当前位置:文档之家› 基础训练37--法拉第电磁感应定律

基础训练37--法拉第电磁感应定律

基础训练37--法拉第电磁感应定律
基础训练37--法拉第电磁感应定律

基础训练37 法拉第电磁感应定律、自感现象

(时间60分钟,赋分100分)

训练指要

通过训练,更加熟练地掌握运用法拉第电磁感应定律或E=BLv sinθ确定感应电动势的大小,了解自感现象及其在日光灯中的应用.第1题、第15题属创新题,通过理论和实际的结合,不仅加深了对法拉第电磁感应定律的理解,也提高了我们分析问题、解决问题的能力.

一、选择题(每小题5分,共40分)

1.超导是当今高科技的热点,超导材料的研制与开发是一项新的物理课题.当一块磁体靠近超导体时,超导体中会产生强大的电流,超导体中产生强大电流是由于

A.穿过超导体中的磁通量很大

B.超导体中磁通量的变化率很大

C.超导体电阻极小几乎为零

D.超导体电阻变大

2.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场.若线圈所围面积里磁通量随时间变化规律如图1—37—1所示,则

图1—37—1

A.线圈中0时刻感应电动势最大

B.线圈中D时刻感应电动势为零

C.线圈中D时刻感应电动势最大

D.线圈中0至D时间内平均感应电动势为0.4 V

3.如图1—37—2所示,n=50匝的圆形线圈M,它的两端点a、b与内阻很大的电压表相连,线圈中磁通量的变化规律如图1—37—3所示,则ab两点的电势高低与电压表的读数为

图1—37—2 图1—37—3

A.φa>φb,20 V

B.φa>φb,10 V

C.φa<φb,20 V

D.φa<φb,10 V

4.一匀强磁场,磁场方向垂直纸面,规定向里的方向为正,在磁场中有一细金属圆环,

线圈平面位于纸面内,如图1—37—4所示,现令磁感应强度B随时间t变化,先按图1—37—5中所示的O a图线变化,后来又按图线b c和c d变化,令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则

图1—37—4 图1—37—5

A.E1>E2,I1沿逆时针方向,I2沿顺时针方向

B.E1<E2,I1沿逆时针方向,I2沿顺时针方向

C.E1<E2,I2沿顺时针方向,I3沿逆时针方向

D.E2=E3,I2沿顺时针方向,I3沿顺时针方向

5.用同样粗细的铜、铝、铁做成三根相同形状的导线,分别放在电阻可以忽略不计的光滑导轨ABCD上,如图1—37—6所示,使导线的两端与导轨保持垂直,设匀强磁场方向垂直于导轨平面向里,然后用外力使导线水平向右做匀速运动,且每次外力消耗的功率均相同,则下列说法正确的是

图1—37—6

A.铜导线运动速度最大

B.三根导线上产生的感应电动势相等

C.铁导线运动速度最大

D.在相同的时间内,它们产生的热量相等

6.如图1—37—7所示,金属三角形导轨COD上放有一根金属棒MN.拉动MN,使它以速度v向右匀速运动,如果导轨和金属棒都是粗细相同的均匀导体,电阻率都相同,那么在MN运动的过程中,闭合回路的

图1—37—7

A.感应电动势保持不变

B.感应电流保持不变

C.感应电动势逐渐增大

D.感应电流逐渐增大

7.日光灯电路主要由镇流器、启动器和灯管组成,在日光灯正常工作的情况下

A.灯管点燃发光后,启动器中两个触片是分离的

B.灯管点燃发光后,镇流器起降压限流作用

C.镇流器起整流作用

D.镇流器给日光灯的开始点燃提供瞬时高压

8.如图1—37—8所示,P 、Q 是两个完全相同的灯泡,L 是直流电阻为零的纯电感,且自感系数L 很大.C 是电容较大且不漏电的电容器,下列判断正确的是

图1—37—8

A.电键S 闭合后,P 灯亮后逐渐熄灭,Q 灯逐渐变亮

B.电键S 闭合后,P 灯、Q 灯同时亮,然后P 灯变暗,Q 灯变得更亮

C.电键S 闭合,电路稳定后,S 断开时,P 灯突然亮一下,然后熄灭,Q 灯立即熄灭

D.电键S 闭合,电路稳定后,S 断开时,P 灯突然亮一下,然后熄灭,Q 灯逐渐熄灭

二、填空题(每小题6分,共24分)

9.如图1—37—9所示,一圆环及内接、外切的两个正方形框均由材料、横截面积相同的相互绝缘导线制成,并各自形成闭合回路,则三者的电阻之比为_______.若把它们置于同一匀强磁场中,当各处磁感应强度发生相同变化时,三个回路中的电流之比为_______.

图1—37—9 图1—37—10

10.如图1—37—10所示,将长为1 m 的导线从中间折成约106°的角,使其所在平面垂直于磁感应强度为0.5 T 的匀强磁场,为使导线中产生4 V 的感应电动势,导线切割磁感线的最小速度约为_______.(sin53°=0.8,c os53°=0.6)

11.一根长为L 的直导线,在垂直于匀强磁场的平面内,绕轴O 以角速度ω逆时针匀速转动,如图1—37—11所示,以O 为圆心,2

L 为半径的圆形区域里磁场方向垂直纸面向里,这个圆形区域以外的磁场方向垂直纸面向外,两个磁场的磁感应强度大小均为B ,导线在旋转过程中a 、O 间的电势差U aO =______.

图1—37—11 图1—37—12

12.如图1—37—12所示,线圈内有理想边界的磁场,当磁感应强度均匀增加时,有一带电微粒静止于水平放置的平行板电容器中间,则此粒子带_______电,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电量为q ,线圈面积为S ,则磁感应强度的变化率为_______.

三、计算题(共36分)

13.(12分)把一根长为L 、电阻为R 的导线做成闭合的正方形回路,然后沿正方形两对边的中点折成互相垂直的两长方形,如图1—37—13所示,空间中匀强磁场的方向垂直于折线,与两长方形平面的夹角为45°,磁感应强度为B ,B 随时间均匀减小.开始时磁感应强度为B 0,经过时间t ,磁感应强度B =B 0(1-kt ),其中k 为大于零的常数.求:

图1—37—13

(1)经过时间t 时导线中电流的大小.

(2)从开始到B 减小为2

0B 时通过导线截面的电荷量. 14.(12分)(2000年上海高考试题)如图1—37—14,固定于水平桌面上的金属架cd ef 处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动,此时ad e b 构成一个边长为l 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B .

图1—37—14

(1)若从t =0时刻起,磁感应强度均匀增加,每秒增量为K ,同时保持棒静止,求棒

中的感应电流,在图上标出感应电流的方向.

(2)在上述(1)情况中,始终保持静止,当t =t 1s 末时需加的垂直于棒的水平拉力为多大?

(3)若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度应怎样随时间变化(写出B 与t 的关系式)?

15.(12分)为了测定列车运行的速度和加速度的大小,可采用如图1—37—15所示的装置,它是由一块安装在列车车头底部的强磁铁和埋设在轨道地面的一组线圈及电流表组成(电流表未画出).当列车经过线圈上方时,线圈中产生的电流被记录下来,就能求出列车在该位置的速度,设磁体外侧为一匀强磁场,其磁感应强度为B =0.004 T ,磁体的宽度与线圈宽度相同,且都很小,线圈的匝数为n =5,长为L =0.2 m ,电阻R=0.4 Ω,测试记录如图1—37—16所示.

图1—37—15

图1—37—16

(1)试计算在距O (原点)30 m 处列车的速率为多大?在距0点130 m 处列车的速率是多大?

(2)设列车做匀加速直线运动,则列车的加速度是多少?

参考答案

一、1.C

2.ABD.Φ—t 图象中,某一时刻对应的斜率即为该时刻的瞬时感应电动势.两时刻间的磁通量的变化率为t ??φ,只是这段时间里感应电动势的平均值.

3.B

4.BD

5.CD 外力消耗的功率等于安培力功率,即P =F ·v =R

v L B 22,从此式展开讨论. 6.BC 通过计算可得,回路中感应电动势:E =BLv =Bv 2t tan α;回路总电阻,R =ρ

s

v S L )sec tan 1(ααρ++='·t ,回路中电流:I =)sec tan 1(tan 2ααρα++=vt t SBv R E . 7.ABD

8.AD 注意抓住L 直流电阻为零、C 电容较大两个信息进行分析.

二、9.π∶22∶4 2∶1∶2 10.10 m/s 11.41ωL 2B 12.负;nqS

mgd

三、13.(1)通过回路的磁通量为:

Φ=2·B (4

8L L ?)cos45°=322L 2B 0(1-kt ) =32

232202-B L L 2B 0kt =Φ0-32

2L 2B 0kt 0 所以回路的感应电动势E =32202kB L t

=??φ 所以回路中的感应电流I 恒定,且为:

I =R kB L R E 3220

2=

(2)设磁场从B 0减小到2

0B 的时间为t ′. 则2

0B =B 0(1-kt ′) 所以t ′=k

21 通过导线截面的电量为

Q =It ′=R

B L 64202 14.(1)感应电动势E =t

??φ=kl 2,感应电流I =r kl r E 2=,由楞次定律可判定感应电流方向为逆时针.

(2)t =t 1时,B =B 0+kt 1,F =BIl ,所以F =(B 0+kt 1)r

kl 3

(3)总磁通量不变Bl (l +vt )=B 0l 2,所以B =vt l Bl + 15.(1)从图中可读出I 1=0.12 A,I 2=0.15 A,又由I =

R nBLv R E =可得 v 1=2

.010454.012.031????=-nBL R I m/s=12 m/s v 2=

2

.010454.015.032????=-nBL R I m/s=15 m/s (2)由v 22-v 12=2as 得 a =100

2121522

22122?-=-s v v m/s 2=0.4 m/s 2.

完整版电磁感应图像问题练习

压U ab 、线框所受安培力 F 、穿过线圈的磁通量 ①随位移x 的变化图像正确的是 B . 电磁感应图像问题 1如图所示,由粗细均匀的电阻丝制成的边长为 I 的正方形线框abed ,其总电阻为 R 现 使线框以水平向右的速度 v 匀速穿过一宽度为 2I 、磁感应强度为 B 的匀强磁场区域,整个 过程中ab 、cd 两边始终保持与磁场边界平行。 令线框的ed 边刚好与磁场左边界重合时 t =o , 电流沿abeda 流动的方向为正,u o =Blv 。线框中a 、b 两点间电势差u ab 随线框cd 边的位移x X X X X X X ; X K X X X X ; X X X X X X ; x \ X X A I X X X X X X ; II ? 为坐标原点建立x 轴.一边长为L 的正方形金属线框 abed ,在外力作用下以速度 v 匀速穿过 匀强磁场.从线框cd 边刚进磁场开始计时,线框中产生的感应电流 i 、线框ab 边两端的电 2.如图所示,空间存在垂直纸面向里的有界匀强磁场,磁场区域宽度为 D 2L ,以磁场左边界 变化的图象正确的是( /减 X X j I £■74 t ) -坯的 K X X I

3.如图所示,两相邻的宽均为0.8m的匀强磁场区域,磁场方向分别垂直纸面向里和垂直纸 面向外。一边长为0.4m的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=0.2m/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=O,规定线框中感应电流逆时针方向为正方向。在下列图线中,正确反映感应电流强 度随时间变化规律的是() 4 .如图所示,为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向 里和向外,磁场宽度均为L,在磁场区域的左侧边界处,有一边长为L的正方形导体线框, 总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域, 以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里 时的磁通量①为正值,外力F向右为正。则以下反映线框中的磁通量①、感应电动势E、 外力F和电功率P随时间变化规律图象错误的是 * ? * 1 ??■V ? ?4 ■ ?■ ? ?■ ------ ?

法拉第与电磁感应定律

法拉第与电磁感应定律 摘要:法拉第,在科学史上做出杰出贡献的实验物理学家,他是名副其实的穷二代,凭借高于常人的智商和自己坚持不懈的努力成为了举世闻名的科学家,他不只是在电磁学中引入了电场线和电磁感应线,这使得后人能更清楚、形象地理解电磁场。他最突出的成就就是发现了电磁感应定律,不但促进了科学的发展而且还开创了人类美好生活的新时代,为人类带来了丰富的物质和精神财富。 关键词:法拉第、电磁感应定律、应用、学习、感应电流 0引言 在21世纪的新时代,法拉第电磁感应定律的运用遍及人类生活的很多方面并使我们的生活越来越便捷,享受着这个时代独有的幸福的同时,我们便更想探索法拉第电磁感应定律具体应用在哪些方面,更想知道到底是什么样的天才发现了这样神奇的定律。本篇论文选择了对近代物理学做出了杰出贡献的英国科学家法拉第的生平进行全面的分析,并综述了电磁感应定律在科技史上的地位。文中有历史、人物和科学的发展过程。 1法拉第简介 1.1法拉第的家庭背景 法拉第,一个自学成才的理工男。1971年9月22日这个未来著名的物理学家呱呱坠地,他是家里的第三个儿子,他的家庭贫困,父亲是一个铁匠,靠着自己勤劳的双手养家糊口,收入甚微,入不敷出。所以,“富二代”、官二代“这样的身份注定与他无缘,要想以后出人头地,只能靠他自己的天赋和努力。贫困的家庭连温饱都难以解决,上学接受教育对他来说那只能是梦想。由于穷困,法拉第在人生最灿烂的时候辍学了,那一年他才13岁,是求知欲最强烈的年华。退学后,为生活所迫,他在街上卖报、在书店当学徒挣钱以贴补家用。是金子就一定会发光,是锤子就一定会受伤,法拉第无疑就是一块金子,就算是出生卑微,无学可上也不会阻碍他这块金子熠熠生辉。 1.2法拉第的求学及工作经历 法拉第酷爱学习,任何一个学习机会对于他都是极其珍贵的,他的哥哥注意到了他的天赋,所以愿意资助他学习,他非常幸运地参加了很多科学活动。通过这些活动他开始接触到了科学的神秘世界并且深深地被科学所吸引,这一切为他未来成为科学家铺好了道路。如果你足够好上帝一定不会埋没你,而且总会为你开上一扇窗,法拉第就是被上帝宠爱的那个人才,上帝为他开了一扇窗从而结识了著名的化学家戴维,他被戴维的才华所征服,随即他大胆地写信给戴维讲述了他对一些科学的见解,并表明自己热爱科学、愿意为科学献身。机会总是垂青于有准备的人,法拉第的能力才华深受戴维的赏识,22岁的他就被戴维任命为自己的实验助理。名师出高徒,法拉第以戴维为师,这为他后来的成就铺就了一条康庄大道。而且法拉第聪明、刻苦,很受戴维的器重,所以每次戴维外出考察时总会让法拉第相伴,而每一次外出考察对他来说都是弥足珍贵的学习机会,都会是他增长知识、开拓视野。 法拉第于1815年回到皇家研究所,而且他的启蒙老师戴维非常耐心地指导他做各种研究工作,在他们共同的努力下好几项化学研究都取得了成果。1816年对法拉第来说是不寻常的一年,是他科学道路的新起点,因为在这一年他发表了他人生中的首篇论文。从1818年开始他和J·斯托达特共同钻研合金钢,并且第一次独立创立了著名的金相分析方法。由于法拉第工作兢兢业业,深受研究院的重视,所以1821年被学院提升担任皇家学院总监这一要职。在两年之后的1823年,经过刻苦的钻研他发现了氯气与其余一些气体的液化方法。世界总是公平的,春天种下什么种子秋天就会收获什么果实,而法拉第所付出的努力也是会得到回报的,1824年1月他终于正式成为皇家学会的会员。1825年2月法拉第传承了启蒙老师戴维曾经的职位即被任命为皇家研究所实验室主任。就在这一年,他又有一项伟大的发现-----他发现了有机物苯。

