当前位置:文档之家› 施耐德运动控制器LMC058

施耐德运动控制器LMC058

施耐德运动控制器LMC058
施耐德运动控制器LMC058

施耐德运动控制概述motion_guide

第六章. 运动控制6.1 运动控制的定义 6.2 运动控制的组成 6.2.1 同步伺服电机 6.2.2 步进电机 6.2.3 驱动器 6.2.4 控制器 6.3 运动控制系统的结构 6.4 运动控制要解决的问题 6.5 伺服电机的选型计算 6.6 典型应用

6.1 运动控制的定义 运动控制是指动作的单元以非常精确的设定速度在规定时间到达准确位置的可控运动. 运动单元的运动有如下特点: 路径: 有一个初始位置 有一个终点位置 稳定的速度和上升,下降斜率 动作: 静态和动态响应非常精确 运动响应很快 运动很稳定 位置: 有绝对位置 有相对位置 根据不同的应用工艺, 我们把运动分为有限轴运动和无限轴运动. 有限轴运动是指运动体的运动在一定范围内, 如机械手的运动在设计范围内抓取工件. 无限轴运动是指运动体连续不断的向一个方向运动,没有边界. 如传送带的运动. 6.2 运动控制的组成 运动控制的组成离不开以下4个单元,如图: 运动控制器: 控制运动按照设定的轨迹动作,不断计算位置和速度的匹配 驱动器: 把普通电能转化为向电机提供运动的动力 电机: 产生对负载推动的扭矩 位置传感器: 提供电机轴实时的位置和速度 所以, 运动控制要完成可控的动作, 主要对3个变量进行控制. 即: 电机的力矩, 速度, 位置 如图所示

6.2.1 同步伺服电机 首先让我们看一下运动控制中的执行器: 伺服电机 电机是把电枢电流转化为电机轴输出力矩的一种装置. 从技术角度, 我们通常把电机分为异步电机, 同步电机和步进电机. 从运动形式来分,可分为旋转电机和直线电机。如图所示:

运动控制课后答案-第三版

. 电力拖动自动控制系统—运动控制系统答案 上海大学陈伯时主编 1-1为什么PWM-电动机系统比晶闸管----电动机系统能够获得更好的动态性能? 答:PWM—电动机系统在很多方面有较大的优越性: (1)主电路线路简单,需用的功率器件少。 (2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。 (3)低速性能好,稳速精度高,调速范围宽,可达1:10000 左右。 (4)若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。 (5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。 (6)直流电源采用不控整流时,电网功率因数比相控整流器高。 PWM 开关频率高,响应速度快,电流容易连续,系统频带宽,动态 响应快,动态抗扰能力强。 1-2试分析有制动通路的不可逆PWM变换器进行制动时,两个VT是如何工作的? 答:制动时,由于U g1 的脉冲变窄而导致i d反向时,U g2 变正,于是VT2 导通, VT2 导通,VT1 关断。 1-3调速范围和静差率的定义是什么?调速范围,静态速降和最小静差之间有什么关系?为什么脱离了调速范围,要满足给定的静差率也就容易得多了? 答:生产机械要求电动机提供的最高转速 n max 和最低转速 n max n min 之比叫做调速范围, 用字母D 表示,即:D = n min 负载由理想空载增加到额定值时,所对应的转速降落?n N与理想空载转速n0min 之比,称 n 为系统的静差率S,即:s=?N n0min 调速范围,静差速降和最小静差之间的关系为: n s D =N ?n N(1?s) 由于在一定的n N下,D 越大,n min越小?n N又一定,则S 变大。所以,如果不考虑D,则S 的调节也就会容易, 1-4.某一调速系统,测得的最高转速特性为n0min=150 r / min ,带额定负载的速度降落 n0max=1500r / min ,最低转速特性 为 ?n N= 15r / min ,且不同转速下额定速降 ?n N不 变,试问系统能够达到的调速范围有多大?系统允许的静差率是多大?解 D=n max n = n0ma x ? ?n N ??n = ? 1500 15 ? = 11 min n n0min N

施耐德ATV61参数设置

ATV61参数设置 菜单 [1 变频器菜单] [2 访问等级] [3 打开/另存为] [4 密码] [5 语言选择] [6 监视设置] [7 显示设置] [1 变频器菜单] [1.1简单起动]:用于快速起动的简化菜单 [1.2监视]:显示电流、电机与输入/输出值 [1.3设置]:访问可在运行期间修改的调节参数 [1.4 电机控制]:电机参数(电机铭牌,自整定,开关频率,控制算法等)[1.5输入/输出设置]:I/O设置(缩放比例,滤波,2线控制,3线控制等)[1.6命令]:命令与给定通道的设置(图形显示终端,端子,总线等)[1.7应用功能]:应用功能设置(例如:预置速度,PID等) [1.8 故障管理]:故障管理设置 [1.9通信]:通信参数(现场总线) [1.10诊断]:电机/变频器诊断 [1.11软硬件识别]:变频器与内部可选件的识别 [1.12出厂设置]:访问设置文件并返回出厂设置 [1.13用户菜单]:用户在[7.显示设置]菜单中创建的专用菜单 [1.14内置控制器卡]:可选Controller Inside(内置控制器)卡的设置 [1.1简单起动] ●[2/3线控制]tCC=2C[2线控制] ●[宏配置]CFG=PnF[泵和风机] ●bFr[标准电机频率]= [50 Hz IEC](50):IEC ●nPr[电机额定功率]= ●UnS[电机额定电压]= ●[电机额定电流]nCr= ●FrS[电机额定频率]=

