当前位置:文档之家› 直流电动机的基本原理及结构

直流电动机的基本原理及结构

直流电动机的基本原理及结构
直流电动机的基本原理及结构

第一章引言

在日常生活中有直流电和交流电随之产生重要的直流电动机与交流电动机,然而直流电动机与交流电动机相比具有调速范围广,调速平滑方便,过载能力大,能承受平凡的冲击负载,可实现平凡的无极快速启动、制动和反转等优点,能满足生产过程自动化系统各种不同的特殊运行要求。直流电动机常应用于对起动和调速有较高要求的场合,如大型可逆式轧钢机、矿井卷扬机、龙门刨床、电动机车、大型车床和大型起重机等生产机械。

在机床等设备中,应用较多的是他励直流电动机,本设计(论文)以他励直流电动机为例介绍。

第二章直流电动机的基本原理及结构

2.1直流电动机的基本原理

直流电动机通过换向器配合电刷,当电枢通电时位于磁场N极下的绕组电流从首端流至尾端,位于磁场S极下的绕组电流从尾端流至首端。因此产生一个可使转子持续转动的电磁转矩。

直流电机是一种能实现机电能量转换的电磁装置,它能使绕组在气隙磁场中旋转感生出交流电动势,并依靠换向装置,将此交流电变为直流电。其产生交流电的物理根源在于,电机中存在磁场和与之有相对运动的电路,即气隙磁场和绕组。旋转绕组和静止气隙磁场相互作用的关系可通过电磁感应定律和电磁力定律来分析。

根据电磁感应定律,在恒定磁场中,当导体切割磁场磁力线时,导体中将感应电动势。如果磁力线、导体及其运动方向三者互相垂直,则导体中产生的感应电动势的大小为

e=Blv (2—1) 式中,B为磁感应强度,单位为T; l 为导体切割磁力线的有效长度,单位为m; v 为导体切割磁场的线速度,单位为m/s; e 为导体感应电动势,单位为V。

依据电磁力定律,当磁场与载流导体相互垂直时,作用在载流导体上的电磁力为

f =Blv (2—2) 式中,为载流导体中电流,单位为A;为电磁力,单位为N。电磁力的方向用左手定则确定。

直流电动机的工作原理是基于载流导体在磁场中受力产生电磁力形成电磁转矩的基本原理。但要获得恒定方向的转矩,需将其外电路的直流电流变为绕组中的交流电流,即同样需要机械整流装置,见图2-1。

实际上,直流电动机的电枢上有许多线圈,这些线圈产生的电磁转矩合成为一个总的电磁转矩,拖动负载转动。

总之,在上述直流电动机的工作过程中,单从电枢线圈的角度看,每个导体中的电流方向是交变的;但从磁极看,每个磁极下导体中电流的方向是固定的,即不管是哪个导体运行到该极下,其中的电流方向总是相同的。因此,直流电动机可获得恒定方向的电磁转矩,使电机持续旋转。

直流电机作为发电机运行时,电枢由原动机驱动而在磁场中旋转,在电枢线圈的两根有效边中便感应出电动势e。显然,每一有效边中的电动势是交变的,在N极下是一个方向,当它在转到S极下时又是另一个方向。电刷和换向器的作用在于将发电机电枢绕组内的交流电动势换成电刷之间的极性不变的电动势。一但电刷之间接有导体时,那么在电动势的作用下就在电路中产生一定方向的电流。从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和

图2-1 直流电动机工作原理组图

在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导体中通过电流、在磁场中因受力而转动,就带动整个转子旋转。所以直流电动机则是由直流电源供电,输入的是电能,输出的是机械能。

电刷就是完成这个任务的装置。

2.2直流电动机的基本结构

直流电动机由定子部分与转子部分组成。定子部分包括主磁极(线圈、绕组)、换向器、电刷、附件。转自部分包括电枢(电枢铁芯、电枢绕组)、换向器、附件。

分为两部分:定子与转子。记住定子与转子都是由那几部分构成的,注意:不要把换向极与换向器弄混淆了,记住他们两个的作用。

定子包括:主磁极,机座,换向极,电刷装置等。

转子包括:电枢铁芯,电枢绕组,换向器,轴和风扇等

图2-2所示为电动机内部基本机构:

图2-2 直流电动机结构图

2.3直流电动机的分类

直流电机按照励磁方式可分为他励直流电动机、并励直流电动机、串励直流电动机和复励直流电动机。

1. 他励直流电动机

励磁绕组和电枢绕组分别由两个直流电源供电。如图2-3所示:

图2-3 他励直流电动机工作原理图

2.并励直流电动机

并励直流电机的励磁绕组与电枢绕组相并联,接线如图2-4所示。作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。

图2-4 并励直流电动机工作原理图

3.串励直流电动机

串励直流电机的励磁绕组与电枢绕组串联后,再接于直流电源,接线如图2-5所示。这种直流电机的励磁电流就是电枢电流。

图2-5 串励直流电动机工作原理图

4. 复励直流电动机

复励直流电机有并励和串励两个励磁绕组,接线如图2-6所示。若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势

方向相反,则称为差复励。

不同励磁方式的直流电机有着不同的特性。一般情况直流电动机的主要励磁方式是并励式、串励式和复励式,直流发电机的主要励磁方式是他励式、并励式和和复励式。

图2-6 复励直流电动机工作原理图

第三章直流电动机的起停控制线路以他励直流电动机为例3.1他励直流电动机的起动控制线路

电动机接入电源后,转速从零逐渐上升到稳定转速的过程称为起动。

直流电动机起动的基本要求是:有足够的起动转矩,一般为额定转矩的1.5~2.5倍,以便快速起动,缩短起动时间;起动电流不能过大,一般规定起动电流不应超过额定电流的1.5~2.5倍;起动设备安全、可靠、经济。

他励直流电动机有三种起动方式:直接起动、降压起动和电枢串电阻起动。(一)直接起动

所谓直接起动,是指不采取任何措施,直接将静止电枢投入额定电压电网的起动过程。如上所述,直流电机不宜于采用直接起动。因此,这里所讲的直接起动只限于小容量电机,对电网和自身的冲击都不太大,但操作简便,毋需添加任何起动设备。

直接起动过程中电枢电流和转速的变化规律如图3-1所示。考虑电枢回路电感的作用,电流不突变,但很快上升至最大冲击值Ist,不过,此时转子已开始转动,并具有一定速度,E>0,因此,实际的起动电流冲击值Ist会略小于U/Ra。

图3-1 直接起动时电枢电流与转速特性曲线

(二) 降压起动

启动时降低端电压,使Ia=(1.5 ~2)IN ,既在不大的起动电流下使系 统顺利起动。随着转速的提高,反电动势增大,电枢电流开始下降,这时可以逐渐升高端电压直至U N ,在整个过程中保持起动电流与转矩在此范围不变,直至起动完毕。最大起动电压Ust 为

