当前位置:文档之家› 人教版初中数学圆的经典测试题及答案解析

人教版初中数学圆的经典测试题及答案解析

人教版初中数学圆的经典测试题及答案解析

一、选择题

1.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )

A .3

B .2

C .3

D .2 【答案】D

【解析】

【分析】

先根据题意,画出图形,令直线y= 3x+ 23与x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;

然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-,并利用垂线段最短求得PA 的最小值即可.

【详解】

人教版初中数学圆的经典测试题及答案解析

如图, 令直线3x+23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H , 当x=0时,y=3D (0,3

当y=033,解得x=-2,则C (-2,0),

∴222(23)4CD =

+=, ∵12OH?CD=12

OC?OD , ∴OH=

2334?= 连接OA ,如图,

∵PA 为⊙O 的切线,

∴OA ⊥PA ,

∴2221

PA OP OA OP

=-=-,

当OP的值最小时,PA的值最小,

而OP的最小值为OH的长,

∴PA的最小值为22

(3)12

-=.

故选D.

【点睛】

本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

2.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm 处,铁片与三角尺的唯一公共点为B,下列说法错误的是()

人教版初中数学圆的经典测试题及答案解析

A.圆形铁片的半径是4cm B.四边形AOBC为正方形

C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2

【答案】C

【解析】

【分析】

【详解】

解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,

∴OA⊥CA,OB⊥BC,

又∵∠C=90°,OA=OB,

∴四边形AOBC是正方形,

∴OA=AC=4,故A,B正确;

∴?AB的长度为:904

180

π

?

=2π,故C错误;

S扇形OAB=

2

904

360

π?

=4π,故D正确.

故选C.

【点睛】

本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.

3.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=2

5

,则线段AC的长为()

人教版初中数学圆的经典测试题及答案解析

A.1 B.2 C.4 D.5

【答案】C

【解析】

【分析】

首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由

⊙O的半径是5,sinB=2

5

,即可求得答案.

【详解】

解:连接CO并延长交⊙O于点D,连接AD,

人教版初中数学圆的经典测试题及答案解析

由CD是⊙O的直径,可得∠CAD=90°,

∵∠B和∠D所对的弧都为弧AC,

∴∠B=∠D,即sinB=sinD=2

5

∵半径AO=5,∴CD=10,

2 sin

105

AC AC

D

CD

===,

∴AC=4,

故选:C.

【点睛】

本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.

4.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()

人教版初中数学圆的经典测试题及答案解析

A.3

4

B.

1

3

C.

1

2

D.

1

4

【答案】C

【解析】

【分析】

算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】

解:设小正方形的边长为1,则其面积为1.

Q圆的直径正好是大正方形边长,

∴22,∴2,

222

=,则小球停在小正方形内部(阴影)区域的概率为1

2

故选:C.

【点睛】

概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.

5.已知某圆锥的底面半径为3 cm,母线长5 cm,则它的侧面展开图的面积为()A.30 cm2B.15 cm2C.30π cm2D.15π cm2

【答案】D

【解析】

试题解析:根据圆锥的侧面展开图的面积计算公式得:

S=RL

π=15π

故选D.

6.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()

人教版初中数学圆的经典测试题及答案解析

A .50°

B .60°

C .80°

D .90°

【答案】C

【解析】

【分析】 根据圆内接四边形的性质得:∠GBC =∠ADC =50°,由垂径定理得:··CM

DM =,则∠DBC =2∠EAD =80°.

【详解】

如图,∵四边形ABCD 为⊙O 的内接四边形,∴∠GBC =∠ADC =50°.

∵AE ⊥CD ,∴∠AED =90°,∴∠EAD =90°﹣50°=40°,延长AE 交⊙O 于点M .

∵AO ⊥CD ,∴··CM

DM =,∴∠DBC =2∠EAD =80°. 故选C .

人教版初中数学圆的经典测试题及答案解析

【点睛】

本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.

7.如图,ABC V 中,90ACB ∠=?,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).

人教版初中数学圆的经典测试题及答案解析

A .1

B .22

C .21-

D .222-

【答案】D

【解析】

【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.

