract:Polymer fluid (including solution, melt) often appear different characteristic during flow process from the behavior of the Newtonian fluid. Such as, pore pressure error, mouth mode expansion effect, package shaft effect, shear thinning or shear thickening, elastic turbulence. Especially, When the polymer melt squeezed from the mouth mould during the extrusion processing, the extrudate extrusion die its cross section is greater than the phenomenon of die in cross section. This phenomenon is called extrusion swelling. Understanding the extrusion swell phenomenon is vital for extrusion molding. There are two general approach, one is the theory of continuum mechanics, described with phenomenological learning perspective. Another is rheology molecular theory, according to the microcosmic molecular mechanics model of discrete, export objectively describe fluid mechanics constitutive equation with the nonequilibrium statistical mechanics and continuum mechanics equations. The constitutive equation quantitative described the relationship between the stress and the strain ratematerial, due to external force and the response of the deviation from the equilibrium state. In this paper, the paper summarizes the constitutive equations of polymer extrusion swelling.

Key words:Extrusion swelling, Constitutive equation, Rheology

在聚合物熔体挤出过程中, 可观察到如下现象:挤出物的截面积大于口模的

面积, 此即为挤出胀大。1893年美国生物学家Barus首先观察到了这一现象,所

以又称Barus效应。常用胀大比B来表征熔体的胀大程度。按照象流变学的观点,

熔体在口模入口和模内的流动中产生的弹性形变,于离模后的回复,是导致挤出

物胀大的主要原因。微观流变学认为,在入口流动中,于料筒中呈自由蜷曲状态

的聚合物大分子被伸直并进入口模;在模内流动中,剪切有保持大分子取向的作

用,熔体离模后,由于外力的撤除,大分子的布朗运动使分子链趋于回复到自由

蜷曲的状态,从而导致口模膨胀。并且,随着温度升高,布朗运动越激烈,流动

中的解取向作用越强,使得B值减小。能否精确描述和模拟聚合物加工中熔体

流动,依赖于所选择的本构关系。如何正确描述这种现象,并对其进行理论分析,本文就挤出胀大过程流体客观力学性质的本构方程进行描述[1-2]。

在粘弹性流体复杂流动的数值模拟中, 本构方程的非线性和应力不能显式解出是一个基本困难。近十余年来有许多人的工作致力于克服这一困难,按照处理非牛顿应力场的方法,可把这些工作分为二类。第二类方法把非牛顿应力场作为拟体力处理,在迭代求解动量方程、连续方程中不断修正拟体力,直到获得收敛解。这样守恒方程和本构方程是分开处理的。而流线有限元能很方便地在一个程序中包括几种不同的本构方程,并且由单一松弛时间扩展到多个松弛时间中几乎不增加编程的工作量。范毓润[3]等,对Luo-Tanner提出的流线有限元做了重要的改进。使更适应于微分型本构方程的计算。将原方法沿单元边界积分本构方程改为沿通过单元高斯点的流线的积分。这样回避了速度梯度间断的困难,缓和了出口处应力奇性引起的矛盾,同时又减少了计算量。对比计算表明,用压力不连续单元来加强不可压缩性限制可以使解的质量和收敛性得到显著的提高。对Maxwell流体轴对称挤出胀大流动的计算获得Weissenberg数高达1.2的收敛解。

李勇[4]等,用Wagner本构方程对聚合物挤出胀大的三维有限元分析。积分型的Maxwell方程只适用于描述线性粘弹性,对非线性响应如剪切变稀不能描述,以Wagner为代表的流变学家根据LDPE熔体的实验数据,在Maxwell方程中引入带非线性参数的衰减函数,得到半经验的积分模型,即所谓的Wagner本构方程, 其应力由下式给出:

t

?I1,I2C?1(t′)dt′

T t=?pI+m t?t′

?∞

式中T(t)是应力张量, p是静压力, I是单位矩阵,m(t-t’)是代表时间依赖性的记忆函数,它由材料的线性粘弹性数据决定,C-1是Finger应变张量。它是Cauchy 张量C的逆,I1、I2分别是C-1、C的第一不变量,h(I1、I2)为非线性的衰减函数,它代表应变依赖性,即应力随剪切应变而衰减和随拉伸而增长,由经验得到。文章还对给出的有限元方法进行了检验,对LDPE圆形流道的挤出胀大进行三维分析,并将结果与轴对称分析和实验结果进行对比。结果表明采用三维有限元分析Wagner本构方程熔体的挤出胀大与实际情况是符合的,Wagner方程是广泛使用的最为合理的本构方程,所以在挤出加工中可以用其分析挤出物的最终形状。

图1. 直径胀率与体积流率的关系

李勇和江体乾[5]还采用有限元方法分析K-BKZ本构方程描述的聚合物熔体的三维挤出胀大。分析聚合物三维流动的挤出胀大,通过沿流线积分计算应力,经过迭代得到出口处的自由面,最终得到挤出物的形状和速度、压力分布。论证了采用有限元方法分析K-BKZ本构方程描述的聚合物熔体的三维挤出胀大的可行性。如图1,给出了不同体积流率时直径胀大率的计算结果,并把实验数据和轴对称计算结果进行比较,发现非常吻合。

郑建荣[6]等运用Picard迭代格式的有限元方法, 采用Wagner积分型本构方程对黏弹流体挤出胀大进行三维模拟分析。每次迭代根据新的自由面边界位置重新划分网格,由前一次迭代得到的速度场,算出单元高斯点流线,沿流线积分计算应力, 把应力作为拟体力,建立非线性方程组迭代格式。对不同宽度和长度的矩形流道的挤出胀大进行模拟计算,分析了流道宽度和长度对胀大率的影响。结果表明,随着宽厚比的增加,厚度胀大率随之增加;随着流道长度的增加,胀大率逐渐下降。该结果与二维狭缝流道的数值模拟和实验结果比较表明,用该方法对黏弹流体挤出胀大流动进行三维模拟是可行的和准确的。根据挤出加工的特点,

聚合物熔体等温、蠕变流动运动方程为:

??P+??τ=0

连续性方程:

??V=0

本构方程采用Wagner给出的积分型本构方程,其应力由式给出:

t

T t=?pI+m t?t′

?I1,I2C?1(t′)dt′

?∞

熔体本构关系的非线性特性,是高分子流体挤出问题的主要困难之一。主要解决方法分为两类:第一类是混合法,即把应力、速度和压力作为未知量一起求

解;另一类称分裂格式,即Picard迭代,它仅把速度和压力作为未知量求解,用前一次迭代的速度场计算非牛顿应力,再把应力项当作拟体力处理。自由边界的边界条件为混合边界条件,即应力和法向速度都为零,所以边界线就是流线。积分型本构方程的熔体二维挤出胀大的模拟大都采用流线有限元方法,即沿着流线划分网格。它利用自由边界为流线这一性质,先假定自由边界位置,根据应力边界条件求解,得到速度分布,对速度分量积分,得到流线即新的自由边界,同时内部节点也沿流线分布。采用沿通过高斯点的流线进行积分的方法。本文由于在每次迭代时单元内部的节点由网格自动划分得到,所以节点和高斯点并不沿流线分布,必须首先得出单元高斯点流动轨迹,再沿轨迹积分计算应力。运用该方法进行分析,如图2所示,流道的有限元网格的胀大图,以及厚度方向对称面上的流线图和速度等值线,其中速度等值线数值是相对于平均速度的数值。厚度的胀大率与二维数值模拟得到的胀大率一致,与实验数据也很接近,而宽度方向的胀大率B2则随着宽厚比的增加而减少。