●nSP[电机额定速度]= ●tFr[最大输出值频率]= ●tUn[自整定]= [No](nO)/ [Yes](YES)/ [电阻已整定](dOnE) ●tUS[自整定状态] ?[电阻未整定](tAb):默认的定子阻抗值用于控制电机。 ?[整定等待中](PEnd):已经请求自整定,但还未执行。 ?[整定进行中](PrOG):正在执行自整定。 ?[整定失败](FAIL):自整定失败。 ?[电阻已整定](dOnE):自整定功能测出的定子阻抗被用于控制电机。 ●PHr ?[ABC相序](AbC):正相序 ?[ACB相序](ACb):反相序 ●ItH[电机热保护电流]=0~1.2Ln ●ACC[加速时间]=60S ●dEC[减速时间]=60S ●LSP[低速频率]=0.1HZ ●HSP[高速频率]=50HZ [1.6命令](CtL-) ●Fr1[给定1通道] ?[AI1给定](AI1):模拟输入 ?[AI2给定](AI2):模拟输入 ?[AI3给定](AI3):模拟输入,如果已经插入 VW3A3202扩展卡 ?[AI4给定](AI4):模拟输入,如果已经插入 VW3A3202扩展卡 ?[图形终端](LCC):图形显示终端 ?[Modbus](Mdb):集成的Modbus总线 ?[CANopen](CAn):集成的CANopen总线 ?[通信卡](nEt):通信卡(如果已经插入) ?[控制器内置卡](APP):Controller Inside(内置控制器)卡(如果已经插入)?[RP](PI):频率输入,如果已经插入VW3A3202扩展卡 ?[编码器输入](PG):编码器输入,如果已经插入编码器卡 ●CCS[命令通道切换]= [通道1有效](Cd1):[命令通道1](Cd1)被激活(不能切换)●Cd1[命令通道1] ?[端子排](tEr):端子 ?[图形终端](LCC):图形显示终端 ?[Modbus](Mdb):集成的Modbus总线 ?[CANopen](CAn):集成的CANopen总线 ?[通信卡](nEt):通信卡(如果已经插入) ?[编程卡](APP):Controller Inside(内置控制器)卡(如果已经插入) 注意:组合模式](CHCF)= [隔离通道](SEP)或[I/O 模式](IO),此参数可以使用。 ●Cd2[命令通道2] ?[端子排](tEr):端子 ?[图形终端](LCC):图形显示终端 ?[Modbus](Mdb):集成的Modbus总线 ?[CANopen](CAn):集成的CANopen总线

电力传动控制系统——运动控制系统

电力传动控制系统——运动控制系统 (习题解答) 第 1 章电力传动控制系统的基本结构与组成.......... 第 2 章电力传动系统的模型................. 第 3 章直流传动控制系统................... 第 4 章交流传动控制系统................... 第 5 章电力传动控制系统的分析与设计* ............ 错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签错误!未定义书签

第1章电力传动控制系统的基本结构与组成 1.根据电力传动控制系统的基本结构,简述电力传动控制系统的基本原理和共性问题。 答:电力传动是以电动机作为原动机拖动生产机械运动的一种传动方式,由于电力传输和变换的便利,使电力传动成为现代生产机械的主要动力装置。电力传动控制系统的基本结构如图1-1所示,一般由电源、变流器、电动机、控制器、传感器和生产机械(负载)组成。 控制指令 图1-1电力传动控制系统的基本结构 电力传动控制系统的基本工作原理是,根据输入的控制指令(比如:速度或位置指令),与传感器采集的系统检测信号(速度、位置、电流和电压等),经过一定的处理给出相应的反馈控制信号,控制器按一定的控制算法或策略输出相应的控制信号,控制变流器改变输入到电动机的电源电压、频率等,使电动机改变转速或位置,再由电动机驱动生产机械按照相应的控制要求运动,故又称为运动控制系统。 虽然电力传动控制系统种类繁多,但根据图1-1所示的系统基本结构,可以归纳出研发或应用电力传动控制系统所需解决的共性问题: 1)电动机的选择。电力传动系统能否经济可靠地运行,正确选择驱动生产 机械运动的电动机至关重要。应根据生产工艺和设备对驱动的要求,选择合适的电动机的种类及额定参数、绝缘等级等,然后通过分析电动机的发热和冷却、工作制、过载能力等进行电动机容量的校验。 2)变流技术研究。电动机的控制是通过改变其供电电源来实现的,如直流 电动机的正反转控制需要改变其电枢电压或励磁电压的方向,而调速需要改变电 枢电压或励磁电流的大小;交流电动机的调速需要改变其电源的电压和频率等,因此,变流技术是实现电力传动系统的核心技术之一。 3)系统的状态检测方法。状态检测是构成系统反馈的关键,根据反馈控制 原理,需要实时检测电力传动控制系统的各种状态,如电压、电流、频率、相位、 磁链、转矩、转速或位置等。因此,研究系统状态检测和观测方法是提高其控制