【详解】

解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,

D ∴为ABC ?的内心,

OD ∴最小时,OD 为ABC ?的内切圆的半径,

,DO AB ∴⊥

过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F

,DE DF DO ∴==

∴ 四边形DFCE 为正方形,

O Q 为AB 的中点,4,AB =

2,AO BO ∴==

由切线长定理得:2,2,,AO AE BO BF CE CF r ======

sin 4522,AC BC AB ∴==??=

222,CE AC AE ∴=-=-

Q 四边形DFCE 为正方形,

,CE DE ∴=

222,OD CE ∴==-

故选D .

人教版初中数学圆的经典测试题及答案解析

【点睛】

本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.

8.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD 等于( )

人教版初中数学圆的经典测试题及答案解析

A.20°B.25°C.30°D.32.5°

【答案】A

【解析】

【分析】

连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.

【详解】

解:连接OD,

人教版初中数学圆的经典测试题及答案解析

∵OC⊥AB,

∴∠COB=90°,

∵∠AEC=65°,

∴∠OCE=180°﹣90°﹣65°=25°,

∵OD=OC,

∴∠ODC=∠OCD=25°,

∴∠DOC=180°﹣25°﹣25°=130°,

∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,

∴由圆周角定理得:∠BAD=1

2

∠DOB=20°,

故选:A.

【点睛】

本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.

9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()

A.B.C.D.

【答案】D

【解析】

解:如右图,

人教版初中数学圆的经典测试题及答案解析

连接OP,由于OP是Rt△AOB斜边上的中线,

所以OP=1

2

AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以

O为圆心的圆弧上,那么中点P下落的路线是一段弧线.

故选D.

10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()

A.5B.5C.5或5cm D.3或3

【答案】C

【解析】

连接AC,AO,

人教版初中数学圆的经典测试题及答案解析

∵O的直径CD=10cm,AB⊥CD,AB=8cm,

∴AM=1

2

AB=

1

2

×8=4cm,OD=OC=5cm,

当C点位置如图1所示时,

∵OA=5cm,AM=4cm,CD⊥AB,

∴OM=2222

54

OA AM

-=-=3cm,

∴CM=OC+OM=5+3=8cm,

∴AC=2222

4845

AM CM

+=+=cm;

当C点位置如图2所示时,同理可得OM=3cm,

∵OC=5cm,

∴MC=5?3=2cm,

在Rt△AMC中,AC=2222

4225

AM CM

+=+=cm.

故选C.

11.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()

人教版初中数学圆的经典测试题及答案解析

A.23B.13C.4 D.32

【答案】B

【解析】

【分析】

如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.

【详解】

如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;

人教版初中数学圆的经典测试题及答案解析

∵△BAC 是等腰直角三角形,AD ⊥BC ,

∴BD=CD=AD=3;

∴OD=AD-OA=2;

Rt △OBD 中,根据勾股定理,得: OB= 22BD OD 13+=

故答案为:B.

【点睛】

本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC 判定点O 在AD 上.

12.如图,在ABC ?中,5AB =,3AC =,4BC =,将ABC ?绕一逆时针方向旋转40?得到ADE ?,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )

人教版初中数学圆的经典测试题及答案解析

A .1463

π- B .33π+ C .3338π- D .259

π 【答案】D

【解析】

【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.

【详解】

∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,

∴△ACB ≌△AED ,∠DAB=40°,

∴AD=AB=5,S △ACB =S △AED ,

∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,

∴S 阴影=

4025360π?=259

π, 故选D.

【点睛】

本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.

13.如图,在Rt ABC △中,90ACB ∠=?,30A ∠=?,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )

人教版初中数学圆的经典测试题及答案解析

A .302,

B .602,

C .360,

D .603, 【答案】C

【解析】

试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2,

∴∠B=60°,AC=BC×cot ∠33AB=2BC=4,

∵△EDC 是△ABC 旋转而成,

∴BC=CD=BD=

12AB=2, ∵∠B=60°,

∴△BCD 是等边三角形,

∴∠BCD=60°,

∴∠DCF=30°,∠DFC=90°,即DE ⊥AC ,

∴DE ∥BC ,

∵BD=12

AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影=

12DF×CF=1233 故选C .

考点:1.旋转的性质2.含30度角的直角三角形.

14.如图,ABC ?是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ?的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).

人教版初中数学圆的经典测试题及答案解析

A .

16 B .6π C .8π D .5

π 【答案】B

【解析】

【分析】

由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=

4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.