图 2. 矩形流道挤出形状

此外,王喜顺[7]等,用有限元软件对聚丙烯发泡体系挤出胀大现象进行模拟。讨论了不同配方对聚丙烯发泡体系挤出胀大的影响,并通过与实际实验对比,得到模拟膨胀率的修正值。王伟[8]等,重构引入有限增量微积分过程的压力稳定质量守恒方程,以克服因流体不可压缩性引发的压力场空间分布虚假振荡现象。用流函数法追踪和确定移动自由面,对等温低密度聚乙烯和线型低密度聚乙烯熔体的挤出胀大进行数值模拟,数值结果与相关文献和试验结果吻合得较好。黄益宾[9]等,采用Phan-Thien and Tanner(PTT)本构方程,建立了矩形截面共挤口模内外两种聚合物熔体流动的三维粘弹数值模型,有限元模拟了聚丙烯/聚苯乙烯(PP/PS)共挤过程中的挤出胀大现象,并用实验验证了模拟结果。

涂志刚[10]等,使用粘弹性PTT 本构模型对聚合物熔体口模挤出的三维挤出胀大进行了计算机模拟,为了降低模拟对计算机内存的要求,并提高计算收敛的稳定性;采用了在动量方程中引入参考粘度,把动量方程转化成椭圆类方程的去藕算法。大量的模拟计算表明,模拟方法是可行的。文中采取把PTT 本构模型退化成牛顿流体模型的办法,间接验证模拟方法和模拟程序。

唐国俊[11]等,对粘弹性流体在应力消除后的自由弹性回复进行分析,提出一个新的挤出胀大方程,把挤出胀大比和可回复剪切应变联系起来。并与Gracsslcy 等和Tanner的理论以及实验数据作了比较。新方程的推导基于以下几点假设:(1)流体的记忆特性用只用一个松弛时间常数的Maxwell模型描述,剪切模量对剪切应力无依赖性;(2)流动是等温和体积不可压缩的;(3)毛细管长径比L/D趋向于无穷大,入口效应可以忽略;(4)不考虑惯性力、重力和表面张力的影响。

黄树新等,介绍了黏弹流体挤出胀大的数值模拟研究进展。认为挤出胀大主要是由黏弹应力决定的。根据这一基本的观点出发,还可以考察黏弹特性的时间依赖性与挤出胀大的联系,比如研究聚合物熔体的触变效应,并分析该非线性依时性特性对挤出胀大的影响。此外,利用高分辨率的高速摄像仪进行胀大结果的测定也将是一个有益的尝试其它诸如黏弹流体的表面张力、高分子熔体的体积收缩特性等方面,对挤出胀大的准确测定和模拟预测都是需要的,也有必要进行进一步定量研究。

在挤出成型加工过程中,由于高分子链弹性回复而导致挤出胀大现象,这是在挤出模具设计过程中必须考虑的因素,因为它直接影响产品的尺寸精确性和表观质量。在聚合物挤出胀大的模拟研究中,其困难来源于两方面:一是物料的非线性性质。二是挤出物的自由界面。其中对未知自由面的边界条件处理是挤出胀大计算机模拟研究中最为基本的问题。对挤出胀大进行本构方程的分析可以预知挤出物的胀大程度,度量挤出物截面轮廓与挤出口模之间的对应关系,这对于口模的设计和挤出过程的工艺控制具有重要的指导作用。

参考文献

[1]梁基照. 聚合物熔体非牛顿行为及其本构方程[J]. 广州化工, 1993, 21(1), 28.

[2]柳和生,涂志刚,熊洪槐. 聚合物熔体粘弹性本构方程[J]. 高分子材料科学与工程, 2002, 18(1), 22.

[3]范毓润, 范西俊, 路甬祥. 挤出胀大流动的有限元方法研究(2)Maxwell流体和流线有限元[J]. 水动力学研究与进展, 1989, 4(4), 51.

[4]李勇, 江体乾.用Wagner本构方程对聚合物挤出胀大的三维有限元分析[J]. 华东理工大学学报, 2002, 28(1), 96.

[5]李勇, 江体乾. 聚合物熔体三维挤出胀大的数值模拟[J]. 力学学报, 2002, 34(6), 856.

[6]李勇,郑建荣. 聚合物熔体矩形流道挤出胀大的数值模拟[J]. 中国塑料, 2010, 24(2), 78.

[7]王喜顺, 彭伟乐. 聚丙烯发泡体系挤出胀大数值模拟分析[J]. 工程塑料应用, 2008, 36(8), 28.

[8]王伟, 李锡夔, 韩先洪. 高聚物挤出胀大的迭代稳定分步算法模拟[J]. 机械工程学报, 2010, 46(2), 47.

[9]黄益宾,柳和生, 黄兴元, 赖家美. 复合共挤成型中挤出胀大的三维粘弹数值模拟[J]. 高分子材料科学与工程, 2010, 26(3), 160.

[10]涂志刚, 柳和生, 包忠诩. 粘弹性聚合物熔体挤出胀大的三维计算机模拟[J]. 塑料科技, 2003, 1, 15.

[11]唐国俊, 郑融. 一个新的挤出胀大方程[J]. 高分子通讯, 1986, 3, 161.

[12] 黄树新, 鲁传敬. 黏弹流体挤出胀大的数值模拟研究进展[J]. 力学进展,2004, 34(3), 379.

聚合物流变学复习题参考答案

1聚合物流变学复习题参考答案 一、名词解释(任选5小题,每小题2分,共10分): 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象. 2.端末效应:流体在管子进口端一定区域内剪切流动与收敛流动会产生较大压力降,消耗于粘性液体流动的摩擦以及大分子流动过程的高弹形变,在聚合物流出管子时,高弹形变恢复引起液流膨胀,管子进口端的压力降和出口端的液流膨胀都是与聚合物液体弹性行为有密切联系的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。

4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 膨胀性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 10、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。

