当前位置:文档之家› 高等数学应用案例讲解新编

高等数学应用案例讲解新编

高等数学应用案例讲解新编
高等数学应用案例讲解新编

高等数学应用案例案例1、如何调整工人的人数而保证产量不变

一工厂有x名技术工人和y名非技术工人,每天可生产的产品产量为

,

(=(件)

f2

)

x

x

y

y

现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变?

解:现在产品产量为(16,32)8192

f=件,保持这种产量的函数曲线为y

(=

x

f。对于任一给定值x,每增加一名技术工人时y的变化量即为,

8192

)

dy。而由隐函数存在定理,可得

这函数曲线切线的斜率

dx

所以,当增加一名技术工人时,非技术工人的变化量为

dy。

当16,32

==时,可得4-=

x y

dx

因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。

下面给出一个初等数学解法。令

c:每天可生产的产品产量;

x;技术工人数;

y;非技术工人数;

x?;技术工人增加人数;

y?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。

由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程:

c y x =?020 (1)

(2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每天的产品产量为c ,则有方程:

c y y x x =?+??+)()(020 (2)

联立方程组(1)、(2),消去c 得:

即 []

002

020

)/(y y x x x y -??+=??

?

?????+--=202

0)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式:

从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小:

0)x ( )1(31

0412

0→????

? ???-+???? ???--∞

=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

案例2、征税的学问

工厂想赚钱,政府要收税,一个怎样的税率才能使双方都受益?这是一个具有现实意义的问题。假设工厂以追求最大利润为目标而控制它的产量q ,政府对其产品征税的税率(单位产品的税收金额)为t ,我们的任务是,确定一个适当的税率,使征税收益达到最大。

现已知工厂的总收益函数和总成本函数分别为R=R(q)、C=C(q)。由于每单位产品要纳税t ,故平均成本要增加t ,从而纳税后的总成本函数是 利润函数是 令

0=dq

dL t

,有 t dq

dC dq R +=d (1) 这就是在纳税的情况下获得最大利润的必要条件。

政府征税得到的总收益是

tq T = (2)

显然,总收益T 不仅与产量q 有关,而且与税率f 有关。当税率t=0(免税)时,T=0;随着单位产品税率的增加,产品的价格也会提高,需求量就会降低,当税率f 增大到使产品失去市场时,有q=0,从而也有T=0。因此,为了使征税收益最大,就必须恰当地选取t 。我们利用一元函数极值的有关知识来解决本问题,下面看一个实例。

例1: 厂商的总收益函数和总成本函数分别为

22,33022++=-=q q C q q R 。

厂商追求最大利润,政府对产品征税,求

1)征税收益的最大值及此时的税率t ; 2)厂商纳税前后的最大利润及价格.

解: 1)由纳税后获得最大利润的必要条件(1),得 故 )28(8

1t q t -=

根据实际问题的判断,t q 就是纳税后厂商获得最大利润的产出水平。于是,这时的征税收益函数

要使税收T 取最大值,令

0=dt dT

,得 0)228(8

1

=-t ,即t=14 根据实际问题可以断定必有最大值,现在0=dt dT

只有一个根,所以当

t=14时,T 的值最大。这时的产出水平75.1)1428(8

1

=-=t q ,最大征税收益

2)容易算得纳税前,当产出水平q=时,可获得最大利润L=47,此时价格p =;将q t =,t =14代入纳税后的利润函数 得最大利润L=,此时产品价格

75

.175

.1)

330()(==-==

q q q q

q R p =

可见,因产品纳税,产出水平由下降到;价格由上升到,最大利润由47下降到。

案例3、隧道的车流量问题

巴巴拉(Barbara)接受了纽约市隧道管理局的一份工作,她的第一项任务就是决定每辆汽车以多大速度通过隧道可使车流量最大。通过大量的观察,她找到了一个很好的描述平均车速(km/h)与车流量(辆/秒)关系的函数:

(a)问平均车速多大时,车流量最大? (b)最大流量是多少?

解:(a)这是一个极值的问题: 令

0=dv

df

,即)/(15.262.6842h km v v ==得 由实际问题知,当v=26.15km /h 时,车流量最大。 (b)最大车流量是f =(辆/秒)

案例4、、核废料的处理问题

以前,美国原子能委员会将放射性核废料装在密封的圆桶里扔到水深约91米的海里。生态学家和科学家耽心这种做法不安全而提出疑问。原子能委员会向他们保证,圆桶决不会破漏。经过周密的试验,证明圆桶的密封性是很好的。但工程师们又问:圆桶是否会因与海底碰撞而发生破裂?原子能委员会说:决不会。但工程师们不放心。他们进行了大量的实验后发现:当圆桶的速度超过每秒米时,圆桶会因碰撞而破裂。那末圆桶到达海底时的速度到底是多少呢?它会因碰撞而破裂吗?下面是具体而真实的数据,你能根据它们解决这个问题吗? 圆桶的重量W=239.456 kg 海水浮力为1025.94kg /m 3 圆桶的体积V=0.208m 3

圆桶下沉时的阻力:工程师们做了大量牵引试验后得出结论:这个阻力与圆桶的方位大致无关,而与下沉的速度成正比,比例系数k=。 解:建立坐标系,设海平面为x 轴,y 轴的方向向下为正。由牛顿第

二定律F=ma ,其中m 为圆桶质量,22dt

y

d a ,F 为作用在圆桶上的力:它

由圆桶的重量W ,海水作用在圆桶上的浮力B=×V=(kg)及圆桶下沉时的阻力D=kv==

dt

dy

。 (其中v 为下沉速度)合成。即F=w-B-D=W-B-kv ,这样就得到一个二阶微分方程

?????

????====?--=0)0(0

)0(0

2

2v dt dy y dt y d m dt dy k B W t (1) 此微分方程是)(y f y '=''型的。解此方程:

由于dt

dy

v =,则dt dv dt y d =22代人(1)得到一个一阶可分离变量的方程

解得, )1()(t m k

e k

B

W t v ---= 至此,数学问题似乎有了结果,得到了速度与时间的表达式,但实际问题远没有解决。因为圆桶到达海底所需的时间t 并不知道,因而也就无法算出速度。这样,上述的表达式就没有实际意义。有人会说,虽然无法算出

精确值但我们可以估计当+∞→t 时,k

B

W t v -→

)(。因而圆桶到达海底的速度不会超过k B

W -。这个说法是对的,但可惜s m k

B W /2.217=-,它太大了,

毫无用处。这样,方程(1)就需要用其它方法来解。)(y f y '=''型方程的另一

种解法是:令dy

dv

v dt y d v dt dy ?==22,,方程(1)也化为一个一阶可分离变量的方程

????

?

????==--=0)0(0

)0(y v kv B W dy dv

mv (2) 解之,

dy m

dv kv B W v 1

=--

得 C kv B W k

B

W v k y m +-----=)ln(112

由初始条件得 所以

求当y=91(米)时,v=?似乎这个v 值也无法求得,但我们用近似方法例如牛顿法迭代可求出v 的近似值。

牛顿法介绍:若已知方程g(v)=0,求v 用迭代法: 在这里,(3)式可写成 取 ??

? ??----++=

B W kv B W k B W v y m k v g ln )( 其中a=9.8m/s 2,记447.0=??=W y

a k d 。167.217=-=k

B W b ,于是 迭代格式为:

?????

???? ??-+-+

=????????? ??-+-+?-+=???

?????? ??-++-+

=b v b d v v b b b v b d v v b v v v b v b v b v d v v b v n n

n n n n n n n n n n n

n

n 1ln 1ln 1ln (4) 选择一个好的初始值0v ,就能很快算出结果。求0v 的粗略近似值:从(2)中令k=0(即下沉时不计阻力)得C y B W mv +-=)(2

12由初始条件得C=0。

s m y m

B

W v /93.1322≈?-=

∴ 以0v =代入(4)得

有 2213.632728.v v =把代入(4)

Λ63728.133=v 这就够了,不用再迭代了。

s m s m v /2.12/64.13>=,因此这种处理核废料的方法是不安全的。

案例5、大气污染指数的影响因素

一个城市的大气污染指数P 取决于两个因素,空气中固体废物的数量x 和空气中有害气体的数量y ,在某种情况下2242xh xy x P ++=。

试说明

),(),(,b a b a y P x P ????的意义,并计算)

5,10()5,10(,

y P

x P ????当x 增长10%或y 增长10%时,用偏导数估算P 的改变量。 解:

)

,(b a x P

??的意义:如果空气中有害气体的数量y 为一常数b ,空气中固体废物的数量x 是变化的,那么当x=a 有一个单位的改变时,大气污染指数P 大约改变

)

,(b a x P

??个单位. 同样地,可以说明

)

,(b a y P

??的意义. 设空气中有害气体的量y=5,且固定不变,当空气中固体废物的量x=10时,P 对x 的变化率等于130.当x 增长10%,即x 从10到11,P 将增长大约130×1=130个单位(事实上,P(10,5)=1200,P(11,5)=1331,P 增长了131个单位)。

同样地,设空气中固体废物的量x=10且固定不变,当空气中有害气体的量y=5时,P 对Y 的变化率等于420.当Y 增长10%,即Y 从5到5.5,增长0.5个单位时,P 大约增长420×=210个单位(事实上,P(10,5)=1200,P(10,=1420,P 增长了220个单位)。

因此,大气污染指数对有害气体增长10%比对固体废物增长10%更为敏感。

案例6、为什么不宜制造太大的核弹头

核弹在与它的爆炸量(系指核裂变或聚变时释放出的能量,通常用相当于多少千吨T .N .T 炸药的爆炸威力来度量)的立方根成正比的距离内会产生每平方厘米千克的超压,这种距离算作有效距离。若记有效距离为D ,爆炸量为x ,则二者的函数关系为

其中C 是比例常数。又知当x 是100千吨(T .N .T 当量)时,有效距离D 为3.2186千米.于是

=3

1100?C

即 6934.0100

2186.33

1≈=C

所以

这样,当爆炸量增至10倍(变成1 00()千吨=百万吨)时,有效距离增至 差不多仅为100千吨时的2倍,说明其作用范围(2D π)并没因爆炸量的大幅度增加而显着增加。

下面再来研究爆炸量与相对效率的关系(这里相对效率的含义是,核弹的爆炸量每增加1千吨T .N .T 当量时有效距离的增量)。

32

32

2311.06934.03

1

--=??=x x dx dD 知 x x D ??≈?-

3

2

2311.0

若 1,100=?=x x ,则

这就是说,对100千吨(10万吨级)爆炸量的核弹来说,爆炸量每增加1千吨,有效距离差不多增加10.7米; 若1,100=?=x x ,则

即对百万吨级的核弹来说,每增加l千吨的爆炸量,有效距离差不多仅增加2.3米,相对效率是下降的。

可见,除了制造、运载、投放等技术因素外,无论从作用范围还是从相对效率来说,都不宜制造当量级太大的核弹头。事实上,1945年二战中美国投放在日本广岛、长崎的原子弹,其爆炸量为20千吨,有效距离为千米。

高等数学应用案例讲解

高等数学应用案例讲解文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为 8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 所以,当增加一名技术工人时,非技术工人的变化量为 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数; x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名 时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

2018最新大一高等数学期末考试卷(精编试题)及答案详解

大一高等数学期末考试卷(精编试题)及答案详解 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )2 2x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 20 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

高等数学应用案例讲解

高等数学应用案例案例1、如何调整工人的人数而保证产量不变 一工厂有x名技术工人和y名非技术工人,每天可生产的产品产量为 , (=(件) f2 ) x x y y 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192 f=件,保持这种产量的函数曲线为y (= x f。对于任一给定值x,每增加一名技术工人时y的变化量即为, 8192 ) dy。而由隐函数存在定理,可得 这函数曲线切线的斜率 dx 所以,当增加一名技术工人时,非技术工人的变化量为 dy。 当16,32 ==时,可得4-= x y dx 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c:每天可生产的产品产量; x;技术工人数; y;非技术工人数; x?;技术工人增加人数; y?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程:

(1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名,且每 天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷小: 0)x ( )1(31 04120→????? ???-+???? ???--∞=-∑n n n x x n x x (3) 而高等数学方法却利用了隐函数求导,忽略掉高阶无穷小(3),所以计算较容易。

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

(完整版)大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0,(),0 x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3 分)定积分22 ππ-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 0ln(15)lim .sin 3x x x x →+ 2. (6 分)设2,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +? 4. (6分)求3 0(1),f x dx -?其中,1,()1cos 1, 1.x x x f x x e x ?≤?=+??+>?