(三)电枢串电阻起动

电压不变,在电枢回路中串接电阻,可达到限制起动电流的目的,使

在满磁下将Rst 置最大处,逐渐减小Rst 使n 升高。

图3-2、3-3所示串电阻的接线图。

图3-2 电枢串入固定电阻起动的接线图 图3-3控制线路工作过程如下,合上电源开关QF1、QF2,时间继电器KT1、a

N a st st )5.2~5.1(R I R I U ?=?=N st a N ast )5.2~5.1(I R R U I =+=a ast

N st R I U R -=

KT2线圈得电,两者的常闭触点断开,为电枢回路串电阻起动作准备;按下起动按钮SB2,接触器KM1线圈得电,其辅助常开触点闭合自锁,KM1主触点闭合,电动机电枢回路串两级电阻R1、R2起动,同时KM1辅助常闭触点断开,KT1、KT2断电延时;KT1延时时间到,其常闭触点复位,KM2线圈得电,常开主触点闭合,电动机电枢回路切除电阻R1。接着KT2延时时间到,其常闭触点复位,KM3线圈得电,常开主触点闭合,电动机电枢回路切除电阻R2,电动机正常运行。

图3-3 他励直流电动机电枢回路串电阻二级起动控制线路

3.2 他励直流电动机的制动控制线路

电动机大多运行于电动状态但在电力拖动系统中,为了满足生产上的技术要求或者为了安全,往往需要电动机尽快停转或由高速运行迅速变为低速运行,为此,需要对电动机进行制动。

与交流电动机一样,直流电动机的制动发式也有机械制动和电气制动两大类。电气制动方法中常用的有:能耗制动、反接制动和回馈制动,这三种制动方法的共同点是,在保留原来磁场大小和方向不变的情况下,使电电磁转矩方向与旋转方向相反,从而产生制动转矩。

(一)能耗制动

能耗制动是指在维持直流电动机的励磁电源不变的情况下,断开正在运行的电动机的电枢电源,再串接一个外加制动电阻组成制动回路,将高速旋转所产生的机械能转变为电能,再以热能的形式消耗在电枢和制动电阻上。由于电动机因惯性继

续旋转,直流电动机此时变为发电机状态,所产生的电磁转矩与转速方向相反,为制动转矩,从而使电动机由高速转变为低速。

图3-4所示为他励直流电动机能耗制动控制线路,图3-4中制动电阻R3与中间继电器KA组成能耗制动回路。

图3-4 他励直流电动机能耗制动控制电路

该控制线路工作过程如下,合上电源开关QF1、QF2,按下起动按钮SB2,电动机通电并串两级电阻起动;当需要制动时,按下停止按钮SB1,接触器KM1线圈断电,其主触点断开,电动机电枢回路断开,电动机惯性运转,同时KM1的辅助常闭触点复位,KA线圈通电,其常开触点闭合使KM2线圈得电,KM2辅助常开触点闭合,接入能耗制动电阻R3,产生制动转矩使电动机能耗制动;当电动机转速下降到一定程度时,电枢绕组产生的感应电势小于KA线圈的释放值,KA线圈释放,其常开触点断开,KM2线圈断电,能耗制动结束,电动机自由停车至零。

(二)反接制动

反接制动是在保持他励直流电动机励磁为额定状态不变情况下,将电枢绕组的极性改变,使得电流方向改变,产生制动力矩,迫使电动机迅速停止的一种制动方式。反接制动分为改变电枢电压极性的电枢反接制动和电枢回路串大电阻的倒拉反接制动两种方法。

与交流异步电动机相同,在反接制动时应注意以下两点:第一,要限制过大的制动电流。第二,要防止电动机反向再起动。通常采用限流电阻进行限流,根据电流原则和速度原则进行反接制动控制。

图3-5所示为他励直流电动机反接制动控制线路。

图3-5 他励直流电动机反接制动控制电路 该控制线路工作过程如下,合上电源开关QF1、QF2,按上按钮SB1接触器KM1线圈得电,时间继电器KT1、KT2线圈失电,接触器KM6、KM7线圈得电,KA 线圈得电,接触器KM4线圈得电,正向运转。按上SB3按钮,接触器KM1线圈失电,KM3线圈得电,KM2线圈得电(电枢串R3反接制动),KA 线圈失电,接触器KM3、KM4、KM2线圈失电。电动机反接制动。

第四章 直流电动机的调速控制线路

为了提高生产效率和保证产品质量,需要人为地对电动机的转速进行控制。所谓调速就是人为地改变电气参数,使电动机的工作点由一条机械特性曲线转移到另一条机械特性曲线上,从而在同一负载下得到不同的转速。

直流电动机具有优良的调速性能,可在宽广范围内平滑二经济的调速,特别适用于调速要求较高的电力拖动系统。他励直流电动机的一般机械特性方程如下: T CeCt Rp Ra Ce U n 2Φ+-Φ=

由上式可见,由上式可见,当负载不变时(T=TL ),只要改变电枢电压U 、电枢回路串入的电阻RP 、每极磁通Φ三量中任一个就能改变电动机转速。因此,他励直流电动机可以有三种调速方法:电枢串电阻调速、改变励磁磁通调速、改变电枢电压调速。

4.1 电枢串电阻调速

他励直流电动机拖动负载运行时,他励直流电动机拖动负载运行时,保持电源电压U 及磁通Φ为额定值,改变电枢回路所串的电阻值,电动机就能运行于不同的转

速。图4-1所示为他励直流电动机电枢回路串电阻调速原理图。

电枢回路串电阻调速只能使电动机在小于额定转速的范围内进行调速,调速范围较小、稳定性较差、能量消耗大。因此这种调速方式只适于调速性能要求不高、容量不大、短期工作的中小型直流电动机。

图4-1 他励直流电动机电枢回图4-2他励直流电动机调磁路串电阻调速原理图调速原理图

4.2 改变励磁磁通调速

在保持电源电压为额定值、电枢回路不串电阻的条件下,通过在励磁回路串入可调电阻改变励磁电流,以改变磁通,从而达到调速的的目的。由于电动机在额定状态运行时,磁路已接近饱和,所以通常只能减小磁通,将转速往上调,故此种方法又称为弱磁调速。图4-2所示为他励直流电动机调磁调速原理图。

图4-3 他励直流电动机改变励磁电流的调速控制线路

弱磁调速的优点是调速平滑、可实现无级调速,调速经济、控制方便,机械特性较硬、稳定性好。缺点是调速范围小,最高转速一般为额定转速的1.2倍。弱磁调速一般与降压调速配合使用以扩大调速范围,即额定转速以下,采用降压调速;额定转速以上,采用弱磁调速。

图4-3所示为他励直流电动机改变励磁电流(即调磁)的调速控制线路图。

图4-3中,电动机的直流电源采用两厢零式整流电路,起动时电枢回路串电阻R 起动,并在起动后由KM3切除电阻R。电阻R还兼用作制动时的限流电阻。电动机的并励绕组串入调速电阻R3,调节R3即可对电动机实现调速。电阻R2与励磁绕组并联以吸收励磁绕组的磁场能,以免接触器断开瞬间产生过高的自感电动势击穿绝缘。接触器KM1为能耗制动接触器,KM2为工作接触器,KM3为切除起动电阻的接触器。电动机正常运行时,调节电阻R3,电路的励磁电流变化,电动机M的转速随之改变。

4.3 降低电枢电压调速

降低电枢电压调速需要有连续可调的直流电源给电枢供电。直流电源的取得有两种发放:一种是用直流发电机提供可调直流电源,组成G—M系统(直流发电机—电动机系统)或AGG—M系统(电机放大机—发电机—电动机系统);另一种是采用常见的晶闸管整流装置作为直流电动机的可调电源,组成晶闸管—直流电动机拖动系统。