聚合物流变学习题库

1. 一个纸杯装满水置于桌面上,用一发子弹从桌面下部射入杯子,并从杯子的水中穿出, 杯子仍位于桌面不动。如果杯里装的是高聚物溶液,这次子弹把杯子打出8米远,解释之。 答:低分子液体如水的松弛时间是非常短的,它比子弹穿过杯子的时间还要短,因而虽然子弹穿过水那一瞬间有黏性摩擦,但它不足以带走杯子。 高分子溶液的松弛时间比水大几个数量级,即聚合物分子链来不及响应,所以子弹将它的动量转换给这个“子弹-液体-杯子”体系,从而子弹把杯子带走了。 2. 已知增塑PVC 的Tg 为338K ,Tf 为418K ,流动活化能 ,433K 时的粘度为5Pa. s 。求此增塑PVC 在338K 和473K 时的粘度各为多大 答:在 范围内,用WLF 经验方程计算 又因为473K>Tf ,故用Arrhenius 公式计算, 或 3. 溶液的粘度随着温度的升高而下降,高分子溶液的特性粘数在不良溶剂中随温度的升高 而升高,怎样理解 答:在常温下,线团密度很大时,随温度升高,线团趋向松解,粘度增高。 在良溶剂中线团密度已经很小,随着温度的升高,线团密度变化不大,粘度降低。 4. 为何同一种高聚物分子量分布宽的较分布窄的易于挤出或注射成型 分子量分布宽的试样的粘度对切变速率更敏感,随切变速率的提高,粘度比窄分布的试样低。 5. 为什么高分子熔体的表观粘度小于其真实粘度 6. 不受外力作用时橡皮筋受热伸长;在恒定外力作用下,受热收缩,试用高弹性热力学理论解释. 答:(1)不受外力作用,橡皮筋受热伸长是由于正常的热膨胀现象,本质是分子的热运动。 (2)恒定外力下,受热收缩。分子链被伸长后倾向于收缩卷曲,加热有利于分子运动,从而利于收缩。其弹性主要是由熵变引起的,Tds fdl =-中,f =定值,所以,0dl T ds f =-< 即收缩,而且随T 增加,收缩增加。 7、在橡胶下悬一砝码,保持外界不变,升温时会发生什么现象 解:橡胶在张力(拉力)的作用下产生形变,主要是熵变化,即蜷曲的大分子链在张力的作用下变得伸展,构象数减少。熵减少是不稳定的状态,当加热时,有利于单键的内旋转,使之因构象数增加而卷曲,所以在保持外界不变时,升温会发生回缩现象。 9. 今有B-S-B 型、S-B-S 型及S-I-S 型、I-S-I 型四种嵌段共聚物, 其中哪些可作热塑性橡胶,为什么 (B 代表丁二烯,I 代表异戊二烯) 答:只有S-B-S 和S-I-S 两种嵌段共聚物可作热塑性橡胶,其余两种不行。因为S-B-S 和S-I-S 的软段在中间,软段的两端固定在玻璃态的聚苯乙烯中,相当于用化学键交联的橡胶,形成了对弹性有贡献的有效链——网链。而B-S-B 和I-S-I 软段在两端,硬段在中间。软段的一端固定在玻璃态的聚苯乙烯中,相当于橡胶链的一端被固定在交联点上,另一端是自由活动的端链,而不是一个交联网。由于端链对弹性没有贡献,所以,这样的嵌段共聚物不能作橡胶使用。 10. 按常识,温度越高,橡皮越软;而平衡高弹性的特点之一却是温度愈高,高弹平衡模量越131.8-?=?mol kJ E ηC T T g g ο100+-3015.11)338433(6.51)338433(44.17log 433-=-+--=g T ηη004.123015.115log log =+=g T ηs Pa g T ?=∴1210ηRT E e /0ηηη?=8226.0)43331.81031.8exp()47331.81031.8exp(33)433()473(=????=ηηs Pa ?=?=∴1.48226.05)473(η

聚合物流变学复习题参考标准答案2

高分子流变学复习题参考答案 一、名词解释: 1、蠕变:在一定温度下,固定应力,观察应变随时间增大的现象。 应力松弛:在温度和形变保持不变的情况下,高聚物内部的应力随时间而逐渐衰减的现象。 或应力松弛:在一定温度下,固定应变,观察应力随时间衰减的现象。 2、时-温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。 3、熔体破裂:聚合物熔体在高剪切速率时,液体中的扰动难以抑制并易发展成不稳定流动,引起液流破坏的现象。 挤出胀大:对粘弹性聚合物熔体流出管口时,液流直径增大膨胀的现象。 4、.熔融指数:在标准熔融指数仪中,先将聚合物加热到一定温度,使其完全熔融,然后在一定负荷下将它在固定直径、固定长度的毛细管中挤出,以十分钟内挤出的聚合物的质量克数为该聚合物的熔融指数。 5、非牛顿流体:凡不服从牛顿粘性定律的流体。 牛顿流体:服从牛顿粘性定律的流体。 6、假塑性流体:流动很慢时,剪切粘度保持为常数,而随剪切速率或剪切应力的增大,粘度反常地减少——剪切变稀的流体。 胀塑性流体:剪切速率超过某一个临界值后,剪切粘度随剪切速率增大而增大,呈剪切变稠效应,流体表观“体积”略有膨胀的的流体。 7、粘流活化能:在流动过程中,流动单元(即链段)用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量。 8、极限粘度η∞:假塑性流体在第二牛顿区所对应的粘度(即在切变速率很高时对应的粘度)。 9、拉伸流动:当粘弹性聚合物熔体从任何形式的管道中流出并受外力拉伸时产生的收敛流动。 或拉伸流动:质点速度仅沿流动方向发生变化的流动。 剪切流动:质点速度仅沿着与流动方向垂直的方向发生变化的流动。 10、法向分量:作用力的方向与作用面垂直即称为应力的法向分量。 剪切分量:作用力的方向与作用面平行即称为应力的剪切分量。 11、粘流态:是指高分子材料处于流动温度(T f)和分解温度(Td)之间的一种凝聚态。 12、宾汉流体:在流动前存在一个剪切屈服应力σy。只有当外界施加的应力超过屈服应力才开始流动的流体。 13、稳定流动:流动状态不随时间而变化的流动。 14、零切黏度——剪切速率趋向于零时的熔体黏度,即流动曲线的初始斜率。 15、非牛顿性指数:幂律公式 ? =n s Kγ σ中的n是表征流体偏离牛顿流动的程度的指数,称 为非牛顿指数。

聚合物合成工艺复习

聚合物合成工艺(1~20章) 1、高分子合成工业的任务:将基本有机合成工业生产的单体,经聚合反应 合成高分子化合物,为高分子合成材料成型工业提供基本原料。 2、合成高分子材料有:合成塑料,合成橡胶,合成纤维,涂料,粘合剂,离子交换树脂。 3、合成树脂可以用:(溶液聚合/乳液聚合/悬浮聚合/本体聚合)方法制得; 合成橡胶可以用溶液聚合/乳液聚合方法制得; 、高分子化合物生产过程有: (1)原料准备与精制过程;(2)催化剂(引发剂)配制过程; (3)聚合反应过程; (4)分离过程; (5)聚合物后处理过程;(6)回收过程。 、原料准备与精制过程:包括原料(单体、溶剂、助剂等)贮存、精制、干燥、配制、计量等过程和设备。 、催化剂(引发剂)配制过程:包括催化、引发和助剂的贮存、配制、溶解、调整浓度、计量等过程与设备。 、聚合反应过程:包括以聚合装置为反应中心的有关传热传质的过程与设备。、分离过程:包括未反应单体的分离、脱除溶剂、催化剂,脱除低聚物等过程与设备 、常用分离方法:高真空脱除,蒸汽蒸馏,闪蒸,水洗,离心过滤分离;沉淀分离;喷雾干燥分离。 、聚合物后处理过程:将分离得到的聚合物经进一步处理,得到性能稳定方便使用的产品,包括干燥,造粒,筛分,批混,包装等工序与设备。、回收过程:主要是对回收的单体、溶剂进行精制,然后循环使用。包括离心分离、过滤、分馏、精馏等工序与设备。 、在聚合物生产过程中反应器上的粘结物有何危害如何防止 危害:降低反应器传热效率;影响产品质量。 防止:a.尽可能提高反应器内壁的光洁度;b.使用过程中防止内壁表面造成伤痕;c.聚合釜满釜操作减少液体界面;d.反应物料中加防粘釜剂等。 5、合成树脂与合成橡胶生产上的差别主要表现在分离过程和后处理过程差异很大。 6、如何对聚合物生产流程评价 (1)产品性能的考查;(2)原料路线的考查;(3)能量消耗与利用的考查 (4)生产技术水平的考查;(5)经济性的考查。 7、高分子聚合反应产物的特点是: 1、分子量大小不等,结构亦非完全相同的同系物的混合物; 2、其形态为坚硬的固体物、高粘度熔体或高粘度溶液;

聚合物合成工艺学思考题及其答案知识讲解

第一章 1.简述高分子化合物的生产过程。 答:(1)原料准备与精制过程; 包括单体、溶剂、去离子水等原料的贮存、洗涤、精制、干燥、调整浓度等过程和设备。(2)催化剂(引发剂)配制过程; 包括聚合用催化剂、引发剂和助剂的制造、溶解、贮存。调整浓度等过程与设备。(3)聚合反应过程;包括聚合和以聚合釜为中心的有关热交换设备及反应物料输送过程与设备.(4)分离过程;包括未反应单体的回收、脱出溶剂、催化剂,脱出低聚物等过程与设备。(5)聚合物后处理过程;包括聚合物的输送、干燥、造粒、均匀化、贮存、包装等过程与设备。(6)回收过程;主要是未反应单体和溶剂的回收与精制过程及设备。 2 简述连续生产和间歇生产工艺的特点 答:间歇生产是聚合物在聚合反应器中分批生产的,经历了进料、反应、出料、清理的操作。优点是反应条件易控制,升温、恒温可精确控制,物料在聚合反应器中停留的时间相同,便于改变工艺条件,所以灵活性大,适于小批量生产,容易改变品种和牌号。缺点是反应器不能充分利用,不适于大规模生产。 连续生产是单体和引发剂或催化剂等连续进入聚合反应器,反应得到的聚合物则连续不断的流出聚合反应器的生产。优点是聚合反应条件稳定,容易实现操作过程的全部自动化、机械化,所得产品质量规格稳定,设备密闭,减少污染。适合大规模生产,因此劳动生产率高,成本较低。缺点是不宜经常改变产品牌号,不便于小批量生产某牌号产品。 3.合成橡胶和合成树脂生产中主要差别是哪两个过程,试比较它们在这两个生产工程上的主要差别是什么? 答:合成树脂与合成橡胶在生产上的主要差别为分离工程和后处理工程。 分离工程的主要差别:合成树脂的分离通常是加入第二种非溶剂中,沉淀析出;合成橡胶是高粘度溶液,不能加非溶剂分离,一般为将高粘度橡胶溶液喷入沸腾的热水中,以胶粒的形式析出。 后处理工程的主要差别:合成树脂的干燥,主要是气流干燥机沸腾干燥;而合成橡胶易粘结成团,不能用气流干燥或沸腾干燥的方法进行干燥,而采用箱式干燥机或挤压膨胀干燥剂进行干燥。 4. 简述高分子合成工业的三废来源、处理方法以及如何对废旧材料进行回收利用。 答: 高分子合成工业中:废气主要来自气态和易挥发单体和有机溶剂或单体合成过程中使用的气体;污染水质的废水主要来源于聚合物分离和洗涤操作排放的废水和清洗设备产生的废水;废渣主要来源于生产设备中的结垢聚合物和某些副产物.。 对于废气处理,应在生产过程中严格避免设备或操作不善而造成的泄露,并且加强监测仪表的精密度,以便极早察觉逸出废气并采取相应措施,使废气减少到容许浓度之下。对于三废的处理,首先在井陉工厂设计时应当考虑将其消除在生产过程中,不得已时则考虑它的利用,尽可能减少三废的排放量,例如工业上采用先进的不适用溶剂的聚合方法,或采用密闭循环系统。必须进行排放时,应当了解三废中所含各种物质的种类和数量,有针对性地回收利用和处理,最后再排放到综合废水处理场所。 废弃物的回收利用有以下三种途径: 1,、作为材料再生循环利用; 2、作为化学品循环利用; 3、作为能源回收利用

涂料化学简答题

四、简答题、简述题(每题7分,共28分) 第一章绪论 1、什么是涂料?它有哪些主要作用?涂料如何分类? 2、试述涂料由几部分组成?各部分起什么作用? 第二章漆膜的形成及有关的基本性质 1、在涂料中所使用的助剂可分哪几类? 2、在涂料施工中,习惯将干燥过程分为哪几个阶段? 3、涂料成膜方式主要有几种? 4、试述涂料的固化机理。 5、从涂料的角度看,具有明显结晶作用的聚合物作为成膜物是不合适的,其原因是什么? 6、有几种涂层成膜方式及涂膜干燥方法?试述其要点? 7、被涂物的表面处理有哪几种?如何处理? 5、试述涂装前对被涂物表面处理的作用和方法。 9、叙述涂装方法主要有哪些? 10、共聚合对成膜物改性有何重要作用? 11、黑色金属表面处理有哪些方法?每种各有几个步骤? 12、涂料的施工过程可分为哪几个步骤? 13、简述涂料的成膜过程。 第三章涂料中的流变学与表面化学 1、试述涂料分散体系不稳定的具体表现。 2、试说明色漆中颜料粒子的受力情况。 3、叙述促进分散体系稳定化的措施。 4、简述涂料粘度的测定方法以及主要原理。 5、论述表面张力与涂料的质量的关系。 6、论述表面活性剂在涂料中有哪些作用? 7、塑料表面涂布涂料常常结合不好,原因何在?解决的办法有哪些? 第四章溶剂和颜料 1、试述溶剂型涂料中溶剂的性能及其作用?溶剂如何分类? 2、试述颜料的分散过程和稳定措施。 3、颜料在涂料中有何作用? 4、选择涂料溶剂主要考虑哪些问题?有何要求? 5、简述颜料遮盖力的定义及影响因素。 6、如何才能提高颜料的遮盖力和着色力? 7、何谓颜料的吸油量、颜料体积浓度(PVC)和临界颜料体积浓度(CPVC)?它们对吸膜性能有何影响? 8、叙述色漆的制备步骤和措施。 9、着色颜料一般使用哪些助剂?这些助剂在涂料中各有何种作用? 10、试述涂料的研磨设备及其特点。 11、如何降低溶剂型涂料的VOC排放?

聚合物加工简答题

一、多组分注塑成型:使用两个或两个以上注射系统的注射机,将不同品种或不同色泽的塑料同时或先后注射入模具内的成型方法 优点:提高制品的外观美感;提高制品质量;提高生产率;降低劳动强度;降低中间管理费用;精简组装工序。 成型双色塑件两种方法: 一:用两副模具在两台普通注射机上分别注射成型。第一次注射成型嵌件,再注射另一种颜色的塑料将嵌件进行包封,完成双色注射。这种方法劳动强度大,生产效率低。 二:用一付模具,在专用双色注射机上一次注射成型。由于双色注射机有两个相互垂直或平行的独立注射装置。因此生产效率高,劳动强度低。 在成型过程中,对相对独立的两个注塑循环而言,由于从合模注塑到开模的时间相同,要注意两个型腔注塑循环的注射时间、冷却时间及保压时间彼此协调,这是双色注塑工艺控制的重点 双组分注塑:采用两种原料来生产一个产品,使产品表里或不同部位由不同塑料组成。材质颜色 主要特点:单一的原料在性能上往往有一些缺陷,利用双组分注塑可以达到两种原料之间的优点互补,得到性能更加优良的产品。注塑工艺与普通的注塑基本相同,同样分为:注射-保压-冷却;不同之处在于在短时间内先后实现了两次注塑成型过程。两种原料能有效黏合在一起。 二、GAIM气体控制方式,气体辅助注射成型的影响因素,气体吹穿,薄壁穿透 ○1方式:气体压力自动化优化控制:这是一个理想的压力变化,通过控制气体的注入使熔体充满型腔的前沿。体积控制法:有高压气动活塞和汽缸产生预定压力和体积的气体,在气体推动熔体的过程中,始终保持气体体积恒定,随着气体冲模过程的进行,气体压力不断降低,该方法在熔体掏空体积较大时压力降较大,有很大的局限性。压力控制法:是在气体推动聚合物熔体过程中始终保持压力恒定或分阶段保持气体压力恒定 ⑴熔体注射⑵填充阶段气体注射⑶保压阶段气体注射 ○2影响因素:材料的性质与材料选择 1熔体黏度对所需要的气体压力和气体注射后的残余壁厚有着很大的影响。熔体黏度越高,把树脂注进模具需要的气体压力越高,并使残余壁厚变厚。 2物料对剪切速率的敏感性也对气体的渗透有影响。在低剪切速率下开始剪切变稀的物料对气体压力和速度的变化尤其敏感。当气体进入模腔时,熔料剪切变稀。这时,气泡膨胀,使得剪切速率更高,黏度更低。 3影响因素中另一个物料特性是收缩率。收缩越大的物料,越倾向于二次气体渗透。要注意防止气泡渗透进入气体流道周围的薄壁区域。 4物料的热力学特性对气体的渗透也有影响。一般来说,物料冷却越快,气泡周围的制品壁