运动控制系统基本要求

11级电气工程与自动化专业《运动控制系统》基本要求(2014-05-23) 第一章 绪论 了解本课程的研究内容。 第二章 (转速单)闭环控制的直流调速系统 1、 了解V (SCR )--M 、PWM--M 两种主电路方案及其特点(2.1节、P16、P97--98、笔记); 2、 他励(或永磁)直流电动机三种数学模型及转换,解耦模型中I do ~U d 环节的处理(P27--28、笔记); 3、 稳态性能指标中D 、S 间关系及适用范围(2.2.1节、P29--30、笔记); 4、 转速单闭环直流调速系统组成原理、特点及适用范围(P2 5、笔记); 5、 带电流截至负反馈的转速单闭环直流调速系统的组成原理、特点(笔记、2.5.2节)。 第三章 转速、电流反馈控制的直流调速系统 1、 双闭环直流调速系统的组成原理(主要指:V —M 不可逆调速系统、PWM-M 调速系统)、特点,符合实际的系统数学模型,静(稳)态参数的整定及计算(P60、P59--6 2、笔记); 2、 ASR 、ACR 的作用(P65); 3、 典1、典2系统的特点、适用范围、参数整定依据(3.3.2节、笔记); 4、 基于工程设计法的ASR 、ACR 调节器参数整定方法(P77--78、3.3.3节、例3-1、3-2、笔记); 5、 理解ASR 退饱和时的(阶跃响应)转速超调量等时域指标算式(P86--88、笔记); 6、 系统分别在正常恒流动态、稳态阶段,及机械堵转故障、转速反馈断开故障下的(新稳态)物理量计算; 7、 M 、T 、M/T 三种数字测速方法及特点(2.4.2节、笔记); 8、 了解了解M/T 数字测速的技术实现方法、系统控制器的技术实现方法(P82-85、笔记)。 第四章 可逆控制和弱磁控制的直流调速系统 1、 PWM--M 可逆直流调速系统组成原理及特点(4.1节,笔记) 2、 V (SCR )--M 可逆主电路中的环流概念、类型、特点(P103--104、笔记); 3、 常用的晶闸管-直流电动机可逆调速系统组成原理及特点(4.2.2节,图4-1 4、图4-1 5、4.2.3节)。 第五章 基于稳态模型的异步电动机调速系统 1、 异步电动机定子调压调速的机械特性簇与特点,转速闭环调压调速系统组成原理及适用范围(5.1--5.2节); 2、 软起动器的作用及适用条件(5.2.4节); 3、 异步电动机变压变频调速的基本协调控制关系(一点两段)及其依据(5.3.1节); 4、 异步电动机四种协调控制的特点,各自的机械特性簇、特点及比较(5.3.2节--5.3.3节、笔记); 5、 SPWM 、CFPWM 、SVPWM 变频调速器组成原理与特点,及其中各环节的作用(5.4节); 6、 了解基于转差频率控制的转速闭环变频变压调速系统的基本原理(5.6节)。 第六章 基于动态模型的异步电动机调速系统 1、 交流电动机坐标变换的作用,矢量控制(VC )的基本思想、特点(6.6、6.7、笔记); 2、 异步电动机VC 系统的一般组成原理(图6-20); 3、 了解各种具体的VC 系统组成方案,理解转子磁链直接与间接定向控制的区别(6.6. 4、6.6.6节、笔记); 4、 异步电动机直接转矩控制(DTC )系统的基本原理及特点(6.7.3节),DTC 与VC 的比较(6.8节)。 第七章 绕线转子异步电动机双馈调速系统 1、 绕线转子异步电动机次同步串级调速主电路及其工作原理,()S f β=公式及特点(7.2.1节、笔记); 2、 绕线转子异步电动机双闭环次同步串级调速系统组成原理;起动、停车操作步骤;(7.5、7.6、7.4.3节、笔记)。 第八章 同步电动机变压变频调速系统 1、 正弦波永磁同步电动机(PMSM )矢量控制系统组成原理,0sd i =时的转矩公式(8.4.3节); 2、 具有位置、速度闭环的正弦波永磁同步电动机(伺服)矢量控制系统组成原理(图8-26、27扩展、笔记)。 第九章 伺服系统 1、 位置伺服系统的典型结构(开环、半闭环、闭环、混合闭环)及特点(笔记、9.1.2); 2、 位置伺服系统的三种运行方式、位置伺服系统的三种方案;(笔记、9.3.2--9.3.4) 3、 数字伺服系统中电子齿轮的作用(笔记); 4、 数字式位置、速度伺服系统的指令形式(笔记)。 *** 考试须知---要点提示: (1)无证件者不能考试;(2)未交卷者中途不得离场;(3)严禁带手机到座位,操作手机者按作弊论处。 附:答疑地点(2-216)、时间:(1)2014-6-6,13:00--15:00;(2)2014-6-7,8:00--11:00,13:00--15:00。