图4-4 所示为G-M拖动系统控制线路

图4-4所示为G—M拖动系统控制线路。M1是他励直流电动机,用于拖动生产机械;G1是他励直流发电机,为直流电动机M1提供电枢电压;G2是并励直流发电机,为直流电动机M1和直流发电机G1提供励磁电压,同时为控制电路提供电压;M2是三相笼型异步电动机,用于拖动同轴连接的直流发电机G1和G2;R1、R1和R3分别用于调节G1、G1和M1的励磁电流;KI为过电流继电器;KM1和KM2分

别为正反转控制接触器。

当直接电动机需要调速时,可通过调节R1改变发电机G1的励磁电流,使发电机G1的输出电压改变,电动机M1的电枢电压随之改变,从而达到调速的目的。M1的电枢电压不能大于额定电压,因此调速时只能使电动机的转速在额定值以下调节。

若要使电动机的转速在额定转速以上范围内进行平滑调速,可调节R3使之增大,使M1的励磁磁通减小,从而使电动机转速升高。

降低电枢电压的调速方法需要专用的调速电源,初次投机大。但其降压调速性能好,故常用于调速要求较高的场合和大中容量电动机调速,特别适用于带恒转矩负载的电动机调速。

第五章直流电动机的个人观点

我们的生活中有很多东西是不可缺少的。直流电动机在我们身边发挥着举足轻重的作用。

直流电动机与交流电动机相比具有调速范围广,调速平滑方便,过载能力大,能承受平凡的冲击负载,可实现平凡的无极快速启动、制动和反转。直流电动机提供稳定的转速,跟交流电机相比,产生的磁干扰小,可控制性好。直流电动机起动力矩大,容易改变转速,因此许多大型起重设备、电力机车、电车等都使用直流电动机。

容量范围大:标准品可达400kW,更大容量可以订制。电车等都使用直流电动机。电压种类多:直流供电,交流高低电压均不受限制。低频转矩大:低速可以达到理论转矩输出,激活转矩可以达到两倍或更高。高精度运转:不超过1 rpm.(不受电压变动或负载变动影响)。高效率:所有调速装置中效率最高,比传统直流电机高出5~30%。调速范围:简易型/通用型(1:10),高精度型(1:100),伺服型.过载容量高:负载转矩变动在200%以内输出转速不变。体积弹性大:实际比异步电机尺寸小,可以做成各种形状。可设计成外转子电机(定子旋转)。转速弹性大:可以几10转到106转.制动特性良好,可以选用四象限运转。可设计成全密闭型,IP-54,IP-65,防爆型等均可。允许高频度快速激活,电机不发烫。通用型产品安装尺寸与一般异步电机相同,易于技术改造无刷直流电机配以高性能高速实时数字控制器构成的调速装置,整个系统控制相对简单、成本低、转速平衡、噪音低,特别适合在家用电器产品中应用。同时,也可推广到其它工业应用领域,如机床、机器人和电梯驱动等。

直流电动机的工作原理

直流电动机的工作原理:在电枢线圈中通入直流电流,电枢在磁场中旋转,换向器和电枢一起旋转。电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由线圈边ab,cd流入,使线圈边只要处于N极下,其中通过电流的方向总是从电刷A流入的方向,在S极下,电流总是从电刷B流出的方向。由此保证了每个磁极线圈边中的电流始终是一个方向,使电动机连续旋转。 直流发电机的工作原理:把电枢线圈感应产生的交变电动势,靠换向器配合电刷的换向作用, 使之从电刷端引出时为直流电动势。 直流电机的结构:定子(主磁极,换向极,机座,端盖,电刷装置)作用:产生磁场 转子(电枢铁心,电枢绕组,换向器,轴,风扇) 主要是电枢,作用:产生电磁转矩和感应电动势 可逆原理:同一台电机,既能做电动机运行,又能做发电机运行的原理,称为可逆原理。 直流电机的励磁方式:4种,串励,并励,他励,复励。 直流电机的空载磁场:直流电机不带负载时运行的状态称为空载运行。空载运行时电枢电流为零或近似为零,所以空载磁场是指主磁极励磁磁动势单独产生的励磁磁场。电枢磁动势:由电枢电流所建立的磁动势. 电枢反应:电枢磁动势对励磁磁动势所产生的气隙磁场的影响,称为电枢反应。 电枢反应影响电动机转速,发电机端电压。 电枢反应的作用:1负载时气隙磁场发生了畸变。2呈去磁作用。 改变电动机转向的方法:1改变电枢两端电压极性。2互换励磁绕组极性。 电机圆周在几何上分成360度,这个角度成为机械角度或空间角度。 导体切割磁场,经过N,S一对磁极,因而一对磁极占有的空间是360度 直流电机的3种调速方法:1改变电枢电压调速,2电枢回路串电阻调速,3改变励磁调速。 并励直流发电机的自励条件:1电机磁路中有剩磁 2励磁绕组并联到电枢两端 3励磁回路的总电阻小于临界点组 换向:元件内电流方向改变的过程。 变压器的分类:电力变压器,特种变压器. 变压器的主要部件:铁心,绕组,油箱。铁心和绕组装配组成器身。 变压器的特性指标:变压器二次侧的电压变化,变压器的效率 三相异步电动机的工作原理:就是通过一种旋转磁场与由这种旋转磁场借助于感应作用在转 子绕组内所感生的电流互相作用,以产生电磁转矩来实现拖动作用。 旋转磁场:一种极性不和大小不变,以一定转速旋转的磁场。 三相异步电动机的结构:定子(定子铁心,定子绕组,机座,端盖,风扇) 转子(转子铁心,转子绕组,转轴,气隙) 机械角度:电机圆周在几何上分成360度,机械角度总是360度。 电角度=P×机械角度=p×360 p:极对数

直流电机参数

一、概述 1.Z2系列小型直流电机为中华人民共和国机械工业部JB1104-68部颁标准所规定的标准系列小型直流电机。 2.Z2系列小型直流电机共分11个机座号,每个机座号有两种铁心长度,制造有直流电动机、直流发电机、直流调压发电机三种,适用于一般正常的工作环境。电动机作一般传动用,发电机作为一般直流电源用,调压发电机作蓄电池组充电用。 3.励磁方式:电动机为带有少量稳定绕组的并激或他激励磁。 发电机为复激或他激励磁(额定电压为230伏的发电机),调压发电机为并激励磁(不带串激绕组)。 电机的他激励磁电压制成有110伏或220伏二种。 电动机额定电压110伏的仅有他励电压110伏一种。 4.Z2系列电机根据使用要求可制成湿热地区使用的具有防潮、防霉、防盐雾性能的湿热带型(T H)直流电机。 5.型号含义:Z表示“直”流,2表示第二次全国定型设计,横线后数字表示机座号与铁心长短,例如Z2-11前一个1代表1号机座,后一个1代表短铁心,而Z2-112中11代表11号机座,2代表长铁心。 二、结构型式 1.直流发电机或直流调压发电机仅制造卧式,机座带底脚的一种。 2.直流电动机可制成下表所示的结构型式。 三、Z2系列电动机 1.电动机可用三角皮带、正齿轮或弹性联轴器进行传动,不使电机轴承受轴向推力。 2.电动机可在正转或逆转情况下正常工作。 四、Z2系列发电机及调压发电机 1.Z2系列发电机及调压发电机的旋转方向自换向器端看去为顺时针方向,根据使用要求亦可制成逆时针方向旋转的发电机或调压发电机。 2.Z2系列发电机及调压发电机根据订货要求可制成与Y系列三相异步电动机配套成的发电机组成套供应。 3.调压发电机的额定功率为平均电压(对110/160伏的为135伏,对220/320伏的为270伏)时的功率,当电压高于平均电压时其输出功率不大于额定功率,当电压低于平均电压时其输出电流不大于额定电流。 五、订货须知 订货时须注明电机的型号及具体规格(包括励磁方式、旋转方向、出线盒位置、是否双轴伸、结构型式等),例如Z2-62 13千瓦220伏1500转/分他激电动机,他励电压220伏,卧式机座带底脚,端盖有凸缘。 配套的异步电动机、变阻器等附件,电刷、刷握等备件的供应,或有特殊要求(如供湿热带地区使用)和须外文说明文件者应在订货合同中注明。

直流电动机分类

直流电动机分类 直流电动机按结构及工作原理可划分:(1)无刷直流电动机和(2)有刷直流电动机。 (1)无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。 (2)有刷直流电动机可划分:(2、1)永磁直流电动机和(2、2)电磁直流电动机。 (2、1)永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 (2、1、1)稀土永磁直流电动机:体积小且性能更好,但价格昂贵,主要用于航天、计算机、井下仪器等。

(2、1、2)铁氧体永磁直流电动机:由铁氧体材料制成的磁极体,廉价,且性能良好,广泛用于家用电器、汽车、玩具、电动工具等领域。 (2、1、3)铝镍钴永磁直流电动机:需要消耗大量的贵重金属、价格较高,但对高温的适应性好,用于环境温度较高或对电动机的温度稳定性要求较高的场合。 (2、2)电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 (2、2、1)串励直流电动机:电流串联,分流,励磁绕组是和电枢串联的,所以这种电动机内磁场随着电枢电流的改变有显著的变化。为了使励磁绕组中不致引起大的损耗和电压降,励磁绕组的电阻越小越好,所以直流串励电动机通常用较粗的导线绕成,他的匝数较少。 (2、2、2)并励直流电动机:并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。 (2、2、3)他励直流电动机:励磁绕组与电枢没有电的联系,励磁电路是由另外直流电源供给的。因此励磁电流不受电枢端电压或电枢电流的影响。

直流电机参数

一、概述 系列小型直流电机为中华人民共和国机械工业部JB1104-68部颁标准所规定的标准系列小型直流电机。 系列小型直流电机共分11个机座号,每个机座号有两种铁心长度,制造有直流电动机、直流发电机、直流调压发电机三种,适用于一般正常的工作环境。电动机作一般传动用,发电机作为一般直流电源用,调压发电机作蓄电池组充电用。 3.励磁方式:电动机为带有少量稳定绕组的并激或他激励磁。 发电机为复激或他激励磁(额定电压为230伏的发电机),调压发电机为并激励磁(不带串激绕组)。 电机的他激励磁电压制成有110伏或220伏二种。 电动机额定电压110伏的仅有他励电压110伏一种。 系列电机根据使用要求可制成湿热地区使用的具有防潮、防霉、防盐雾性能的湿热带型(TH)直流电机。 5.型号含义:Z表示“直”流,2表示第二次全国定型设计,横线后数字表示机座号与铁心长短,例如Z2-11前一个1代表1号机座,后一个1代表短铁心,而Z2-112中11代表11号机座,2代表长铁心。 二、结构型式 1.直流发电机或直流调压发电机仅制造卧式,机座带底脚的一种。 2.直流电动机可制成下表所示的结构型式。 三、Z2系列电动机

1.电动机可用三角皮带、正齿轮或弹性联轴器进行传动,不使电机轴承受轴向推力。 2.电动机可在正转或逆转情况下正常工作。 四、Z2系列发电机及调压发电机 系列发电机及调压发电机的旋转方向自换向器端看去为顺时针方向,根据使用要求亦可制成逆时针方向旋转的发电机或调压发电机。 系列发电机及调压发电机根据订货要求可制成与Y系列三相异步电动机配套成的发电机组成套供应。 3.调压发电机的额定功率为平均电压(对110/160伏的为135伏,对220/320伏的为270伏)时的功率,当电压高于平均电压时其输出功率不大于额定功率,当电压低于平均电压时其输出电流不大于额定电流。 五、订货须知 订货时须注明电机的型号及具体规格(包括励磁方式、旋转方向、出线盒位置、是否双轴伸、结构型式等),例如Z2-62 13千瓦220伏1500转/分他激电动机,他励电压220伏,卧式机座带底脚,端盖有凸缘。 配套的异步电动机、变阻器等附件,电刷、刷握等备件的供应,或有特殊要求(如供湿热带地区使用)和须外文说明文件者应在订货合同中注明。

直流电机参数知识分享

直流电机参数

一、概述 1.Z2系列小型直流电机为中华人民共和国机械工业部JB1104-68部颁标准所规定的标准系列小型直流电机。 2.Z2系列小型直流电机共分11个机座号,每个机座号有两种铁心长度,制造有直流电动机、直流发电机、直流调压发电机三种,适用于一般正常的工作环境。电动机作一般传动用,发电机作为一般直流电源用,调压发电机作蓄电池组充电用。 3.励磁方式:电动机为带有少量稳定绕组的并激或他激励磁。 发电机为复激或他激励磁(额定电压为230伏的发电机),调压发电机为并激励磁(不带串激绕组)。 电机的他激励磁电压制成有110伏或220伏二种。 电动机额定电压110伏的仅有他励电压110伏一种。 4.Z2系列电机根据使用要求可制成湿热地区使用的具有防潮、防霉、防盐雾性能的湿热带型(TH)直流电机。 5.型号含义:Z表示“直”流,2表示第二次全国定型设计,横线后数字表示机座号与铁心长短,例如Z2-11前一个1代表1号机座,后一个1代表短铁心,而Z2-112中11代表11号机座,2代表长铁心。 二、结构型式 1.直流发电机或直流调压发电机仅制造卧式,机座带底脚的一种。 2.直流电动机可制成下表所示的结构型式。 三、Z2系列电动机 1.电动机可用三角皮带、正齿轮或弹性联轴器进行传动,不使电机轴承受轴向推力。 2.电动机可在正转或逆转情况下正常工作。 四、Z2系列发电机及调压发电机 1.Z2系列发电机及调压发电机的旋转方向自换向器端看去为顺时针方向,根据使用要求亦可制成逆时针方向旋转的发电机或调压发电机。 2.Z2系列发电机及调压发电机根据订货要求可制成与Y系列三相异步电动机配套成的发电机组成套供应。 3.调压发电机的额定功率为平均电压(对110/160伏的为135伏,对220/320伏的为270伏)时的功率,当电压高于平均电压时其输出功率不大于额定功率,当电压低于平均电压时其输出电流不大于额定电流。 五、订货须知 订货时须注明电机的型号及具体规格(包括励磁方式、旋转方向、出线盒位置、是否双轴伸、结构型式等),例如Z2-62 13千瓦220伏1500转/分他激电动机,他励电压220伏,卧式机座带底脚,端盖有凸缘。 配套的异步电动机、变阻器等附件,电刷、刷握等备件的供应,或有特殊要求(如供湿热带地