电磁感应习题

电磁感应练习 一 选择题 1. 在无限长载流导线附近有一个球形闭合曲面S ,当S 面垂直于导线电流方向向长直导线靠近时,穿过S 面的磁通量Φm 和面上各点的磁感应强度的大小将: (A )Φm 增大,B 也增大; (B )Φm 不变,B 也不变; (C )Φm 增大,B 不变; (D )Φm 不变,B 增大。 [ ] 2. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大. (C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ] 题一(2)图 3. 铜圆盘水平放置在均匀磁场中,B 的方向垂直向上。当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A )铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B )铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C )铜盘上有感应电动势产生,铜盘边缘处电势高。 (D )铜盘上有感应电动势产生,铜盘中心处电势高。 [ ] B ω 题一(3)图 4.如图,导体棒AB=L 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO`转动(角速度ω与B 同方向),BC 的长度为棒长的1/3。则(1) (A )A 点比B 点电势高. (B )A 点与B 点电势相等. (C )A 点比B 点电势低. (D )无法判断. [ ] (2)求:U A U B B O A B C O` 题一(4)图 a b c d a b c d a b c d v v v ⅠⅢⅡ I

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

《楞次定律和法拉第电磁感应定律

2016楞次定律和法拉第电磁感应定律(一) 班级姓名 【知识反馈】 1.产生感应电流的条件: 2.楞次定律的内容: 从不同角度理解楞次定律: (1)从磁通量变化的角度: (2)从相对运动的角度: (3)从面积变化的角度: 3.法拉第电磁感应定律的内容: 表达式:,适用 表达式:,适用 【巩固提升】 1、如图所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈 都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是 ( ) A.俯视,线圈顺时针转动,转速与磁铁相同 B.俯视,线圈逆时针转动,转速与磁铁相同 C.线圈与磁铁转动方向相同,但转速小于磁铁转速 D.线圈静止不动 2、如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态。当条形磁铁的N极自右向左插入圆环时,两环的运动情况是( ) A.同时向左运动,两环间距变大; B.同时向左运动,两环间距变小; C.同时向右运动,两环间距变大; D.同时向右运动,两环间距变小。 3.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q 平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下 落接近回路时( ) A.P、Q将相互靠拢 B.P、Q将相互远离 C.磁铁的加速度仍为g D.磁铁的加速度小于g 4.如图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流,各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )

5.如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,a、c两点间的电势差为( ) A.BLv B.BLv sinθ C.BLv cosθ D.BLv(l+sinθ) 6.如图所示,两块水平放置的金属板距离为d,用导线与一 个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中,两板间有一个质量为m、电量为+q的油滴处于静止状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A、正在增加, B、正在减弱, C、正在增加, D、正在减弱, 7.在竖直方向的匀强磁场中,水平放置一圆形导体环。规定导体环中电流的正方向如图11(甲)所示,磁场方向竖直向上为正。当磁感应强度B 随时间t按图(乙)变化时,下列能正确表示导体环中感应电流随时间变化情况的是( ) 8.如图所示,平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0 Ω的定值电阻,导体棒ab长L=0.5 m,其电阻不计,且与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4 T,现使ab以v=10 m/s的速度向右做匀速运动,则以下判断正确的是( ) A.导体棒ab中的感应电动势E=2.0 V B.电路中的电流I=0.5 A C.导体棒ab所受安培力方向向右 D.导体棒ab所受合力做功为零 9. 在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大 线圈M相接,如图所示,导轨上放一根导线ab,磁感线垂 直导轨所在的平面,欲使M所包围的小闭合线圈N产生顺 时针方向的感应电流,则导线的运动可能是()

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

(完整版)电磁感应提升练习

电磁感应提升练习 1、如图所示的圆形线圈共n匝,电阻为R,过线圈中心O垂直于线圈平面的直线上有A、B两点,A、B两点的距离为L,A、B关于O点对称。一条形磁铁开始放在A点,中心与O点重合,轴线与A、B所在直线重合,此时线圈中的磁 通量为,将条形磁铁以速度v匀速向右移动,轴线始终与直线重合,磁铁中心到O点时线圈中的磁通量为,下列说法正确的是() A.磁铁在A点时,通过一匝线圈的磁通量为 B.磁铁从A到O的过程中,线圈中产生的平均感应电动势为 C.磁铁从A到B的过程中,线圈中磁通量的变化量为2 D.磁铁从A到B的过程中,通过线圈某一截面的电量不为零 2、如图甲所示,MN左侧有一垂直纸面向里的匀强磁场。现将一边长为l、质量为m、电阻为R的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc边与磁场边界MN重合。当t=0时,对线框施加一水平拉力F,使线框由静止开始向右做匀加速直线运动;当t=t0时,线框的ad边与磁场边界MN重合。图乙为拉力F随时间变化的图线。由以上条件可知,磁场的磁感应强度B的大小为() A. B.C. D. 3、如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。一个质量为m、一边长度也为L的方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直且线框上、下边始 终与磁场的边界平行。t=0时刻导线框的上边恰好与磁场的下边界重合(图中位置I),导线框的速度为。经历一

A.上升过程中,导线框做匀变速运动 B.上升过程克服重力做功的平均功率小于下降过程重力的平均功率 C.上升过程中线框产生的热量比下降过程中线框产生的热量的多 D.上升过程中合力做的功与下降过程中合力做的功相等 4、如图所示,在圆柱形区域内存在竖直向上的匀强磁场,磁感应强度的大小B随时间t的变化关系为B=B0+kt,其中B0.k为正的常数。在此区域的水平面内固定一个半径为r的圆环形内壁光滑的细玻璃管,将一电荷量为q的带正电小球在管内由静止释放,不考虑带电小球在运动过程中产生的磁场,则下列说法正确的是() A.从上往下看,小球将在管内沿顺时针方向运动,转动一周的过程中动能增量为2qkπr B.从上往下看,小球将在管内沿逆时针方向运动,转动一周的过程中动能增量为2qkπr C.从上往下看,小球将在管内沿顺时针方向运动,转动一周的过程中动能增量为qkπr2 D.从上往下看,小球将在管内沿逆时针方向运动,转动一周的过程中动能增量为qkπr2 5、如图所示,在边长为a的正方形区域内有匀强磁场,磁感应强度为B,其方向垂直纸面向外,一个边长也为a的单匝正方形导线框架EFGH正好与上述磁场区域的边界重合,导线框的电阻为R.现使导线框以周期T绕其中心O点 在纸面内匀速转动,经过导线框转到图中虚线位置,则在这时间内() A.顺时针方向转动时,感应电流方向为E→F→G→H→E B.平均感应电动势大小等于 C.图中虚线位置的瞬时感应电动势大小等于 D.通过导线框横截面的电荷量为 6、有一种信号发生器的工作原理可简化为如图所示的情形,竖直面内有半径均为R且相切于O点的两圆形区域,其内存在水平恒定的匀强磁场,长为2R的导体杆OA,以角速度绕过O点的固定轴,在竖直平面内顺时针匀速旋转,t=0时,OA恰好位于两圆的公切线上,下列描述导体杆两端电势差UAO随时间变化的图像可能正确的是

电磁感应对点练习

公式E =n ΔΦΔt 的应用 1.如图459甲所示,线圈的匝数n =100匝,横截面积S =50 cm 2 ,线圈总电阻r =10 Ω,沿轴向有匀强磁场,设图示磁场方向为正,磁场的磁感应强度随时间做如图459乙所示变化,则在开始的0.1 s 内( ) 图459 A .磁通量的变化量为0.25 Wb B .磁通量的变化率为2.5×10-2 Wb/s C .a 、b 间电压为0 D .在a 、b 间接一个理想电流表时,电流表的示数为0.25 A 2.单匝线圈在匀强磁场中绕垂直于磁场的轴匀速转动,穿过线圈的磁通量Φ随时间t 的关系图象如图4510所示,则( ) 图4510 A .在t =0时刻,线圈中磁通量最大,感应电动势也最大 B .在t =1×10-2 s 时刻,感应电动势最大 C .在t =2×10-2 s 时刻,感应电动势为零 D .在0~2×10-2 s 时间内,线圈中感应电动势的平均值为零 公式E =Blv 的应用 3.某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5T.一灵敏电压表连接在当地入海河段的两岸,河宽100 m ,该河段涨潮和落潮时有海水(视为导体)流过,设落潮时,海水自西向东流,流速为2 m/s.下列说法正确的是( )