运动控制器知识

运动控制器知识

运动控制是指对机械运动部件的位置、速度、方向等进行实时控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。运动控制行业是工业自动化行业的一个分支,其产品主要是解决自动化装置精确位置控制和严格的速度同步问题。 运动控制系统是通过对电机电压、电流、频率等输入变量的控制,来改变工作机械的转矩、速度、位移等机械量,使工作机械按照人们期望的要求运行,以满足生产工艺及其他应用的需要。典型的运动控制系统如下图所示: 控制器接收操作员发出的指令后,向驱动器发送控制信号,驱动器接收后,转变为电流和电压信号,通过该信号驱动电机,电机开始按所设定的力矩、速度、位置等指令信号完成相应的运

动、测量反馈装置将检测到的移动部件和实际位移量进行位置反馈,以纠正电机执行动作的偏差。其中,控制器相当于运动控制系统的“大脑”,驱动器和电机构成的伺服系统则负责具体的执行动作,其中,驱动器相当于“心脏”,电机则充当了“手脚”的角色。 (2)控制器的基本概况 ①控制器的概念 控制器起连接操作人员与伺服系统的作用,其主要任务是通过计算每个预定运动的轨迹,形成控制参数,向伺服系统发出运动指令,同时监测传感器传输的反馈信号并及时调整,保证运动控制系统能够正确运行。 ②控制器的发展历程 最初的控制器是独立运行的专用控制器,无需处理器和操作系统支持,可以独立完成运动控制功能、人机交互功能和工艺技术要求的其他功

能,这类控制器主要针对专门的数控机械和其他自动化设备而设计,不能离开特定的工艺要求二跨行业应用,用户不能根据应用需求而重组自己的运动控制系统,所以通用运动控制器的发展成为市场必然需求。 通用运动控制技术作为自动化技术的一个重要分支,1990年开始在发达国家进入快速发展的阶段,由于有强劲的市场需求的推动,通用运动控制技术发展迅速并得到广泛应用。近年来,随着通用运动控制技术的不断进步和完善,通用运动控制器作为一个独立的运动控制类产品,已经被越来越多的行业领域所接受。 运动控制器也从以单片机、微处理器或专用芯片作为核心处理器,发展到了基于PC总线、以DSP和FPGA作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业的专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的现金运动控制技术。

施耐德 双电源MG ATS用户手册

ATS技术操作规程 一.送电前检查 1.检查接线是否正确 检查ACP(辅助控制板)与BA或UA(控制器)之间9#.10#连接端子对应是否正确; 检查ACP上P25M与断路器之间接线是否正确(详见“ATS接线”单页) 2.检查BA或UA控制器顶部17#.18#;20#.21#端子是否安装,17#.18#;20#21#已分别短封好; 3.检查断路器电操左下方的手动(manu)和电动(auto)切换拨钮是否在 “auto”位置; 4.检查电操与BA或UA控制器的操作电压是否一致(220V~或380V~); 5. 检查ATS装置无异物; 6.检查ACP上P25M是否已在合闸位置。 二.操作试验 1.预设电源转换时间: 通过控制器右上方时间整定钮调整; 2.将BA或UA控制器上的选择开关置于“STOP”位置,将ACP上“N(工作电源)”及“R(备用电源)”侧 P25M分别合闸(两台断路器电操储能)。 3.将BA或UA控制器上的选择开关转到“auto”位, N断路器合闸,BA或UA“N”、“R”侧ON或OFF指 示断路器的合分状态。观察控制器指示与断路器电操上的ON. OFF位置应一致; 4.将ACP上N侧P25M开关分断模拟电源故障, 此时N侧断路器分断;R侧断路器合闸(系统自动转换到备 用电源R侧); 合上N侧开关,电源应自动恢复到主电源(N)侧合闸---自投自复功能; 5.将N侧断路器下端的故障试验推杆按入(模拟负荷故障),N侧断路器断开BA或UA控制器的N侧Fault 指示灯亮(红色),电源并不转换到备用侧; 手动拨N侧断路器电操的储能手柄2次,(N侧断路器储能、合闸)故障复位,控制器N侧Fault指示灯灭, 恢复原始状态; 6.将BA或UA控制器选择开关置“R”位, 则ATS强制在备用电源侧运行; 同样再置“N”位, ATS强制在工 作电源运行,此操作过程中,控制器电源指示均正常;