直流电动机工作原理

7.2.2 直流电动机工作原理与结构 图7-4 直流电动机模型 图7-4是一个最简单的直流电动机模型。在一对静止的磁极N和S之间,装设一个可以绕Z-Z'轴而转动的圆柱形铁芯,在它上面装有矩形的线圈abcd。这个转动的部分通常叫做电枢。线圈的两端a和d分别接到叫做换向片的两个半圆形铜环1和2上。换向片1和2之间是彼此绝缘的,它们和电枢装在同一根轴上,可随电枢一起转动。A和B是两个固定不动的碳质电刷,它们和换向片之间是滑动接触的。来自直流电源的电流就是通过电刷和换向片流到电枢的线圈里。

图7-5 换向器在直流电机中的作用 当电刷A和B分别与直流电源的正极和负极接通时,电流从电刷A流入,而从电刷B流出。这时线圈中的电流方向是从a流向b,再从c流向d。我们知道,载流导体在磁场中要受到电磁力,其方向由左手定则来决定。当电枢在图7-5(a)所示的位置时,线圈ab边的电流从a流向b,用表示,cd边的电流从c流向d,用⊙表示。根据左手定则可以判断出,ab边受力的方向是从右向左,而cd边受力的方向是从左向右。这样,在电枢上就产生了反时针方向的转矩,因此电枢就将沿着反时针方向转动起来。 当电枢转到使线圈的ab边从N极下面进入S极,而cd边从S极下面进入N极时,与线圈a端联接的换向片1跟电刷B接触,而与线圈d端联接的换向片2跟电刷A接触,如图7-5(b)所示。这样,线圈内的电流方向变为从d流向c,再从b流向a,从而保持在N极下面的导体中的电流方向不变。因此转矩的方向也不改变,电枢仍然按照原来的反时针方向继续旋转。由此可以看出,换向片和电刷在直流电机中起着改换电枢线圈中电流方向的作用。

Z系列中型电动机样本

Z 系列中型直流电动机 DC Motors MEDIUN-SIZE 型号说明 电动机结构简介 1. 电动机的冷却方式及防护等级 a):电动机的冷却方式为他冷,根据GB/T1993《旋转电机冷却方式》标准有IC06、IC17、IC37、IC86W 等四种, 标准型式的冷却空气入口在电动机的主传动端(非换向器端)。 b):电动机的防护等级根据GB/T4942.1《旋转电机外壳防护分级(IP 代码)》标准的有IP23和IP44两种。用户 如需其它冷却方式和防护等级可以另行协商。 c):电动机的冷却方式与防护等级的对应关系见表1 表1 机 座 号: 500~710 功 率: 310~1600kW 基准工作制: S1 绝缘等级: F 防护等级: IP23、IP44 用途分类: A 类 普通工业用 B 类 金属轧机用 适用于:各类机械的传动源,诸如金属轧机主传动、卷取机机组主传动、制糖压缩机传动主传动、水泥回转窑传动、橡塑挤出机械等等。 特点:本系列电机采用多角形结构,定子内部空间利用率高。定子磁轭采用叠片式,适用于可控硅整流电源供电,能够承受脉动电流与电流急剧变化(负载变化)之工况。磁极安装有精确定位,并且全系统电动机均带有补偿绕组,换向性能良好。电动机的绝缘等级为F 级,采用可靠的绝缘结构和无溶剂真空压力浸漆处理,保证绝缘性能稳定和良好散热。 使用条件:海拔不超过1000m 。冷却风机的进风温度不超过40℃;冷却水进水温度不超过32℃;电动机的基本励磁方式为他励,励磁电压为220V ,标准额定电压有440V 、550V 、660、750V 四种,但均可根据具体情况而定。电动机允许强行励磁,强励电压不得超过500V ,电动机正常运行时励磁电流不得超过额定励磁电流。

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

直流他励电动机机械特性.

实训三直流他励电动机机械特性 自动化0933班徐林 一.实验目的 了解直流电动机的各种运转状态时的机械特性 二.预习要点 1.改变他励直流电动机械特性有哪些方法? 2.他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况? 3.他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。 三.实验项目 1.电动及回馈制动特性。 2.电动及反接制动特性。 3.能耗制动特性。 四.实验设备及仪器 1.实验台主控制屏。 2.电机导轨及转速表 3.三相可调电阻900Ω(NMEL-03) 4.三相可调电阻90Ω(NMEL-04) 5.旋转指示灯及开关板(NMEL-05B) 6、直流电压、电流、毫安表(NMEL-06A) 7.电机起动箱(NMEL-09) 8.直流电机仪表、电源(含在主控制屏左下方,MMEL-18) 五.实验方法及步骤 1.电动及回馈制动特性 接线图如图5-1 M为直流发电机M01作电动机使用(接成他励方式)。 G为直流并励电动机M03(接成他励方式),U N=220V,I N=1.1A,n N=1600r/min; 直流电压表V1为MMEL-18中220V可调直流稳压电源自带,V2的量程为300V (NMEL-06A);

直流电流表mA 1、A 1分别为MMEL-18中220V 可调直流稳压电源自带毫安表、安倍表; mA 2、A 2分别选用量程为200mA 、5A 的毫伏表、安培表。 R 1选用900Ω欧姆电阻(NMEL-03) R 2选用180欧姆电阻(NMEL-04中两90欧姆电阻相串联) R 3选用3000Ω磁场调节电阻(NMEL-09) R 4选用2250Ω电阻(用 NMEL-03中两只900Ω电阻相 并联再加上两只900Ω电阻相串联) 开关S 1、S 2选用 NMEL-05B 中的双刀双掷开关。 按图5-1接线,在开启电源前,检查开关、电阻等的设置; (1)开关S 1合向“1”端,S 2合向“2”端。 (2)电阻R 1至最小值,R 2、R 3、R 4阻值最大位置。 (3)直流励磁电源船形开 关和220V 可调直流稳压电源船形开关须在断开位置。 实验步骤。 a .按次序先按下绿色“闭合”电源开关、再合励磁电源船 型开关和220V 电源船形开关, 使直流电动机M 起动运转,调 节直流可调电源,使V 1读数为U N =220伏,调节R 2阻值至零。 b .分别调节直流电动机M 的磁场调节电阻R 1,发电机G 磁场调节电阻R 3、负载电阻R 4(先调节相串联的900Ω电阻旋钮,调到零用导线短接以免烧毁熔断器,再调节900Ω电阻相并联的旋钮),使直流电动机M 的转速n N =1600r/min ,I f +I a =I N =0.55A ,此时I f =I fN ,记录此值。 c .保持电动机的U=U N =220V ,I f =I fN 不变,改变R 4及R 3阻值,测取M 在额定负载至空载范围的n 、I a ,共取5-6组数据填入表中。 表5-1 U N =220伏 I fN = 0.075 A I a (A ) 0.4 0.37 0.34 0.30 0.28 0.26 n (r/min ) 1782 1802 1807 1813 1818 1818 d .折掉开关S 2的短接线,调节R 3,使发电机G 的空载电压达到最大(不超过220伏),并且极性与电动机电枢电压相同。 e .保持电枢电源电压U=U N =220V ,I f =I fN ,把开关S 2合向“1”端,把R 4值减小,直至为零(先调节相串联的900Ω电阻旋钮,调到零用导线短接以免烧毁熔断器)。再调节R 3阻值使阻值逐渐增加,电动机M 的转速升高,当A 1表的电流值为0时,此时电动机转速为理想空载转速,继续增加R 3阻值,则电动机进入第二象限回馈制动状态运行直至电流接近0.8倍额定值(实验中应注意电动机转速不超过2100转/分)。 测取电动机M 的n 、I a ,共取5-6组数据填入表5-2中。 电动及回馈制动特性 图5-2 直流他励电动机I 图5-1 直流他励电动机机械特性测定接线图R 直 流电 机 励磁 电 源 R 1U 可调直 流稳压 电 源 S V 11 112f R 32S A G M A I a 21V 22 R 421直流电动机M01同步发电机M08mA 2mA 1