A .电压表记录的电压为5 mV B .电压表记录的电压为9 mV C .XX 岸的电势较高 D .XX 岸的电势较高 4.如图4511所示,在竖直向下的匀强磁场中,将一个水平放置的金属棒ab 以水平初速度v 0抛出,设运动的整个过程中棒的取向不变,且不计空气阻力,则金属棒在运动过程中产生的感应电动势大小将( ) 图4511 A .越来越大 B .越来越小 C .保持不变 D .无法确定 感生电场问题 5. 图468 如图468所示,内壁光滑的塑料管弯成的圆环平放在水平桌面上,环内有一带负电的小球,整个装置处于竖直向下的磁场中,当磁场突然增强时,小球将( ) A .沿顺时针方向运动 B .沿逆时针方向运动 C .在原位置附近往复运动 D .仍然保持静止状态 E =n ΔΦΔt 及E =Blv 的比较应用

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时 , 且导线与磁感线互相垂直(l B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+== 222ω, 故2 21l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。 公式三:ω···S B n E m =——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁

电磁感应定律习题含答案

法拉第电磁感应定律练习题 1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是 [ ] A.都会产生感应电流 B.都不会产生感应电流 C.甲、乙不会产生感应电流,丙、丁会产生感应电流 D.甲、丙会产生感应电流,乙、丁不会产生感应电流 1.关于感应电动势大小的下列说法中,正确的是 [ ] A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势 [ ] A.以2v速率向+x轴方向运动 B.以速率v垂直磁场方向运动 4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示 [ ] A.线圈中O时刻感应电动势最大 B.线圈中D时刻感应电动势为零 C.线圈中D时刻感应电动势最大 D.线圈中O至D时间内平均感电动势为0.4V 5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是 [ ] A.将线圈匝数增加一倍

B.将线圈面积增加一倍 C.将线圈半径增加一倍 D.适当改变线圈的取向 6.如图4所示,圆环a和圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中和b环单独置于磁场中两种情况下,M、N两点的电势差之比为 [ ] A.4∶1 B.1∶4 C.2∶1 D.1∶2 8.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量和电阻均相同的两根滑杆ab和cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab和cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是 [ ] A.cd向左运动 B.cd向右运动 C.ab和cd均先做变加速运动,后作匀速运动 D.ab和cd均先做交加速运动,后作匀加速运动 9.如图6所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别为PS和PQ的中点,关于线框中的感应电流 [ ] A.当E点经过边界MN时,感应电流最大 B.当P点经过边界MN时,感应电流最大 C.当F点经过边界MN时,感应电流最大 D.当Q点经过边界MN时,感应电流最大 10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。一根长直金属棒与轨道成60°角放置,且接触良好,则当金属棒以垂直于棒的恒定速度v沿金属轨道滑行时,其它电阻不计,电阻R 中的电流强度为 [ ] 11.如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边

电磁感应基础训练

一 选择题 1.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针 指向为电流正方向,且不计线圈的自感)? [ ] D t I 0 I t I 0 I (A) (B) (C) (D)

2. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通 过其一端O 的定轴旋转着, B 的 方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成 θ 角(b 为铜棒转动的平面上的一个固定点),则 在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos( 2 θωω+t B L . (B) t B L ωωcos 2 12 . (C) )cos( 22 θωω+t B L . (D) B L 2 ω. (E) B L 2 2 1ω. [ ] E B

3. 如图,长度为l的直导线ab在均匀磁场B 中以速度v 移动,直导线ab中的电动势为 (A) Bl v. (B) Bl v sinα. (C) Bl v cosα.(D) 0. [] D

4.如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与 B 同方 向),BC 的长度为棒长的31 , 则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ A ]

5. 如图所示的电路中,A、B 阻r >>R,L是一个自感系数相当 大的线圈,其电阻与R相等.当 开关K接通和断开时,关于灯泡 A和B的情况下面哪一种说法正确? (A) K接通时,I A >I B. (B) K接通时,I A =I B. (C) K断开时,两灯同时熄灭. (D) K断开时,I A =I B. [ A ]

法拉第电磁感应定律练习题40道35066

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 :_______________班级:_______________考号:_______________ 题号 一 、选择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa 和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

相关主题
文本预览
相关文档 最新文档