施耐德运动控制控制模板经验总结

以施耐德公司的位置控制模板TSXCAY系列为例: 如图所示: 9针D型阳插座输出4路模拟信号,可以控制4台驱动器。 15针D型插座接收反馈信号。反馈信号可以是绝对编码SSI或增量编码RS422。它们的电源由外部提供。电源可以是5V或24V。外部电源由HE10型插座接入。

如图示说明: TSXCAY位置控制单元还集成了基本的输入/输出端子,使得在运动控制过程中更加完善了它的控制功能,例如:原点开关,位置限位,事件开关等,电源也由此输入。如图所示:

I0: 原点开关 I1: 紧急停止开关 I2: 事件开关 I3: 自较正开关 Q0:辅助输出 下面就是一个在通道0 实际连接的例子。 PO是原点开关,用于程序中的寻原点的执行。 FCD,FCG,AT_UR都是紧急停止开关。 EVT是一个事件开关,可以在程序中进行中断情况的处理。REC可以是自校正的处理开关。

另外,TSXCAY还集成了对驱动单元的管理功能,例如,驱动器的使能,驱动器出错的报警等。如图示: COMx, VALVARx为输出到相应驱动器的使能控制。 OK_VARx 为驱动器正常工作的输入信号。 连接如图: TSXCAY 驱动器

综上所述,所有这些硬件构成了位置控制的最基本要素,无论是哪家的产品,结构都基本如此。 2.3 脉冲输出的位置控制结构 如上图所示 脉冲输出对位置的控制,结构简捷,不需要来自电机或驱动器的反馈。运动的位置取决于驱动器接收的脉冲数,运动的速度取决于脉冲的频率。对电流,速度,位置的调节都在驱动器里。它可以实现对位置的点到点的控制和同步跟随控制。 2.4 典型的硬件结构 如图所示 以施耐德公司的步进控制模板TSXCFY系列为例

运动控制系统 陈伯时 上海大学 第4版课后习题答案完整版

2.2 系统的调速范围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解:10000.02(100.98) 2.04(1) n n s n rpm D s ?= =??=- 系统允许的静态速降为2.04rpm 。 2.3 某一调速系统,在额定负载下,最高转速特性为0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落15min N n r ?=,且在不同转速下额定速降 不变,试问系统能够达到的调速范围有多大?系统允许的静差率是多少? 解:1)调速范围 max min D n n =(均指额定负载情况下) max 0max 1500151485N n n n =-?=-= min 0min 15015135N n n n =-?=-= max min 148513511D n n === 2) 静差率 01515010%N s n n =?== 2.4 直流电动机为P N =74kW,UN=220V ,I N =378A ,n N =1430r/min ,Ra=0.023Ω。相控整流器内阻Rrec=0.022Ω。采用降压调速。当生产机械要求s=20%时,求系统的调速范围。如果s=30%时,则系统的调速范围又为多少?? 解:()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-?= 378(0.0230.022)0.1478115N n I R C e r p m ?==?+= [(1)]14300.2[115(10.2)] 3.1 N D n S n s =?-=??-=

运动控制系统 复习知识点总结

1 运动控制系统的任务是通过对电动机电压、电流、频率等输入电量的控制,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。(运动控制系统框图) 2. 运动控制系统的控制对象为电动机,运动控制的目的是控制电动机的转速和转角,要控制转速和转角,唯一的途径就是控制电动机的电磁转矩,使转速变化率按人们期望的规律变化。因此,转矩控制是运动控制的根本问题。 第1章可控直流电源-电动机系统内容提要 相控整流器-电动机调速系统 直流PWM变换器-电动机系统 调速系统性能指标 1相控整流器-电动机调速系统原理 2.晶闸管可控整流器的特点 (1)晶闸管可控整流器的功率放大倍数在104以上,其门极电流可以直接用电子控制。(2)晶闸管的控制作用是毫秒级的,系统的动态性能得到了很大的改善。 晶闸管可控整流器的不足之处 晶闸管是单向导电的,给电机的可逆运行带来困难。 晶闸管对过电压、过电流和过高的du/dt与di/dt都十分敏感,超过允许值时会损坏晶闸管。 在交流侧会产生较大的谐波电流,引起电网电压的畸变。需要在电网中增设无功补偿装置和谐波滤波装置。 3.V-M系统机械特 4.最大失控时间是两个相邻自然换相点之间的时间,它与交流电源频率和晶闸管整流器的类型有关。 5.(1)直流脉宽变换器根据PWM变换器主电路的形式可分为可逆和不可逆两大类 (2)简单的不可逆PWM变换器-直流电动机系统 (3)有制动电流通路的不可 逆PWM-直流电动机系统 (4)桥式可逆PWM变换器 (5)双极式控制的桥式可逆PWM变换器的优点 双极式控制方式的不足之处 (6)直流PWM变换器-电动机系统的能量回馈问题 ”。(7)直流PWM调速系统的机械特性 6..生产机械要求电动机在额定负载情况下所需的最高转速和最低转速之比称为调速范围,用字母D来表示(D的表达式) 当系统在某一转速下运行时,负载由理想空载增加到额定值时电动机转速的变化率,称为静差率s。 D与s的相互约束关系 对系统的调速精度要求越高,即要求s越小,则可达到的D必定越小。 当要求的D越大时,则所能达到的调速精度就越低,即s越大,所以这是一对矛盾的指标。第二章闭环控制的直流调速系统 内容提要 ?转速单闭环直流调速系统 ?转速、电流双闭环直流调速系统 调节器的设计方法 1.异步电动机从定子传入转子的电磁功率可分成两部分:一部分是机械轴上输出的机械功率;另一部分是与转差率成正比的转差功率。.异步电动机按调速性能分类第一类基于稳态模型,动