直流电动机数学模型的建立

直流电动机数学模型的建立

直流电动机数学模型的建立 4.1 数学模型的建立 建立电动机动态数学模型的方法的要点是:首先列写出电动机主电路电压平衡方程式,轴上力矩平衡方程式和励磁电路电压平衡方程式等基本关系式,加以整理,然后进行拉普拉斯变换,根据此变换,即可求出电动机的动态结构图和传递函数的表达式[1,10]。 图4—1 上图为一他励直流电动机的等效电路,其中: a U E----分别为电动机电枢端电压和反电势; d I f I ---电动机电枢电流和励磁电流; a R a L ---电枢电路电阻和电感; f R f L ---励磁电路电阻和电感; f U -------电动机的励磁电压; ω-------电动机的角速度; J--------电动机轴上的转动惯量; e T l T ----电动机转矩和负载阻转矩。 4.1.1 写出平衡方程式、拉普拉斯变换 由上图可写出下列基本关系式: a U -E= a R (1+a T S ?) d I e T -l T =J ?S ? ω

f U = f R ()f f I T S ??+1 E= ω ωφ???=??f e I M p K Te= d f d m I I M p I K ???=??φ 其中:a a a R L T = 为电枢电路时间常数;f f f R L T = 为励磁电路时间常数;p 为电动机磁极对数;M 为励磁绕组和电枢绕组的互感; 4.1.2 动态结构图 将S=d/dt 看作算子,则上述诸式也就是它们的拉氏变换。所以由上式可画出直流电动机的结构。如图4—2所示。 图4—2 如果将讨论的问题限制在稳态工作点附近的小偏差情况,经过化简,可得此时系统的增量方程为:d a a a I T S R E U ??+?=-)1( ω ??=-S J T T l e f f f f I T S R U ??+?=)1( 0Ω???+???=f f I M p I M p E ω 0 0d f d f e I I M p I I M p T ???+???= 为简化起见,式中表示增量的下标1已删去。由诸式可画出直流电动机在独立电枢电压和磁场控制下的动态结构图如下所示:

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理 无刷直流电动机简介和基本工作原理 无刷直流电动机简介 直流无刷电机 :又称“无换向器电机交一直一交系统”或“直交系统” 。是将交流电源整流后变成直流, 再由逆变器转换成 频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。 无刷直流电动机Brushless Direct Current Motor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控 制,是当今最理想的调速电机。 无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳 选择。 基本工作原理 无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速 度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始

D L直流 V电动滚筒样本

低碳、节能、绿色、环保、智能、高速 DGBL系列是新一代的电动滚筒!!! 直流24V无级调速驱动型DGBL微型电动滚筒,是为了应对今日工业更低碳、更节能、更绿色、更环保、更智能的要求而研制,采用先进的高效钕铁硼永磁同步电动机作动力源,克服了常规三相和单相交流电动滚筒效率低,功率小,调速范围窄,温升高等缺点,它大大增加了输送机设计的灵活性,以及和外界电控的联系功能。使小直径电动滚筒有了新的突破。 品质特点: 1 、内置高效钕铁硼永磁同步电动机 高效钕铁硼永磁同步电动机比常规的交流电机转换效率高,相同负载情况下,比常规的交流电机可以节省32%的电能;无负载情况下,节省的电能高达47%。由于采用了高效钕铁硼永磁,得到了更高扭矩,并且电机的温升降低了。在恒扭距的情况下,无级调速范围达到了80%。 2 、安全工作电压 内置电动机采用的是一个24VDC 安全工作电压,没有触电的危险,操作人员是在一个安全电压下的工作。由于工作电压低,电机的可靠性加强了,对于有些特殊的场合,例如需要冲洗,和潜水工作的电动滚筒,安全工作电压是最佳的选择。 3 、24VDC 无级调速驱动型智能驱动器 驱动器提供了面板按纽控制、开关信号控制和0-10V模拟量信号控制三种方式,可直接连接到电脑,条形码阅读器,红外线侦测等先进的控制输送场合。光电数码管可以直观显示电机转速。旋钮或0-10V 模拟量信号可以无级调速到需要的速度。 4、耐用的金属齿轮 内部减速装置采用行星齿轮结构,所有的齿轮都是钢的,包括齿圈,高硬度和高耐磨性保证了电动滚筒的使用寿命。 5、无论连续运行,间歇运行,甚至频繁起停,都能轻松应付

DGBL系列DC直流无刷电滚筒内部结构图: 部件列表: 结构说明: 筒体 标准筒体为低碳钢材质,直棍筒体。筒体表面可加工滚花、包橡胶,以增加摩擦力。食品级筒体材质为304不锈钢。轴 标准电动滚筒轴是碳钢材质,食品级要求为304不锈钢。封盖 标准电动滚筒封盖是压铸铝合金材质,食品级通用,也可特别定制为304不锈钢。齿轮减速箱 行星齿轮结构,太阳齿、行星齿、内齿圈为金属钢齿轮。确保狭小空间的大扭矩输出。电机 24V 安全电压,电机绝缘等级F 级,电线露出的标准长度为0.5米注油 电动滚筒出厂前都已按标准加注油脂,使用后免维护,无需再加注其他 可加装逆止器,防止倾斜带式输送机有载停车时发生倒转或顺滑现象且不影响筒体的最短长度。可加装电磁制动器,但筒体的最短长度会相应加长,水平安装,带速及筒体长度可按客户要求制做。根据客户要求,可制作各种非标准电动滚筒 电机定子铁心 18 变速箱输出齿轮架 9 带齿电机转子17变速箱输出轴8电滚筒出线 25 汝铁硼磁钢16轴承7碳钢前轴24电机定子线圈15筒体连接总成6压铸铝前封盖23电机前盖14筒体连接座5连接法兰22金属行星齿轮13轴承4滚筒钢管21内齿圈12压铸铝后封盖3压铸铝电机前封盖20行星齿轮销11防尘罩2电机机壳19金属太阳齿轮10碳钢后轴1