5. (6分)设函数()y f x =由方程00cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞??+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x ππ??=-≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--?? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2;3 3 0; 4 0. 三、 1 解 原式2 05lim 3x x x x →?= 5分 53 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++Q 2分 2212[]121 x y x x '∴=-++ 4分

高等数学应用案例讲解

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 y f x f dx dy ????= 所以,当增加一名技术工人时,非技术工人的变化量为 x y y f x f dx dy 2-=????= 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数;

x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程: (1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0)名, 且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: )(020020y y x x y x ?+??+=?)( 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y ????????????? ????? ???+--=200111x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: ∑∞=--???? ???-+???? ???-?=???? ???+-110120020)1(32111n n n x x n x x x x x x 从此展开式我们可以看到,初等数学方法不能忽略掉高阶无穷

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 0=+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 2 2 2 21n n n n n n ππ π π . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

最新大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 (一) 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>? 为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分 22 π π - ?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为2 3x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 2 1 lim sin x x x →= . 4. (3分) 3 2 23y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设y =求.y ' 3. (6分)求不定积分2 ln(1).x x dx +?

4. (6分)求 3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=? ?所确定,求.dy 6. (6分)设 2 ()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 2 2y x x π π??=- ≤≤ ???与x 轴所围成图形绕着x 轴旋转一周所得旋 转体的体积. 3. (7分)求曲线32 32419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? (二) 一、 填空题(每小题3分,共18分) 1.设函数()2 31 22+--=x x x x f ,则1=x 是()x f 的第 类间断点. 2.函数( )2 1ln x y +=,则='y . 3. =? ? ? ??+∞→x x x x 21lim . 4.曲线x y 1=在点?? ? ??2,21处的切线方程为 .

应用型高校高等数学案例式教学探讨

龙源期刊网 https://www.doczj.com/doc/ae17200932.html, 应用型高校高等数学案例式教学探讨 作者:赵瑞环左立娟李娟飞 来源:《理科爱好者(教育教学版)》2019年第02期 【摘要】在高等数学的教学中开展案例教学是应用型高校培养学生应用能力和提高教学 质量的有效方法之一。本文探讨了案例式教学应用的意义、特点,实施案例教学的过程及相关示例,并指出在案例教学中还需要进一步深入研究的三个关键问题。 【关键词】高等数学;案例式教学;实践;关键问题 【中图分类号】G642 【文献标识码】A 【文章编号】1671-8437(2019)10-0011-02 高等数学是工科院校的一门基础学科,它直接影响到许多其他课程的课程建设和学生素质的培养。数学定理、概念比较抽象,学生都认为它枯燥无用。传统高等数学的教学模式是“满堂灌”,学生往往处于被动接受知识的状态,给学生一种抽象、深奥的感觉,觉得学与不学都一样。应用型高校是以培养应用型人才为目标的,传统的教学方式已然落后。应用型人才培养目标要求在教学中加强培养学生对知识的综合应用能力,注重数学与其它学科之间的联系[1]。学习数学的目的是为了学以致用,必须培养学生利用理论知识解决实际问题的能力。因此,在应用型高校的高等数学教学中穿插专业案例或实际案例是迫切需要的,这样可以使学生更加明确学习目的,发挥自主性,提高知识的趣味性,激发学生不断思考、提出问题,分析和解决问题的能力。 案例教学法是1870年由哈佛大学法学院院长首创,在工商管理等学科的教学中取得了巨大的成功[2]。案例教学其实就是一种过程和实践教学,教师根据教学目的选用典型性、启发 性的案例作为教学材料,把学生引入一个特定情境中,通过师生之间双向和学生之间多向互动讨论,让学生了解与教学主题相关的概念或理论。传统的课堂是着重于理论知识的传授,案例教学则侧重于培养学生通过分析、归纳出解决问题的思路和方法,把重视知识转化为重视能力,同时又实现了师生的双向交流。这种教学方式对教师和学生的要求都高,学生从被动的听讲者转变为积极的参与者。虽然一开始学生的学习效率可能有所降低,但是学生的学习兴趣和对所学知识的理解和掌握程度会有明显的提高[3]。 案例教学于1980年引入我国后,已经在我国高校的管理、法律等专业的教学中得到了普遍程度的应用。但是,案例教学在高等数学教学中的应用还处于起步阶段。从目前收集到的资料来看,尽管许多数学教师已经认识到了案例教学的价值,但是发表的论文都是在说明案例教学对高等数学教学的必要性上,真正的教学案例确实还是不够专业和通俗易懂。 在高等数学中应用案例教学,就必须了解案例教学的特点:案例教学的实践性是由案例的真实性决定的,学生根据所学的知识在教师的指导下解决问题,实际上是学生对自己真实生活

大一第一学期期末高等数学(上)试题及答案

1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) .d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求

(第七题删掉了) 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+3 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422 11、(本小题5分) . 求? π +20 2sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226

14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) . d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分) 1、(本小题7分) ,,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿 2、(本小题7分) . 823 2体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y == 三、解答下列各题 ( 本 大 题6分 ) 设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230 (答案)

大一(第一学期)高数期末考试题及答案

( 大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是 等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. … 4. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 5. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 6. , 7. = +→x x x sin 20 ) 31(lim . 8. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 9. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 10. = -+? 2 12 1 2 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 11. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y .