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

施耐德伺服驱动Twido+PTO+Lxm23 运动控制系统

Twido+PTO+Lxm23运动控制系统 Twido+PTO+Lxm23运动控制系统.............................................................................................一第1章前言. (1) 第2章配置要求 (1) 2.1 硬件要求: (1) 2.2 Firmware要求: (1) 2.3 编程软件要求: (1) 第3章硬件连接与配置 (1) 3.1 硬件连接图 (1) 3.2 Lexium23的软件设置 (6) 3.3 PTO的软件设置 (6) 第4章功能实现 (13) 4.1 PTO对象 (13) 4.2 PTO指令说明 (16) 4.3 发送指令时应该考虑的规则 (16) 4.4 寻原点 (16) 4.5 设置位置 (18) 4.6 频率发生器 (18) 4.7 速度模式 (19) 4.8 相对值定位 (20) 4.9 绝对值定位 (22) 4.10 指令状态信息查询 (23) 第5章故障管理 (24) 5.1 LED面板 (24) 5.2 命令错误 (24) 5.3 可调整参数错误 (25) 5.4 轴错误 (25) 第6章编程过程中的注意事项 (26) 6.1 内存区的使用 (26) 6.2 输入滤波器的使用 (27) 6.3 ErrID的用法 (27) 第7章附录 (27) 7.1 图表 (27) 7.2 表格 (28)

第1章前言 Lexium 23 伺服驱动器配合BCH 伺服电机功率宽广、功能强大,能够满足多数工业场合的需求。 Lexium 23 C 伺服驱动器 200…255 V 单相,0.1 到1.5 kW 170…255 V 三相,0.1 到3 kW Lexium 23 M 伺服驱动器 170…255 V 三相,3 kW 到7.5 kW BCH 伺服电机 额定功率:0.1 到7.5KW 额定扭矩:0.3 到48 Nm 额定转速:1000 到3000rpm,取决于不同的型号 Lexium 23 伺服驱动器和BCH 伺服电机的完美组合可以适用于金属加工、物料搬运、纺织机械、电子设备、包装和印刷设备等多种场合。 TWDPTO220DT模块专用于Twido Brick40系列控制器的定位模块,该模块目前控制轴数量是3,该模块是个开环定位模块,不需要实时的移动位置反馈。 李成刚 第2章配置要求 2.1 硬件要求: Twido控制器:TWDLC**40DRF PTO模块:TWDPTO220DT-CN : 要求: 2.2 Firmware要求 BK40_V505及以上 软件要求: 编程软件要求 2.3 编程 TwidoSuite C V2.14.6 第3章硬件连接与配置 本章主要介绍了PTO与Lexium23的硬件连接,以及对PTO和Lexium23的软件配置。 3.1 硬件连接图 3.1.1 Twido PTO 结构

电力拖动自动控制系统-运动控制系统(_阮毅_陈伯时)课后参考答案第五六七章(仅供参考)

第五章 思考题 5-1 对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗? 答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0

运动控制基础教学大纲2017版

《运动控制基础》课程教学大纲 课程代码:060131004 课程英文名称:Moving-Control Foundation 课程总学时:40 讲课:36 实验:4 上机:0 适用专业:自动化专业 大纲编写(修订)时间:2017.11 一、大纲使用说明 (一)课程的地位及教学目标 本课程是高等工业学校自动化专业开设的一门专业基础课。课程主要讲授运动控制系统的动力学基础;直流运动控制系统基础;交流运动控制系统基础。 本课程的教学目的是使学生掌握运动控制系统的组成、功能及分析运动控制系统的知识;掌握电动机起动、制动、调速的实现方法:掌握直流运动控制系统、交流运动控制系统静态特性、动态特性的分析方法。为学习后续课程打下基础。 (二)知识、能力及技能方面的基本要求 通过本门课程学习,要求学生掌握运动控制系统的基本知识,并具备一定的实际工作能力。 本课程理论严谨,系统性强,教学过程中培养学生的思维能力,以及严谨的科学学风。 在本课程的教学过程中,应注意运用启发式教学,注意阐述各种分析方法的横向联系,以培养分析,归纳与总结的能力。 (三)实施说明 1.教学方法:课堂讲授中要重点对基本概念、基本设计方法和解题思路的讲解; 采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;讲课要联系实际并注重培养学生的创新能力。 2.教学内容:在运动控制系统动力学基础部分,着重介绍:运动方程式,多轴运动控制系统等效为单轴运动控制系统的折算原则,并在此基础上讲解各量折算式。 在直流运动控制系统基础部分,着重介绍:直流电动机机械特性,直流电动机起动、制动的实现方法及静态特性,调速的基本原理、性能指标及调速方法。 在交流运动控制系统基础部分,着重介绍:三相异步电动机的机械特性,三相异步电动机起动、制动的实现方法及静态特性,三相异步电动机调速的基本原理及调速方法。 3.教学手段:本课程属于专业基础课,在教学中采用多媒体教学先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 (四)对先修课的要求 本课程的教学必须在完成先修课程之后进行,本课程的主要先修课程有电路及电机学等。 (五)对习题课、实践环节的要求 1.对重点、难点章节应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。因此,要求学生按时完成作业,并将作业内容带到实践环节去验证. 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及计算方面的内容,作业要能起到巩固理论,掌握计算方法和技巧,提高分析问题、解决问题能力,熟悉标准、规范等的作用,对作业中的重点、难点,课上应做必要的提示,并适当安排课内讲评作业。学生必须独立、按时完成课外习题和作业,作业的完成情况应作为评定课程成绩的一部分。 3.每个学生要完成大纲中规定的必修实验,要求学生在做实验前,充分阅读实验指导书,以免实验时不知所措;要求每个学生亲自动手,通过实验,独立思考,加强对运动控制原理的理

运动控制器常见规格问题(强烈推荐)

1. C200HW-NC模块使用的软件是什么? (1) 2. C200H的NC模块订购的时候带不带连接器? (1) 3. CS1W-NC/CJ1W-NC和C200HW-NC有什么区别? (1) 4.CJ1W-NC模块的型号是怎样命名的? (2) 5.CJ1W-NC、CS1W-NC系列模块使用的软件是什么? (2) 6.CJ/CS/的NC模块订购的时候带不带连接器? (2) 7. CS1W-NC/CJ1W-NC模块输出的最大频率为多少? (2) 1. C200HW-NC模块使用的软件是什么? 使用的软件是SYSMAC-NCT的软件。 2. C200H的NC模块订购的时候带不带连接器? 订购时都带了连接器,不需客户另外购买。 如果需要再购买, C200H的NC模块的连接器的型号是FCN-361J048-AU(焊接类型)和FCN-360C048-D(连接器封套)。 3. CS1W-NC/CJ1W-NC和C200HW-NC有什么区别?

4.CJ1W-NC模块的型号是怎样命名的? 型号命名规则如下: 5.CJ1W-NC、CS1W-NC系列模块使用的软件是什么? CJ1W-NC、CS1W-NC系列模块使用的软件是CX-position软件或CX-ONE软件包(内含CX-position软件)。这些模块也可以不用以上软件,可以通过设置DM区的数值来设置NC模块的参数。 6.CJ/CS/的NC模块订购的时候带不带连接器? 订购时都带了连接器,不需客户另外购买。 如果需要再购买,CJ的NC模块的连接器的型号是FCN-361J040-AU(焊接类型)和FCN-360C040-J2(连接器封套)。 7. CS1W-NC/CJ1W-NC模块输出的最大频率为多少? CS1W-NC/CJ1W-NC模块输出频率最大可以达到500KHz。

施耐德万高D型控制器使用说明

D型控制器 用户手册 控制器功能介绍 控制器安装及接线说明 控制器设置操作 附录1 通讯协议 施耐德万高(天津)电气设备有限公司Schneider Wingoal (Tianjin) Electric Equipment Co., Ltd