永磁直流电机性能参数

ZYT直流永磁电机 概述 ZYT直流永磁电机采用铁氧体永磁磁铁作为激磁,系封闭自冷式。作为小功 率直流马达可以用在各种驱动装置中做驱动元件。 产品说明 (1)产品特点:直流电动机的调速范围宽广,调速特性平滑;直流电动机 过载能力较强,热动和制动转矩较大;由于存在换向器,其制造复杂,价格较高。 (2)使用条件:海拔w 4000m环境温度:-25 C —+40C ;相对湿度w 90%(+25C时);允许温升,不超过75K。 型号说明 90ZYT08/H1 1.90位置表示机座号。用55、70、90、110和130表示。其相应机座号外径为 55mm 70mm 90mm 110mn和130mm 2. ZYT表示直流永磁马达。 3.08位置表示铁芯长度。其中01-49为短铁芯,51-99为长铁芯和101-149为超长铁芯。 4.H1位置为派生结构。其代号用H1、H2 H3??…。 安装形式 1. A1表示单轴伸底脚安装,AA1表示双轴伸底脚安装。 2. A3表示单轴伸法兰安装,AA3表示双轴伸法兰安装。 3. A5表示单轴伸机壳外圆安装,AA5表示双轴伸机壳外圆安装。 使用条件 1. 海拔不超过4000米。 2. 环境温度:-25度到40度。 3. 相对温度:小于等于95度。 4. 在海拔不超过1000米时,不超过75K. 技术参数 以下数值为参考使用,在实际生产时可以根据客户要求调整。 1. 型号55ZYZT01-55ZYZ10转矩55.7-63.7(毫牛米),速度3000-6000(r/min), 功率20-35(W),电压24-110(V),电流1.5-3.2 (A)和允许逆转速度差

直流电机的特性和种类

直流电机的特性和种类 2、 前面一章叙述的是由永久磁铁作定子、铁芯线圈作转子、带电刷的直流电动机的工作原理。通常称为“永磁式有刷”直流电动机。长期以来,这种电动机一直在被广泛地应用着。 除了永磁式有刷直流电动机外,还有其他几种直流电动机。一种是有永久磁铁和电刷,但其转子没有铁芯,称为“无铁芯”直流电动机;另一种是定子采用电磁线圈代替永久磁铁称为“电磁式有刷”(绕线式)直流电动机,这种电动机的转子同定子一样,都采用铁芯线圈产生工作磁场。 绕线式电动机有三种形式。定、转子线圈串联连接的称为“串励”电动机;并联连接的称为“并励”电动机;定子线圈一分两路,一路与转子串联连接,另一路与转子并联连接的称为“复励”电动机。 还有没有整流子和电刷的,根据电子切换原理控制定子电流的电动机称为“无刷”直流电动机;不连续旋转,而是以某一角度间歇转动的电动机称为“步进”电动机;不是旋转而是作直线运动的电动机称为“直线”电动机。其中,无刷电动机和步进电动机虽然可划分在直流电动机范畴,但是只给它们提供直流电源是不够的,还必须给它们配置类似于交流伺服电动机的电子开关电路。

为了说明电动机的原理,通常都是从永磁式有刷直流电动机的特性说起。’“输入电流和转矩成正比”是最基本的特性之一。电动机的转矩也就是旋转力矩来源于放置在磁场中的转子线圈所受的“电磁力”(参见第34页)。这个电磁力与磁场强度的强弱和流过线圈的电流的大小成正比。定子采用永久磁铁的电动机磁场强度一定,所以它的电磁力的大小只与电流的大小有关。也可以说电动机的输出转矩与转子电流成正比。 如果把上述转矩和电流的关系描绘成曲线,就会发现它是一条直线,通常还称为“线性”特性。通过这条曲线可以看出,转矩和电流始;终是沿着那条斜线变化。不管在曲线上哪一点,只要电流变化,转矩:就会跟着变化。 “转矩和转速成反比’是电动机的另一特性。电风扇和玩具车等,都是电动机驱

直流电机参数

直流电机参数 直流电动机作为机电执行元部件,内部有一个闭合的主磁路。主磁通在主磁路中流动,同时与第二个电路交链,其中一个电路是用以产生磁通的,称为激磁电路,另外一个是用来传递功率,称为功率回路或者电枢回路。现行的直流电动机都是旋转电枢式,也就是说激磁绕组及其所包围的铁芯组成的磁极为定子,带换向单元的电枢绕组和电枢铁芯结合构成直流电动机的转子。 1.转矩: 电动机得以旋转的力矩,单位为kg .m或N.m; 2.转矩系数: 电动机所产生转矩的比例系数,一般表示每安培电枢电流所能产生的转矩大小; 3.摩擦转矩: 电刷、轴承、换向单元等因摩擦而引起的转矩损失; 4.启动转矩: 电动机启动时所产生的旋转力矩; 5.转速: 电动机旋转的速度,工程单位为r/min,即转每分,在国际单位制中为rad/s,即弧每秒; 6.电枢电阻: 电枢内部的电阻,在有刷电动机里一般包括电刷与换向器之间的接触电阻,由于电阻中流过电流时会发热,因此总希望电枢电阻尽量小些; 7.电枢电感:

因为电枢绕组是由金属线圈构成,必然存在电感,从改善电动机运行性能的角度来说,电枢电感越小越好。 8.电气时间常数: 电枢电流从零开始达到稳定值的 63.2%时所经历的时间。测定电气时间常数时,电动机应处于堵转状态并施加阶跃性质的驱动电压。电气时间常数工程上常常利用电枢绕组的电阻Ra和电感La求出: Te=La/Ra 9.机械时间常数: 电动机从启动到转速达到空载转速的 63.2%时所经历的时间。测定机械时间常数时,电动机应处于空载运行状态并施加阶跃性质的阶跃电压。机械时间常数工程上常常利用电动机转子的转动惯量J和电枢电阻Ra以及电动机反电动势系数Ke、转矩系数Kt求出: Tm=J*Ra/Ke*Kt 10.转动惯量: 具有质量的物体维持其固有运动状态的一种性质。 11.反电动势系数: 电动机旋转时,电枢绕组内部切割磁力线所感应的电动势相对于转速的比例系数,也称为发电系数或感应电动势系数。 12.功率密度: 电动机每单位质量所能获得的输出功率值,功率密度越大,电动机的有效材料的利用率就越高。 13.转子:

直流电动机的特性及运用

第六章直流電動機的特性及運用 一、直流電動機的分類: 二、直流電動機的基本概念: 1.轉矩T 2.反電勢E b 3.轉速n 4.電樞內生機械功率P m 5.速率調整率SR% 三、直流電動機的特性曲線: 1.轉矩特性曲線:表示輸出轉矩(T L)與負載電流(I L)的關係 2.轉速特性曲線:表示輸出轉速(n)與負載電流(I L)的關係 (一)外激式的特性及用途: (1)等效電路: (2)轉速特性: ○1無載時:I a很小(E b≒V),故轉速n= ○2負載↑,磁通Φ固定不變,E b=V-I a R a微微下降,因此轉速稍下降可視為定速電動機。 (3)轉矩特性: ∵T=KΦI a,若I a↑則T↑,故轉矩特性為一上升的直線。 (4)用途: 適用於調速範圍廣且需維持定速場合,如華德黎翁那德控制系統 中的直流電動機。 (二)分激式的特性及用途: (1)等效電路: (2)轉速特性:與外激式相似 運轉中若磁場突然斷路,則Φ=0、E b=0,轉速將增加到極大,而有飛脫之虞,因此需加裝保護設備。 (3)轉矩特性:與外激式相似

(4)用途: 分激電動機因轉速下降幅度極小,可視為定速電動機;而且可利用調整磁場電阻大小來改變轉速,因此又可視為調速電動機。 一般用於印刷機、鼓風機、車床。 (三)串激式的特性及用途: (1)等效電路: (2)轉速特性: ○1無載時:因I a=0,Φ=0,轉速相當高有飛脫之虞,故不可在無載 時運轉,且電動機與負載連接必須直接耦合不能使用皮帶,否則 可能因皮帶斷裂而有飛脫之虞。通常會加裝離心開關作保護。 ○2輕載時: Φ未飽和,ΦαI a 轉速n=V-I a(R a+R s)/KΦ,nα1/I a為一條雙曲線。 ○3重載時: Φ已飽和,Φ與I a無關為一定值 轉速n=V-I a(R a+R s)/KΦ,nαV-I a(R a+R s) 為一條下降直線。 (3)轉矩特性: ○1輕載時: Φ未飽和,ΦαI a 轉矩T=KΦI a→TαI a2為一條拋物線 ○2重載時: Φ已飽和,Φ與I a無關為一定值 轉矩T=KΦI a→TαI a為一條上升直線 (4)用途: ○1負載變動時I a,隨之改變,使轉速有相當大的變動,是為變速電 動機,速率調整率為正值。 ○2具有高轉速低轉矩,低轉速高轉矩的特性,因此有向電源取用恒 定功率的特性。 ○3主要用於需高啟動轉矩或高轉速的場合,如起重機、電車、果汁 機、吸塵器等。 (四)複激式電動機 1.積複激電動機: (1)等效電路:

直流电动机调速系统设计样本

直流电动机调速系 统设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,经过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电 抗器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版 社, :41-49、105-114 时间安排: 12月5日至 12月14日,历时一周半,具体进度安排见下表

指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (2) 3双闭环直流调速系统的数学模型与动态过程分析 (3) 3.1双闭环直流调速系统的动态数学模型 (3) 3.2双闭环直流调速系统的动态过程分析 (4) 4转速电流双闭环直流调速系统调节器的工程设计 (6) 4.1转速和电流两个调节器的作用 (6) 4.2调节器的工程设计方法 (7) 4.2.1设计的基本思路 (7) 4.3 触发电路及晶闸管整流保护电路设计 (8) 4.3.1触发电路 (8) 4.3.2整流保护电路 (9) 4.3.2.1 过电压保护和du/dt限制 (10) 4.3.2.2 过电流保护和di/dt限制 (10) 4.4 器件选择与计算 (11) 5心得体会 (17) 参考文献 (18)

直流电机性能参数解释

直流电机主要参数: 1.转矩: 电动机得以旋转的力矩,单位为kg .m 或N. m。 2.转矩系数: 电动机所产生转矩的比例系数,一般表示每安培电枢电流所能产生的转矩大小。 3.摩擦转矩: 电刷、轴承、换向单元等因摩擦而引起的转矩损失。 4.启动转矩: 电动机启动时所产生的旋转力矩。 5.转速: 电动机旋转的速度,单位为r/min,国际单位制中为rad/s; 6.电枢电阻: 电枢内部的电阻,在有刷电动机里一般包括电刷与换向器之间的接触电阻,由于电阻中流过电流时会发热,因此总希望电枢电阻尽量小些; 7.电枢电感: 电枢绕组是由金属线圈构成,必然存在电感。从改善电动机运行性能的角度来说,电枢电感越小越好; 8.电气时间常数: 电枢电流从零开始达到稳定值的63.2%时所经历的时间。测定电气时间常数时,电动机应处于堵转状态并施加阶跃性质的驱动电压。电气时间常数工程上计算公式: 备注: :电枢绕组的电阻; :电枢绕组的电感; 9.机械时间常数: 电动机从启动到转速达到空载转速的63.2%时所经历的时间。测定机械时间常数时,电动机应处于空载运行状态并施加阶跃性质的阶跃电压。机械时间常数工程上常常利用电动机转子的转动惯量J和电枢电阻Ra以及电动机反电动势系数Ke、转矩系数Kt求出: 备注: :电动机转子的转动惯量; :电枢绕组的电阻; :转矩系数; :电动机反电动势系数; 10.转动惯量: 具有质量的物体维持其固有运动状态的一种性质。 11.反电动势系数: 电动机旋转时,电枢绕组内部切割磁力线所感应的电动势相对于转速的比例系数,也称为发电系数或感应电动势系数。

12.功率密度: 电动机每单位质量所能获得的输出功率值,功率密度越大,电动机的有效材料的利用率就越高。

直流电动机的机械特性

直流电动机的机械特性 直流电动机按励磁方式不同可分为他励、并励、串励和复励四种。下面一常用的他励和并励电动机为例介绍其机械特性、起动、反转和调速,他励和并励电动机只是连接方式上的不同,两者的特性是一样的。 直流电机的接线图 图是他励和并励直流电动机的接线原理图。他励电动机的励磁绕组与电枢是分离的,分别由励磁电源电压Uf和电枢电源电压U两个直流供电;而在并励电动机中两者是并联的,由同一电压U 供电。 并励电动机的励磁绕组与电枢并联,其电压与电流间的关系为: U=E+RaIa 即:Ia=(Ra为电枢电压) If= I=Ia+If≈Ia 当电源电压U和励磁电路的电阻Rf(包括励磁绕组的电阻和励磁调节电阻)保持不变时,励磁电流If以及由它所产生的磁通Φ也保持不变,即Φ=常数。 则电动机的转距也就和电枢电流成正比,T= KTΦIa= KIa这是并励电动机的特点。

当电动机的电磁转距T必须与机械负载转距T2及空载损耗转距T0相平衡时,电动机将等速转动;当轴上的机械负载发生变化时,将引起电动机的转速、电流及电磁转距等发生变化。,称为: n===-T=n0- 式中 并励电动机的起动与反转 并励电动机在稳定运行时,其电枢电流位:Ia=,因电枢电阻Ra很小,所以电动机在正常运行时,电源电压U与反电动势E近似相等。 在起动时,n=0,所以E=kEΦn=0。这时电枢电流及起动电流为Iast=,由于Ra很小,因此起动电流I ast可达额定电流IN的10~20倍,这时不允许的。同时并励电动机的转距正比于

电枢电流Ia,这么大的起动电流引起极大的起动转距,会对生产机械的传动机构产生冲击和破坏。 限制起动电流的方法就是在起动时的电枢电路中串接起动电阻Rst,见图。这时起动电枢中的起动电流的初始值为:Iast= 则起动电阻为:Rst=-Ra 一般:Iast=(1.5~2.5)IN 起动时,可将起动电阻Rst放在最大值处,待起动后,随着电动机转速的上升,再把它逐段切除。 注意:直流电动机在起动或工作时,励磁电路一定要保持接通,不能断开(满励磁起动)。普则,由于磁路中只有很小的剩磁,就有可能发生以下: 要改变电动机的转动方向,就必须改变电磁转距T的方向,可通过改变磁通Φ(励磁电流)或电枢电流Ia的方向实现。 并励电动机的调速 电动机的调速就是在同一负载下获得不同的转速,以满足不同的要求。 由转速公式:n=可知常用的调速方式有调磁调速和调压调速两种。 9.5.1改变磁通Φ(调磁调速) 当保持电源电压U为额定值不变时,调节励磁电路的电阻,改变励磁电流If而改变磁通Φ。 由式n=-T可见,当磁通Φ减小时,n0升高了,转速降也增大了;但 与Φ2成正比,所以磁通愈小,机械特性曲线也愈陡,但仍有一定的硬度。见图

相关主题
文本预览
相关文档 最新文档