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总就是听学长、学姐提起,高数十分难学,我对高数的印象一直都就是:高数就是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以瞧高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能就是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及她们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只就是我的个人想法,很不成熟,也很可能有错误。我就是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a就是指当所种的防护林就是梭梭树时的方程式,相应的,当我们分析的就是其她的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及她们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远近的关系,我们可以进行修改,重新对上述方程式进行修改、完善。同

高等数学知识在医学中的应用举例

高等数学知识在生物化学工程中的应用举例 高等数学是生命科学学院校开设的重要基础课程,数学方法为生物化学的深入研究发展提供了强有力的工具。下面仅举一些用高等数学基础知识解决生物化学工程中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。 例1 在化工原理中常用的柏努利方程式中的应用 化工生产过程中常于密闭管道内输送液体,使液体流动的主要因素有(1)流体本身的位差;(2)两截面间的压强差;(3)输送机械向流体外作的外功。 流动系统的能量衡量常用柏努利方程式,下面来介绍柏努利方程式。 定态流动时液体的机械能衡量式为 ∑?-=+?+ ?f e p p h W v d p u z g 212 2 (1) 该式队可压缩液体和不可压缩液体均适用。对不可压缩液体,(1)式中?2 p p vdp 项应视过程性质(等温、绝热或多变过程)按热力学原则处理,对不可压缩液体,其比容v 或者密度ρ为常数,故ρ ρ ρp p p dp vdp p p p p ?= -= = ??2 12 2 1 ,代入(1)式有: ∑-=?+?+?f e h W p u z g ρ 22 或 ∑+++=+++f e h p u gz W p u gz ρ ρ22 22121122 (2) (2)式称为柏努利方程式。 需要注明的是,22u 为动能,gz 为位能,ρ p 为静态能,e W 为有效能,∑f h 为能量损耗,z ?为高度差。 例2 混合气体粘度的计算 常温下混合气体的计算式为

∑∑=== n i i i n i i i i m M y M y 1 211 21μμ (3) 其中m μ为常温下混合气体的粘合度(Pa.s );i y 为纯组分i 的摩尔分率;i μ为混合气体的温度下,纯组分i 的粘度(Pa.s );i M 为组分i 的分子量(Kg/kmol )。 例如:空气组分约为01.0,78.0,21.022Ar N O (均为体积积分率),试利用 Ar N O ,,22的粘度数量,计算常温下C 020时空气的粘度? 解:常温下空气可视为理想气体,故各组分的体积积分率等于摩尔分率, Ar N O ,,22的分子量分别为32,28及39.9,经查表知道常温下C 020时各组分的粘度为 s Pa Ar s Pa N s Pa O ??????---55252 1009.2107.11003.2 代入(3)式计算空气的粘度,即 s Pa M y M y n i i i n i i i i m ??=?+?+????+???+???= = ----==∑∑52 12 12 12 15 2 152 151 211 21 1078.19 .3901.02878.03221.09 .391009.201.028107.178.0321003.221.0μμ 例3. 在细胞生长计算中的应用 随着细胞的生成繁殖,培养基中的营养物质被消耗,一些有害的代谢产物在培养液中累积起来,细胞的生长速度开始下降,最终细胞浓度不再增加,进入静止期,在静止期细胞的浓度达到最大值。 如果细胞的生长速率的下降是由于营养物质的消耗造成的,可以通过以下的分析来统计分批培养可能达到的最大细胞浓度。设限制性基质为A ,其浓度为a ,

高等数学应用案例讲解

高等数学应用案例讲解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学应用案例 案例1、如何调整工人的人数而保证产量不变 一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量为 y x y x f 2),(= (件) 现有16名技术工人和32名非技术工人,如何调整非技术工人的人数,可保持产品产量不变? 解:现在产品产量为(16,32)8192f =件,保持这种产量的函数曲线为8192),(=y x f 。对于任一给定值x ,每增加一名技术工人时y 的变化量即为这函数曲线切线的斜率dx dy 。而由隐函数存在定理,可得 y f x f dx dy ????= 所以,当增加一名技术工人时,非技术工人的变化量为 x y y f x f dx dy 2-=????= 当16,32x y ==时,可得4-=dx dy 。 因此,要增加一个技术工人并要使产量不变,就要相应地减少约4名非技术工人。 下面给出一个初等数学解法。令 c :每天可生产的产品产量; 0x ;技术工人数; 0y ;非技术工人数;

x ?;技术工人增加人数; y ?;在保持每天产品产量不变情况下,当技术工人由16名增加到17名时,非技术人员要增加(或减少)的人数。 由已知列方程: (1)当技术工人为16名,非技术工人为32名时,每天的产品产量为c ,则有方程: c y x =?020 (1) (2)当技术工人增加了1名时,非技术工人应为(y y ?+0) 名,且每天的产品产量为c ,则有方程: c y y x x =?+??+)()(020 (2) 联立方程组(1)、(2),消去c 得: )(020020y y x x y x ?+??+=?)( 即 [] 002020)/(y y x x x y -??+=????????+--=20200)(1x x x y ????????????? ????? ???+--=200111x x y 代入x y x ?,,00,得:46.3-≈-≈?y 名,即减少4名非技术工人。 比较这两种解法我们可以发现,用初等数学方法计算此题的工作量很大,究其原因,我们注意到下面之展开式: ∑∞=--???? ???-+???? ???-?=???? ???+-110120020)1(32111n n n x x n x x x x x x

大一上学期(第一学期)高数期末考试题

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 22βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限 a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么= --+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由 x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 121 1--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

高等数学(大一下学期期末考试)

高等数学II 填空题 1、()1 3 1sin x x dx -+=? _______________________. 2、设()1 1 x x f x e dx e C =+?, 则()f x =_________________. 3、微分方程2220d y dy y dx dx -+=的通解为_______________________. 4、函数 (,)ln 1f x y x y =--_______________. 5、椭圆22 1169 x y += 绕x 轴旋转一周所得旋转体的体积为______________________. 计算题 1、计算不定积分 2211sec dx x x ?. 2 、计算不定积分 dx , ()0a >. 3、计算定积分 320sin cos x x dx π? 4、计算定积分 1 0arcsin x dx ? 解答题 1、设函数()f x 的原函数()F x 恒正, (0)1F =且()()f x F x x =, 且()f x 的表达式. 2、解微分方程()52211dy y x dx x =+++,并求出其满足初始条件01|3 x y ==-的特解. 3、设2ln z u v =,且x u y =, 32v x y =-, 求z x ??和z y ??, 并写出dz . 4、设02 (), 0() , 0 x tf t dt x F x x A x ??≠=??=??, 其中()f x 具有连续导数且(0)0f =. (1) 如果()F x 在点0x =处连续, 求A 的值; (2) 在(1)的前提下, 证明()F x 在点0x =处可导, 并求(0)F '的值.

高等数学典型例题与应用实例

例 利用二重积分的性质,估计积分 2 222(2)d D x y x y σ+-?? 的值,其中D 为半圆形区域2 2 4,0x y y +≤≥. 解 我们先求函数2 2 2 2 (,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值. 由2 2 220,420,x y f x xy f y x y '?=-=??'=-=??解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2 ()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0. 在边界22 2:4L x y +=(0)y ≥上, 242()(,4)58(22)h x f x x x x x =-=-+-≤≤ 由3 ()4100h x x x '=-=得驻点123550,,22 x x x ==- =,(0)(0,2)8h f ==. 5537 ()(,)2224 h f ± =±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知 222202(2)d 82D x y x y πσπ?≤+-≤???, 即 22220(2)d 16D x y x y σπ≤+-≤??. 例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域, 1D 为D 在第一象限的部分,则 (cos sin )( )D xy x y dxdy +=??. (A )1 2 cos sin D x y dxdy ?? (B )1 2D xy dxdy ?? (C )1 4 (cos sin )D xy x y dxdy +?? (D )0

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-233 21216 29124 2、(本小题5分) . d )1(2 2x x x ? +求 3、(本小题5分) 求极限limarctan arcsin x x x →∞ ?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) . 求dt t dx d x ? +2 21 6、(本小题5分) ??. d csc cot 46x x x 求 7、(本小题5分) . 求? ππ 212 1cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),2 2 9、(本小题5分) . 求dx x x ?+30 1 10、(本小题5分) 求函数 的单调区间 y x x =+-422Y 11、(本小题5分) .求? π +20 2 sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求 .y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分)

相关主题
文本预览
相关文档 最新文档