下面的符号将用于本手册的说明,提醒您注意潜在的危险,或者请您注意那些阐述、简化过程和关键操作。 !:安全警示标志,提示您如果违规操作可能造成人身安全危险或本开关的不可恢复性损坏。 : 关键性操作,提示您使用不当时,可能使控制器工作于非正常状态。 :提供另外的信息或简化的操作方法。 请注意: 电气设备应该让有资格的专业人员进行安装、操作、使用、维护。未按使用手册操作而造成的不良后果,施耐德电气公司将不负任何责任。 控制器功能介绍 本控制器工作电压为AC380V,工作频率为50Hz,主要功能是进行电压采集,根据电压的实时值进行故障判断(三相断相、欠压、过压和失压),并控制转换开关进行相应的转换动作。用户还可根据实际需要选配电流模块实现实时电流、有功功率和有功电能的显示。另外,控制器提供多组无源节点的输入和输出,包括故障输出、负荷卸载、发电机启动、动作无源输出、远程投备(无源输入)、消防联动(无源输入)以及通讯接口,具体接线参见第节。 控制器安装及接线说明 1.1.控制器外形尺寸

图1 D型控制器外形尺寸

1.2. 控制器二次接线 1.2.1. 控制器端子说明 1.2.2. A1-A3备A4-D2,A5-RJ,A6-OUT,A7-D3,A8-D1,A9-NJ,A10-12,主 A2A3A4A5A6A7A8A9A10 A11A12OUT B1B2B3B4B5B6B7B8B9B10B11B12 故障输出 负荷卸载 主转备备转主 发电机启动 C1C2C3C4C5C6C7C8C9C10 空 D3 NB RB 空 远程投备 消防联动 D1D2D3D4D5D6D7D8D9D10D11D12 A B A`B` G 空 IC*IB*IA*动作输出 RS485 IC IB IA 动作输出:当机构中电机转动时,常开触点闭合; 故障输出:当常用或备用电源故障时,常开触点闭合; 负荷卸载:在电网-发电机模式下,常用电源故障,常开触点闭合; 发电机启动:在电网-发电机模式下,常用电源正常,常开触点闭合,常用电源故障,常开触点打开; RS485:通信用端口,A’ B’为通信预留端口; IA~IC :电流互感器输入端口I*为输入端,I 为输出端;(输入额定电流5A ) 远程投备(无源):短接此两点,机构转到备用位置,开关状态主分备合;(可靠距离10m) 消防联动(无源):短接此两点,机构转到双分位置,开关状态主分备分;(可靠距离10m,WTS-D800~5000系列不具备该项功能) : 控制器的发电机启动端子在常用电源正常时常闭触点断开,当常用电源故障时常闭触点闭合以接通发电机启动电路;常开触点与之相反,请用户注意。 : 两台断路器的主回路相序必须一致。 : 非标产品使用,连接等应按照非标产品实际定制情况而定 ! 接地线必须可靠,以确保操作人员使用安全。 端子名称 额定电压 额定电流 动作及故障输出(无源) 250VAC/ 30VDC 5A 发电机启动及卸载端子(无 源)* 250VAC/ 30VDC 3A 此处指无源触点的额定负载电压及额定负载电流值

电力拖动自动控制系统 运动控制系统 阮毅 陈伯时 课后参考答案第五六七章 仅供参考

第五 章 思考题 5-1 对于恒转矩负载,为什么调压调速的调速范围不大?电动机机械特性越软,调速范围越大吗? 答:对于恒转矩负载,普通笼型异步电动机降压调速时的稳定工作范围为0

5-3 异步电动机变频调速时,基频以下和基频以上分别属于恒功率还是恒转矩调速方式?为什么?所谓恒功率或恒转矩调速方式,是否指输出功率或转矩恒定?若不是,那么恒功率或恒转矩调速究竟是指什么? 答:在基频以下,由于磁通恒定,允许输出转矩也恒定,属于“恒转矩调速”方式;在基频以上,转速升高时磁通减小,允许输出转矩也随之降低,输出功率基本不变,属于“近似的恒功率调速”方式。 5-4基频以下调速可以是恒压频比控制、恒定子磁通、恒气隙磁通和恒转子磁通的控制方式,从机械特性和系统实现两个方面分析与比较四种控制方法的优缺点。 答: 恒压频比控制:恒压频比控制最容易实现,它的变频机械特性基本上是平行下移,硬度也较好,能够满足一般的调速要求,低速时需适当提高定子电压,以近似补偿定子阻抗压降。在对于相同的电磁转矩,角频率越大,速降落越大,机械特性越软,与直流电动机弱磁调速相似。在基频以下运行时,采用恒压频比的控制方法具有控制简便的优点,但负载变化时定子压降不同,将导致磁通改变,因此需采用定子电压补偿控制。根据定子电流的大小改变定子电压,以保持磁通恒定。 恒定子磁通:虽然改善了低速性能,但机械特性还是非线性的,仍受到临界转矩的限制。频率变化时,恒定子磁通控制的临界转矩恒定不变。恒定子磁通控制的临界转差率大于恒压频比控制方式。恒定子磁通控制的临界转矩也大于恒压频比控制方式。控制方式均需要定子电压补偿,控制要复杂一些。 恒气隙磁通:虽然改善了低速性能,但机械特性还是非线性的,仍受到临界转

相关主题
文本预览
相关文档 最新文档