高聚物合成工艺学题集

“聚合物合成原理及工艺学” 习题集 四川大学高分子科学与工程学院 第一章绪论 1.试述高分子合成工艺学的主要任务。 2.简述高分子材料的主要类型,主要品种以及发展方向。 3.用方块图表示高分子合成材料的生产过程,说明每一步骤的主要特点及 意义。 4.如何评价生产工艺合理及先进性。 5.开发新产品或新工艺的步骤和需注意的问题有哪些? 第二章生产单体的原料路线 1.简述高分子合成材料的基本原料(即三烯、三苯、乙炔)的来源。 2.简述石油裂解制烯烃的工艺过程。 3.如何由石油原料制得芳烃?并写出其中的主要化学反应及工艺过程。 4.画出C4馏分中制取丁二烯的流程简图,并说明采用萃取精馏的目的。 5.简述从三烯(乙烯、丙烯、丁二烯)、三苯(苯、甲苯、二甲苯),乙炔出发制备高分子材料的主要单体合成路线(可用方程式或图表表示,并注明基本工艺条件)。 6.如何由煤炭路线及石油化工路线生产氯乙烯单体? 7.简述苯乙烯的生产方法。 8.试述合成高分子材料所用单体的主要性能,在贮存、运输过程中以及在使用时应注意哪些问题?

9.论述乙烯产量与高分子合成工艺的关系 第三章游离基本体聚合生产工艺 1.自由基聚合过程中反应速度和聚合物分子量与哪些因素有关?工艺过程中如何调节? 2.自由基聚合所用引发剂有哪些类型,它们各有什么特点? 3.引发剂的分解速率与哪些因素有关?引发剂的半衰期的含义是什么?生产中有何作用? 4.引发剂的选择主要根据哪些因素考虑?为什么? 5.举例说明在自由基聚合过程中,调节剂,阻聚剂,缓聚剂的作用。 6.为什么溶剂分子的Cs值比调节剂分子的Cs小的多,而对聚合物分子量的 影响往往比调节剂大的多? 7.以乙烯的本体聚合为例,说明本体聚合的特点。 8.根据合成高压聚乙烯的工艺条件和工艺过程特点,组织高压聚乙烯的生产 工艺流程,并划出流程示意图。 9.高压聚乙烯分子结构特点是怎样形成的,对聚合物的加工及性能有何影响。 10.乙烯高压聚合的影响因素有哪些? 11.对比管式反应器及釜式反应器生产高压聚乙烯的生产工艺。 12.聚乙烯的主要用途有哪些、可以采用哪些方法改进它的性能,开发新用 途。 13.比较高压聚乙烯及聚苯乙烯的生产工艺流程,改进聚苯乙烯的性能,可采用哪些方法? 14.试述聚苯乙烯和有机玻璃的优缺点及改性方向。 15.比较聚乙烯、聚苯乙烯、聚氯乙烯,聚甲基丙烯酸甲酯本体聚合工艺的异同

高聚物合成工艺学重点整理

1.粘釜产生原因、危害及防止措施。 粘釜原因:物理因素:吸附作用;化学因素:粘附作用。 危害:(1)传热系数下降;(2)产生“鱼眼”,使产品质量严重下降;(3)需要清釜,非生产时间加长。 防止措施:(1)釜内金属钝化;(2)添加水相阻聚剂,终止水相中的自由基,例如在明胶为分散剂的体系中加入醇溶黑、亚硝基R盐、甲基蓝或硫化钠等;(3)釜内壁涂极性有机物,防让金属表面发生引发聚合或大分子活性链接触釜壁就被终止聚合而钝化;(4)采用分子中有机成分高的引发剂,如过氧化十二酰. 清釜;(5)提高装料系数,满釜操作。 减少粘釜的方法:目前先进的方法是聚合配方中加入防粘釜剂防粘釜剂的种类很多,(而且生产工厂技术保密,主要是苯胺染料、蒽醌染料等的混合溶液或这些染料与某些有计酸的络合物,一般用量极少,产生明星的作用)此时产生的少量粘釜物用高压水枪冲洗即可(水压>21mpa)达到清釜目的。 2.高分子合成材料的生产过程 答: 1)原料准备与精制过程特点:单体溶剂等可能含有杂质,会影响到聚合物的原子量,进而影响聚合物的性能,须除去杂质意义:为制备良好的聚合物做准备 2)催化剂配制过程特点:催化剂或引发剂的用量在反应中起到至关重要的作用,需仔细调制. 意义:控制反应速率,引发反应 3)聚合反应过程特点:单体反应生成聚合物,调节聚合物的分子量等,制取所需产品意义:控制反应进程,调节聚合物分子量 4)分离过程特点:聚合物众位反应的单体需回收,溶剂,催化剂须除去意义:提纯产品,提高原料利用率 5)聚合物后处理过程特点:聚合物中含有水等;需干燥. 意义:产品易于贮存与运输6)回收过程特点:回收未反应单体与溶剂意义:提高原料利用率,降低成本,防止污染环境 3. 生产单体的原料路线有几条?试比较它们的优缺点? 答:工业上生产的高聚物主要是加聚高聚物和缩聚高聚物。当前主要有两条路线。(1)石油化工路线(石油资源有限))石油化工路线(石油资源有限)石油经开采得油田气和原油。原油经炼制得到石脑油、煤油和柴油等馏分和炼厂气。以此为原料进行高温热裂解可得到裂解气和裂解轻油。裂解气经分离精制可得到乙烯、丙烯、丁烯和丁二烯等。裂解轻油和煤油经重整得到的重整油,经加氢催化重整使之转化为芳烃,经抽提(萃取分离)得到苯、甲苯、二甲苯和萘等芳烃化合物。(2)煤炭路线(资源有限,耗能大))煤炭路线(资源有限,耗能大)煤矿经开采得到煤炭,煤炭经炼焦得煤气、氨、煤焦油和焦炭。煤焦油经分离精制得到苯、甲苯、二甲苯、萘和苯酚等。焦炭与石灰石在高温炉中高温加热得到电石(CaC2),电石与 H2O 反应得到乙炔。炔可以合成氯乙烯、醋酸乙烯和丙烯腈等单体或其他有机原料。(3)其他原料路线)主要是以农副产品或木材工业副产品为基本原料,直接用作单体或经化学加工为单体。本路线原料不足、成本较高,但它也是充分利用自然资源,变废为宝的基础上小量生产某些单体,其出发点是可取的。 4.高压聚乙烯分子结构特点是怎么样形成的,对聚合物的加工性能有何影响? 答:乙烯在高温下按自由基聚合反应的机理进行聚合。高温状况下,PE分子间的距离缩短,且易与自由基碰撞反应,很容易发生本分子链转移,支链过多。 影响:这种PE加工流动性好,.可以采取中空吹塑,注塑,挤出成型等加工方法,具有良好的光学性能,强度,柔顺性,封合性,无毒无味,良好的电绝缘性 5.悬浮聚合与本体聚合相比有那些特点? 答:1) 以水为分散介质,价廉,不需回收,安全,易分离.2)悬浮聚合体粘度低,温度易控制,3)颗粒形态较大,可以制成不同粒径的粒子4)需要一定的机械搅拌和分散剂5)产品不如本体聚合纯净 6)悬浮聚合的操作方式为间歇,本体为连续 6.简述聚氯乙烯PVC悬浮聚合工艺过程 答:1、准备工作:首先将去离子水,分散剂及除引发剂以外的各种助剂,经计量后加于聚反应釜中,然后加剂量的氯乙烯单体, 2、聚合:升温至规定的温度.加入引发剂溶液或分散液,聚合反应随时开

聚合物合成工艺学思考题及其答案

1. 简述高分子化合物的生产过程。 答:(1)原料准备与精制过程;包括单体、溶剂、去离子水等原 料的贮存、洗涤、精制、干 燥、调整浓度等过程和设备。 (2)催化剂(引发剂)配制过程;包括聚合用催化剂、引发剂和 助剂的制造、溶解、贮存。调整浓度等过程与设备。 釜为中心的有关热交换设备及反应物料输送过程与设备 收、脱出溶剂、催化剂,脱出低聚物等过程 与设备。 输送、干燥、造粒、均匀化、贮存、包装等过程与设 备。 和溶剂的回收与精制过程及设备。 2简述连续生产和间歇生产工艺的特点 优点是反应条件易控制, 升温、恒温可精确控制,物料在聚合反应器中停留的时间相同,便 于改变工艺条件,所以灵活性大,适于小批量生产,容易改变品种和牌号。 缺点是反应器不 能充分利用,不适于大规模生产。 连续生产是单体和引发剂或催化剂等连续进入聚合反应器,反应得到的聚合物则连续 不断的流出聚合 反应器的生产。优点是聚合反应条件稳定,容易实现操作过程的全部自动化、 机械化,所得产品质量规格稳定,设备密闭,减少污染。适合大规模生产,因此劳动生产率 高,成本较低。缺点是不宜经常改变产品牌号,不便于小批量生产某牌号产品。 3. 合成橡胶和合成树脂生产中主要差别是哪两个过程,试比较它们在这两个生产工程上的 主要差别是什么? 答:合成树脂与合成橡胶在生产上的主要差别为分离工程和后处理工程。 分离工程的主要差别:合成树脂的分离通常是加入第二种非溶剂中,沉淀析出;合成橡 胶是高粘度溶 液,不能加非溶剂分离, 一般为将高粘度橡胶溶液喷入沸腾的热水中, 以胶粒 的形式析出。 后处理工程的主要差别:合成树脂的干燥,主要是气流干燥机沸腾干燥;而合成橡胶易 粘结成团,不能用气流干燥或沸腾干燥的方法进行干燥, 而采用箱式干燥机或挤压膨胀干燥 剂进行干燥。 4. 简述高分子合成工业的三废来源、处理方法以及如何对废旧材料进行回收利用。 答:高分子合成工业中:废气主要来自气态和易挥发单体和有机溶剂或单体合成过程中使 用的气体;污染水质的废水主要来源于聚合物分离和洗涤操作排放的废水和清洗设备产生的 废水;废渣主要来源于生产设备中的结垢聚合物和某些副产物 .。 对于废气处理,应在生产过程中严格避免设备或操作不善而造成的泄露, 并且加强监测 仪表的精密度,以便极早察觉逸出废气并采取相应措施, 使废气减少到容许浓度之下。 对于 三废的处理,首先在井陉工厂设计时应当考虑将其消除在生产过程中, 不得已时则考虑它的 利用,尽可能减少三废的排放量,例如工业上采用先进的不适用溶剂的聚合方法, 或采用密 闭循环系统。必须进行排放时,应当了解三废中所含各种物质的种类和数量, 有针对性地回 收利用和处理,最后再排放到综合废水处理场所。 废弃物的回收利用有以下三种途径: 1、 、作为材料再生循环利用; 2、 作为化学品循环利用; 3、 作为能源回收利用 第一章 答:间歇生产是聚合物在聚合反应器中分批生产的, 经历了进料、反应、出料、清理的操作。 (3)聚合反应过程;包括聚合和以聚合 ?(4)分离过程;包括未反应单体的回 (5)聚合物后处理过程;包括聚合物的 (6)回收过程;主要是未反应单体

聚合物合成工艺

第一章绪论 4. 20世纪50年代,谁发现了可用于高密度聚乙烯和立构规整聚丙烯的合成催化剂?这些催化剂的基本成分是什么? 5. 21世纪高分子科学与工程学科的重要发展方向是什么? 6. 简要说明聚合物合成的生产步骤。 第二章合成聚合物的原料路线 4. 石脑油的裂解-催化重整可以获得哪些重要芳烃原材料?其中的加 氢工艺是为了除去哪些有害物质? 5. 什么是C4馏分?如何通过C4馏分制备1,3-丁二烯? 10. 从动、植物体内获得的原料路线有哪些?你认为哪些原料路线具有很好的前景。 第三章自由基本体聚合过程及合成工艺 17. 用过氧化二苯甲酰作引发剂,苯乙烯在60℃进行本体聚合,试计算正常引发反应、向引发剂转移反应、向单体转移反应三部分在聚合度倒数中各占多少百分比?对聚合度各有什么影响,计算时选用下列数据:[I]=0.04mol/L,f=0.8,k d=2.0×10-6s-1,k p=176L/mol·s,k t=3.6×107 L/mol·s,ρ(60℃)=0.887g/mL,C I=0.05,C M=0.85×10-4。 18. 为了改进聚氯乙烯的性能,常将氯乙烯(M1)与醋酸乙烯(M2)共聚 得到以氯乙烯为主的氯醋共聚物。已知在60℃下上述共聚体系的r1=1.68, r2=0.23,试具体说明要合成含氯乙烯质量分数为80%的组成均匀的氯醋共聚物应采用何种聚合工艺? 第四章自由基溶液聚合过程及合成工艺 9. 苯乙烯在60℃以过氧化二叔丁基为引发剂,苯为溶剂进行自由基溶液聚合。当苯乙烯的浓度为1mol/L,引发剂浓度为0.0lmol/L时,引发剂分解和形成聚合物的初速率分别为4×1011mol/(L·s)和1.5×

聚合物合成工艺学习题

名词解释 Ziegler-Natta催化剂:中文译名“齐格勒-纳塔”催化剂,由三乙基铝与四氯化钛组成,是一种优良的定向聚合催化剂。催化剂又称触媒,可以组合成Ziegler-Natta触媒的化合物种类相当多,Ziegler-Natta触媒可由下列的化合物组合而成:周期表中第IV到第VIII族的过渡金属化合物,和周期表中第I到第III族的金属所组成的有机金属化合物。其中过渡金属化合物为触媒,而有机金属化合物为助触媒。 爆炸极限:可燃物质与空气或氧气必须在一定浓度范围内均匀混合,形成预混气,遇火源才会发生爆炸,这个浓度范围成为爆炸极限,或爆炸浓度极限 逐步加成反应:某些单体的官能团可按逐步反应的机理相互加成而获得聚合物,但又不会析出小分子副产物,这种反应称为逐步加成聚合反应。 界面缩聚:两种单体分别溶解在水及与水不相混溶的有机溶剂中,在常温常压下,在水和有机溶剂的界面进行缩聚反应的方法。 工程塑料:是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。 表面活性剂:是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 乳化剂:能降低互不相溶的液体间的界面张力,使之形成乳浊液的物质。乳化剂是乳浊液的稳定剂,是一类表面活性剂 HBL值:用来衡量表面活性剂分子中的亲水部分和亲油部分对其性质所作贡献大小的物理量。 种子乳液聚合:单体原则上仅在已生成的微粒上聚合,而不形成新的微粒,即仅增加原来微粒的体积,而不增加反应体系中微粒的数目。

核-壳聚合:两种单体进行共聚合时,如果一种单体首先进行乳液聚合,然后加入第二种单体再次进行乳液聚合,则前一种单体聚合形成乳胶粒子的核心,好似种子,后一种单体则形成乳胶粒子的外壳。 金属茂催化剂:由过渡金属锆(Zr)与两个环戊二烯基或环戊二烯取代基及两个氯原子(或甲基)形成的有机金属络合物和助催化剂甲基铝氯烷组成。 Phillips催化剂活化处理:400~800℃温度下,于干燥空气中进行活化,使铬原子处于Cr+6状态。 熔融指数:热塑性塑料在一定温度和压力下,熔体在10分钟内通过标准毛细管的重量值,以(g/min)为单位。 聚合反应的操作方式:间歇聚合:分批生产,适于小批量生产;连续聚合:自动化程度高,质量稳定,适合大批量生产。聚合反应器:管式、塔式、釜式、特殊形式;反应热排除方式:夹套冷却、内冷管冷却、反应物料部分闪蒸、反应介质预冷、回流冷凝器冷却等。 1、聚合反应釜中搅拌器的形式有哪些?适用范围如何? ①常用搅拌器的形式有平桨式、旋桨式、涡轮式、锚式以及螺带式等; ②涡轮式和旋桨式搅拌器适于低粘度流体的搅拌;平桨式和锚式搅拌器适于高粘度流体的搅拌;螺带式搅拌器具有刮反应器壁的作用,特别适用于粘度很高流动性差的合成橡胶溶液聚合反应釜的搅拌。 2、简述合成树脂与合成橡胶生产过程的主要区别。 —合成橡胶生产中所用的聚合方法主要限于自由基聚合反应的乳液聚合法和离子与配位聚合反应的溶液聚合法两种。而合成树脂的聚合方法则是多种的。合成树脂与合成橡胶由于在性质上的不同,生产上的差别主要表现在分离过程和后处理过程差异很大:①分离过程的差异:合成树脂,通常是将合成树脂溶液逐渐加入第二种非溶剂中,而此溶剂和原来的溶剂是可以混溶的,在沉淀

高分子材料流变学

【名词解释】 1.假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<1 2.膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>1 3.宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从τ=τy+ηpγ 4.牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为τ=μγ的流体 5.剪切变稀:粘度随剪切速率升高而降低 6.爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象 7.挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径 8.熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状 9.无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象 10.第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式N1=τ11?τ22=φ1?γ 212(N1通常为正值) 11.第二法向应力差:同上,关系式为N2=τ22?τ33=φ2?γ 212 (N2通常为负值) 12.本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。 13.剪切应力:单位面积上的剪切力,τ=FA 14.剪切速率:流体以一定速度沿剪切力方向移动。在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,γ=d vdy 也可理解成一定间距的液层,在一定时间内的相对移动距离。 15.高分子流变学:研究高分子液体,主要是指高分子熔体干分子溶液在流动状态下的非线性粘弹性行为。以及这种行为与材料结构及其他物理化学的关系。 16.出膨胀现象:高分子熔体被迫基础口模时,挤出物尺寸大于口模尺寸截面积形象黄也发生变化的现象【简答题】 1.常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等) 2.流变测量的目的:(1)物料的流变学表征。(2)工程的流变学研究和设计。(3)检验和指导流变本构方程理论的发展。 3.高聚物的粘性流动的特点:1. 流动机理是链段相继跃迁2. 流动粘度大,流动困难,而且粘度不是一个常数3. 流动时有构象变化,产生“弹性记忆”效应 4.影响挤出胀大效应的因素:链结构、配方、切变速率与温度稳定挤出的措施:(1) 加料口供料速度必须均匀.(2)减少螺槽深度h和减少机筒与螺杆突棱的间隙δ.(3)调节机头流通系(4)适当降低挤出温度(5)适当增加螺杆长度 5.影响熔体挤出破裂行为因素:一是口模的形状和尺寸;二是挤出成型过程的工艺条件;三是挤出物料的 性质。 6.牛顿流体包括那些类型?(1)宾汉流体(2)假塑性流体(3)胀流形流体(4)触变体(5)震凝体 7.什么是可恢复形变量,它是描述材料什么效应的物理量? 可恢复性变量表征着液体在形变过程中储存弹性能的大小Sr=Je·σw Je为稳态弹性柔量σw为相应的器壁剪切应力描述材料的粘性和弹性效应 8.分子量大的材料其性能指标往往越高,为什么实际生产中却要适当控制分子量? 因为在生产中分子量过高,会发生自动加速现象和爆聚现象,会导致聚合物粘度增大,性能下降。还有分子量太大会导致加工性能降低。 入口压力降产生原因?(1)物料从料口进入口模时,熔体粘滞流动流线在入口处产生收敛所引起的能量损失(2)在入口处由于聚合物熔体产生弹性形变,因弹性能的储蓄所造成的能量消耗(3)熔体流经入口处时,由于剪切速率的剧烈增加而引起速度的激烈变化,为达到稳定的流速分布所造成的压力降 9.转子流变仪的类型?(1)锥一板型流变仪(2)平行版型流变仪(3)同轴圆筒形流变仪

《高聚物合成工艺学》试题

《高聚物合成工艺学》试卷二 一.名词解释(21分) 1.反相悬浮聚合 2.互穿网络聚合物IPN 3.硅橡胶 4.脱灰 5.热固性 6. 种子聚合 7. 聚酯纤维 二.填空(20分) 1.三大合成材料是指:,,。 2.高分子合成工业中用自离子聚合反应机理生产的聚合物主要采用有:,,,四种聚合方法来实施。 3.低温丁苯橡胶乳液聚合过程中主要的影响因素是,。常采 用的控制乳液胶粒的粒径。 4.ABS用那三个单体聚合:,,。分散相常采用,聚合方法。连续相常采用,聚合方法。 5.在聚氯乙烯聚合生产中,主要采用手段控制聚合物分子量。 6.评价高聚物耐热性两个重要指标是:,。

三.判断(10分) 1.聚合反应釜中搅拌器只起到加速传热的作用。() 2.水油比是指反应体系中水的用量与单体重量之比。() 3.HDPE常用高压聚合生产工艺。() 4.热塑性酚醛树脂不需加入固化剂即可在加热的条件下固化。() 5.聚四氟乙烯常采用本体聚合工艺生产。() 6.顺丁橡胶的分子量越大,分子量分布越窄,其力学性能越好,但是加工性能越差。() 7.聚苯乙烯的聚合可以是本体聚合、悬浮聚合、乳液聚合和溶液聚合。() 8.浅色剂只有将带色杂质变为浅色或无色物质,改善纤维白度的作用。() 9.在乳液聚合过程中,搅拌强度太高,会使乳胶粒子数目减少,乳胶粒直径增大及聚合反应速率降低,同时会使乳液产生凝胶,甚至导致破乳。() 10.悬浮聚合体系一般是由单体、引发剂、水和分散剂四个基本部分组成。() 四.简答(25分) 1.简述石油裂解制烯烃的工艺流程。 2.简述本体聚合的特点。 3.简述悬浮聚合过程的影响因素。 4.聚氨酯泡沫塑料的生产工艺有一步法和两步法两种,对比两种方法的特点。 5. 试比较高温和低温丁苯配方的主要区别。 五.问答(24分)

流变学简答题

二、简答题(可任选答8题,每题5分,共40分): 第一章绪论 1、简述聚合物流变行为的特征是什么? ⑴多样性⑵高弹性⑶时间依赖性 2、何为粘弹性?为什么聚合物具有明显的粘弹性?举例介绍塑料制品应用和塑料加工中的粘弹性现象? 粘弹性:外力作用下,高聚物材料的形变行为兼有液体粘性和固体弹性的双重特性,其力学性质随时间变化而呈现出不同的力学松弛现象的特性。由于高聚物材料对时间的依赖性,因此 第二章基本物理量和线性粘性流动 1、简述线性弹性变形的特点 1、变形小 2、变形无时间依赖性 3、变形在外力移除后完全回复 4、无能量损失 5、应力与应变成线性关系:σ=Eε 2、聚合物的粘性流动有何特点?为什么? 1、变形的时间依赖性流体的变形随时间不断发展 2、流体变形的不可回复性:粘性流体 的变形是永久变形3能量散失:外力对流体所作的功在流动中转为热能而散失,这一点与弹性变形过程中贮能完全相反。4、正比性:线性粘性流动中剪切应力与剪切应变速率成正比,粘度与剪切应变速率无关。 2、聚合物的结晶熔化过程与玻璃化转变过程本质上有何不同?试从分子运动角度比较聚合物结构和外界条件对这两个转变过程影响的异同。 聚合物的结晶熔化过程是随着温度的升高,聚合物晶区的规整结构遭受破坏的过程。从熔点的热力学定义出发,熔点的高低是由熔融热△H与熔融熵△S决定的。一般的规律是,熔融热△H越大,熔融熵△S越小,聚合物的熔点就越高。 聚合物的玻璃化转变过程是随温度升高,分子链中链段运动开始,由此会导致一系列性质的突变。因此,分子链的柔性越好,链段开始运动所需要的能量越低,其玻璃化温度就越低。 3、试述温度和剪切速率对聚合物剪切粘度的影响。并讨论不同柔性的聚合物的剪切粘度对温度和剪切速率的依赖性差异。 聚合物的剪切粘度随温度的升高而下降,在通常的剪切速率范围内,聚合物 的剪切粘度也是随剪切速率的增大而降低的。只有在极低(接近于零)及极高(趋于 无穷大)的剪切速率下,聚合物的粘度才不随剪切速率的变化而变化。 不同柔性的聚合物的剪切粘度对温度和剪切速率的依赖性是不同的:柔性的高分子链在剪切力的作用下容易沿外力方向取向,使粘度明显下降。而刚性高分子则下降得很不明显。刚性高分子的粘流活化能大,其剪切粘度对温度极为敏感,随着温度的升高,剪切粘度明显下降,而柔性高分子的粘流活化能小,其剪切粘度随温度的变化较小。 4、解释如下现象:1)聚合物的T g 开始时随分子量增大而升高,当分子量达到一定值之 后,T g 变为与分子量无关的常数;2)聚合物中加入单体、溶剂、增塑剂等低分子物时导致T g 下降。 1)由于分子链中端基受限最少,其运动最为容易。所以,当分子链中端基所占比例越大(即分子最越低)时,T g 越低。当分子量大到一定程度后,端基在分子链中的比例可以忽 略时,T g 就不会再随分子量增大而升高了。 2)当聚合物中加入低分子物质(如单体、溶剂或增塑剂)后,其分子链间距会增大, 分子间作用力减小,导致链段开始运动所需要的温度(T g )降低。 5、指出下列高分子材料的使用温度范围(T m ,T g ):非晶态热塑性塑料,晶态热塑性塑 料,热固性塑料,硫化橡胶,涂料。

聚合物合成工艺学(最新版)

第一次作业 1.何谓三大合成材料?简要说明他们的特点。 答:(1)用合成的高分子化合物或称作合成的高聚物为基础制造的有机材料,统称为合成材料。其中以塑料、合成纤维、合成橡胶称为三大合成材料。 (2)特点:①塑料是以合成树脂为基本成分,具有质轻、绝缘、耐腐蚀、美观、制品形式多样化等。其主要的缺点是绝大多数塑料制品都可以燃烧,在长期使用过程中由于光线、空气中氧的作用以及环境条件和热的影响,其制品的性能逐渐变坏,甚至损坏到不能使用,即发生老化现象。 ②合成橡胶是用化学的合成方法产生的高弹性体。经硫化加工可制成各种橡胶制品。某些种类的橡胶具有较天然橡胶为优良的耐热、耐磨、耐老化、耐腐蚀或耐油等性能。 ③合成纤维,线型结构的高分子量合成树脂,经过适当方法纺丝得到的纤维称为合成纤维。合成纤维与天然纤维相比较,具有强度高、耐摩擦、不被虫蛀、耐化学腐蚀等优点。缺点是不易着色,未经过处理时易产生静电荷,多数合成纤维吸湿性差。 2.合成高分子化合物的聚合反应主要包括哪两大类? 答:合成高分子化合物的聚合反应主要包括不饱和单体和二烯烃类单体的加成聚合反应和活性单体的逐步聚合反应两大类。 3.单体储存时应注意什么问题,并说明原因? 答:(1)单体储存时应达到防止单体自聚、着火和爆炸的目的。 (2)①为了防止单体自聚,在单体中添加少量的阻聚剂。②为了防止着火事故发生,单体贮罐要远离反应装置,贮罐区严禁明火以减少着火的危险。③为防止爆炸事故的发生,首先要防止单体泄露,因单体泄露后与空气接触产生易爆炸的混合物或过氧化物;贮存气态单体或经压缩冷却后液化的单体的贮罐应是耐压容器;高沸点的单体贮罐应用氮气保护,防止空气进入。 4.聚合物反应产物的特点是什么? 答:①聚合物的相对分子量具有多分散性。 ②聚合物的形态为坚韧的固体物、粉状、粒状和高粘度的熔体或溶液。 ③聚合物不能用一般产品精制方法如蒸馏、结晶和萃取等方法进行精制提纯。 5.选择聚合方法的原则是什么? 答:选择原则是根据产品的用途所要求的产品形态和产品成本选择选择适当的聚合方法。 第二次作业 6.生产单体的原料路线有几条?试比较它们的优缺点? 答:工业上生产的高聚物主要是加聚型高聚物和缩聚(逐步聚合型)高聚物。当前主要有两条路线; (1)石油化工路线(石油资源有限) 原油经炼制得到汽油、石脑油、煤油和柴油等馏分和炼厂气。以此为原料进行高温热裂解可得到裂解气和裂解轻油。裂解气经分离得到乙烯、丙烯、丁烯和丁二烯等。裂解轻油和煤油经重整得到的重整油,经加氢催化重整使之转化为芳烃,经萃取分离得到苯、甲苯、二甲苯等芳烃化合物。 (2)煤炭路线(资源有限,耗能大) 煤炭经炼焦得煤气、氨、煤焦油和焦炭。煤焦油经分离精制得到苯、甲苯、和苯酚等。 焦炭与石灰石在电炉中高温反应得到电石(CaC2),电石与H2O反应得到乙炔,由乙炔可以合成氯乙烯、醋酸乙烯和丙烯腈等乙烯基单体或其他有机原料。 (3)其他原料路线(原料不足、成本较高)

相关主题
文本预览
相关文档 最新文档