【详解】

解:∵AB=5,BC=4,AC=3,

∴AB 2=BC 2+AC 2,

∴△ABC 为直角三角形,

∴△ABC 的内切圆半径=

4+3-52=1, ∴S △ABC =

12AC?BC=12

×4×3=6, S 圆=π,

∴小鸟落在花圃上的概率=

6π , 故选B .

【点睛】

本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.

15.已知线段AB 如图,

(1)以线段AB 为直径作半圆弧?AB ,点O 为圆心;

(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交?AB 于点E F 、;

(3)连接,OE OF .

根据以上作图过程及所作图形,下列结论中错误的是( )

人教版初中数学圆的经典测试题及答案解析

A .CE DF =

B .??AE BF =

C .60EOF ∠=?

D . =2C

E CO

【答案】D

【解析】

【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.

【详解】

根据HL 可判定ECO FDO ?V V ,得CE DF =,A 正确;

∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,

CE 为OA 的中垂线,AE OE =

在半圆中,OA OE =

∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;

∴圆心角相等,所对应的弧长度也相等,??AE BF

=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误

【点睛】

本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.

16.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )

人教版初中数学圆的经典测试题及答案解析

A .2π

B .3π

C .6π

D .8π

【答案】B

【解析】

【分析】 圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.

解:圆锥的侧面积为:12

×2π×1×3=3π, 故选:B .

【点睛】

此题考查圆锥的计算,解题关键在于掌握运算公式.

17.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=?,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )

人教版初中数学圆的经典测试题及答案解析

A .99?

B .100?

C .101°

D .102?

【答案】D

【解析】

【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.

【详解】

解:连接OB ,

∵AB=AC ,

∴∠ABC=∠ACB=56°,

∴∠A=180°-56°-56°=68°=

12

∠BOC , ∴∠BOC=68°×2=136°,

∵OB=OC ,

∴∠OBC=∠OCB=(180°-136°)÷2=22°,

∴∠OBE=∠EBC-∠OBC=56°-22°=34°,

∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.

故选D.

人教版初中数学圆的经典测试题及答案解析

本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.

18.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则∠BPC的度数为()

人教版初中数学圆的经典测试题及答案解析

A.30°B.45°C.60°D.90°

【答案】B

【解析】

分析:接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.

详解:连接OB,OC,

人教版初中数学圆的经典测试题及答案解析

∵四边形ABCD是正方形,

∴∠BOC=90°,

∴∠BPC=1

2

∠BOC=45°.

故选B.

点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.

19.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.

人教版初中数学圆的经典测试题及答案解析

人教版初中数学圆的经典测试题及答案解析

图1图2

有如下四个结论:

①勒洛三角形是中心对称图形

②图1中,点A到BC上任意一点的距离都相等

③图2中,勒洛三角形的周长与圆的周长相等

④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动

上述结论中,所有正确结论的序号是()

A.①②B.②③C.②④D.③④【答案】B

【解析】

【分析】

逐一对选项进行分析即可.

【详解】

①勒洛三角形不是中心对称图形,故①错误;

②图1中,点A到BC上任意一点的距离都相等,故②正确;

③图2中,设圆的半径为r

∴勒洛三角形的周长=

120

32

180

r

r

π

π?=

g g

圆的周长为2r

π

∴勒洛三角形的周长与圆的周长相等,故③正确;

④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误

故选B

【点睛】

本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 20.如图,用半径为12cm,面积2

72cm

π的扇形无重叠地围成一个圆锥,则这个圆锥的高为()

人教版初中数学圆的经典测试题及答案解析

A.12cm B.6cm C.6√2 cm D.3

【答案】D

【解析】

【分析】

先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.

【详解】

72π=

2

12 360 nπ?

解得n=180°,

∴扇形的弧长=18012180

π?=12πcm . 围成一个圆锥后如图所示:

人教版初中数学圆的经典测试题及答案解析

因为扇形弧长=圆锥底面周长

即12π=2πr 解得r=6cm ,即OB=6cm 根据勾股定理得22126=63-,

故选D .

【点睛】

本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.

下载文档原格式(Word原格式,共17页)
相关文档
  • 初中数学题及答案解析

  • 初中数学经典试题

  • 初中数学试题及答案

  • 初中数学试卷圆试题

  • 初中数学经典例题

相关文档推荐: