当前位置:文档之家› RFID系统中阻抗匹配

RFID系统中阻抗匹配

RFID系统中阻抗匹配
RFID系统中阻抗匹配

RFID系统中阻抗匹配

1 引言

阻抗匹配问题是电子技术中的一项基本概念,通过匹配可以实现能量的最优传送,信号的最佳处理。总之,匹配关乎着系统的性能,使匹配则是使系统的性能达到约定准则下的最优。其实,阻抗匹配的概念还可扩展到整个电学之中,包括强电(以电能应用为主)与弱电(以信号检测与处理为主)两个大的领域。再进一步,如果去掉阻抗的概念单就匹配而言,则其覆盖的范围将更为广阔,比如:在RFID技术应用中,技术与需求的满足涉及到匹配的问题等。

本文主要讨论阻抗匹配在电子技术中的应用,特别是在无源RFID标签与读写器天线端口阻抗匹配中的应用。

2 阻抗匹配的几种方式

在电子技术中,电压(U/u)、电流(I/i)、电阻(R/r)或阻抗(Z/z)都是非常基本的电学概念,一个欧姆定律即将其贯穿起来,如式(1)所示:

其中,阻抗具有较电阻更一般的概念。基尔霍夫定律(KCL和KCL)则关系到一个子电路(一个闭合回路或一个闭包)的电压和电流应遵守的约束性关系。

讨论阻抗匹配的问题最常用到的另外一个概念是戴维南定理,它是一个将复杂电路等效成为单一阻抗与理想电压源相串联的转换,如图1所示。

其中,图1(a)中的NS和N分别为含有电源的阻抗网络和纯阻抗网络。对于所研究的端口(A-A’),端口的电压与电流关系由戴维南定理保证了图1(a)和图1(b)的情况完全等效,再简化可得到图1(c)。

通过戴维南定理的等效转换,分析研究端口的阻抗匹配问题均可转化为图1(c)的模型来进行。电源端的阻抗ZS和负载端的阻抗ZL可以分别写成如式(2)所示的形式:

端口阻抗匹配问题的研究可以从2个基本方向来考虑:

(1)方向1:源端固定,即RS和XS不可变,考虑负载端RL和XL与源端的阻抗匹配问题。

(2)方向2:负载端固定,即RL和XS不可变,考虑源端RS和XS与负载端的阻抗匹配问题。

下面以方向1,源端固定负载改变以实现匹配的问题为例讨论具体的匹配模式。结合式(2)与图2(c),可能的端口阻抗匹配有如下5种模式:

针对阻抗电路(由电源、电阻、电容、电感),如果电源的频率是可变的,或者涉及到多个不同频率的电源时(叠加定理可处理),则源端阻抗ZS和负载阻抗ZL均是频率的函数(电阻R 和电抗X)。此时的端口阻抗匹配问题的研究即是分析一个工作频段内的阻抗匹配情况。

3 各种阻抗匹配的典型应用

前面提到的端口阻抗匹配的5种模式各具不同的应用,是由应用需求来选择匹配的模式。下面分别举例说明:

共轭匹配是实现负载从源端电源获取最大功率的最佳匹配方案。负载获取功率的计算公式如下式所示:

共轭匹配的典型应用是在最佳接收机设计时采用(如雷达接收机)。此时,图2(c)中的电源代表的是接收到的信号,负载获得最大功率意味着最有效地利用接收到的微弱信号的能量。

(2)模匹配

模匹配是实现负载从源端电源获取最大功率的另一种匹配方案。该种方案是将负载阻抗看作一个整体的情况来考虑。负载获取功率的计算公式如式所示。

比较模匹配与共轭匹配的情况,可得在模匹配时负载上获得的功率要小于或等于共轭匹配时的情况。在无法获得共轭匹配的情况下,可以考虑以模匹配的方式实现负载获取最大功率。共轭匹配与模匹配是以负载获取最大功率为目的的2种解决方案,但其能量传输的效率相对较低。共轭匹配时的能量传输效率仅为50%(即有一半的能量消耗在源内阻RS上)。

(3)虚部匹配

虚部匹配时满足负载电抗与源阻抗的电抗分量等值相反,实部放开(依应用所需取值)。典型的应用是电力系统的输电传送。此时,能量传输效率是目的,提高负载端的功率因素

cosθL是目标,一般负载多呈现一定的感性,因而需要在负载端通过加容性补偿以便减小传输线上无功功率的往返传输造成功率损耗。

实部匹配情况一般对应于工作频段内的阻抗匹配情况,虚部放开(依应用所需取值)。例如,在微波电子线路系统中,50 Ω负载是典型的要求。

(5)阻抗非匹配

端口阻抗非匹配或失配情况是未考虑匹配问题时的一般情况。在特定情况下,也可有意回避阻抗匹配而使端口处于非匹配的状况中。

另外,从严格的意义上来说,匹配是理想情况,非匹配是更一般的情况。所有的匹配措施都是在力图达到理想的匹配。

4 无源RFID系统中的阻抗匹配问题

无源射频识别(RFID)系统原理如图2所示。电子标签工作时需要读写器发送射频能量支持其内部的标签芯片工作,从而实现标签向读写器传送数据或由读写器向标签写入数据。

在无源RFID系统相关产品设计与开发中涉及到大量的阻抗匹配问题。现就无源RFID系统中的电子标签和读写器分举例,分析其中关键端口——天线接口的阻抗匹配问题。

(1)标签天线与标签芯片的最佳匹配

针对无源电子标签而言,电子标签可以简化为标签天线与标签芯片的直接电连,电联的接口匹配问题是电子标签设计工作的一个重要方面。需要解决的问题是:

①确定端口的匹配模式;

②设计标签天线满足端口的匹配模式以及天线的方向图。

电子标签的结构如图3(a)所示,其戴维南等效电路如图3(b)所示(标签天线可等效为天线等效内阻与等效感应电压源的串联组合,标签芯片可等效为一纯阻抗)。

在无源射频识别电子标签的设计中,当电子标签芯片给定时,其等效阻抗ZL也随之确定。电子标签工作的前提条件是标签芯片从标签天线获得的能量(通过检波积累获得临时电源)应过门限。根据图3(b)的等效电路,当共轭匹配时,标签芯片可从标签天线的感应电压源中获得最大功率。因而,标签天线的设计目标之一是实现其等效阻抗与标签芯片端口的等效阻抗的共轭匹配。在给定ZL和US的情况下,共轭匹配要求ZS=Z*L。一般情况下,ZL呈现容性(电容储能),因而要求标签天线的ZS显感性以便与ZL的容性间实现共轭匹配。

(2)读写器射频端口与外接天线间的最佳匹配

以无源RFID系统的读写器设计为例,为了分析读写器射频端口的阻抗匹配情况,可参考如图4所示的射频端口等效电路。

图4(a)示出了读写器主机(射频端口)与读写器天线的连接端口A-A’。当读写器发射功率时,读写器天线可等效为一个纯负载阻抗,读写器主机可等效为纯内阻与电压源的串联,如图4(b)所示。在图4(b)中,ZS在工作频带内可近似为50 Ω的纯电阻,在端口界面A-A’上,通常要求行波传送,即无从 ZL回送到读写器的发射能量,由此要求ZL等效为纯电阻。进一步讲,为使读写器天线有最大的功率辐射能力(即从电源获得最大功率),亦要求

ZL=ZS=50 Ω,同时也满足ZL=Z*S的共轭匹配条件。

由此可以确定,读写器天线的设计目标为:

(1)端口等效阻抗在工作频带内为50 Ω(实际情况为接近50 Ω);

(2)天线方向图满足阅读空间覆盖要求。从端口阻抗匹配的角度来说,因仍满足ZL=Z*S的共轭匹配条件,故仍属共轭匹配的范畴。

5 结语

本文详细讨论阻抗匹配的基本概念、阻抗匹配的种类,以及各种匹配的具体含义。简要分析各种阻抗匹配的典型应用。结合无源RFID系统中的产品开发,讨论阻抗匹配的具体应用,从理论上明确了产品设计的目标概念,得出基本判断,对具体的产品设计开发具有重要的指导意义。

阻抗匹配问题

说明:信号源输出阻抗一般都为50ohm ,信号源面板显示的输出信号幅度,频率是图2处信号的幅度,频率。 (1)若负载输入阻抗为50ohm ,则信号源输出与负载输入匹配,则负载获得的信号幅度,频率与2处的电压幅度理论上一致。 (2)若负载输入阻抗为1Mohm ,则信号源输出与负载输入不匹配,则负载获得的信号幅度,频率与1处的电压幅度理论上一致。 ◆ 纯电阻电路:低频和高频都存在;(匹配) 1、 负载电阻R 电压:1 1l i i R U U U r R r R = =++;负载电阻越大,则负载获得的电压越高。 2、 负载R 电流:i l U i R r = +;负载越小,则负载获得的电流越小。 3、 负载获得的功率:2 22222//24l i l i i U U R r P i R U R U R r R R r R r ????====++≤ ? ?+???? ;当且 仅当R=r 时;负载功率最大。 ◆ 存在容性和感性阻抗时,(共轭匹配) 共轭匹配:当交流电路中含有容性或感性阻抗时,若信号源与负载阻抗的实部相等,虚 部互为相反数,此时负载获得最大功率。 源电抗:r r Z r jX =+

负载电抗:R R Z R jX =+ 负载功率: ()() ()()()()22 22 22222 142R r R r R r R r U R U U U P r R r X X R r X X r X X R r X X R R R R = ==≤??+++??+++++++++ ????? 当且仅当R r R r X X =??=-?时,负载获得最大功率。 结论: 1、需要大的电流输出,则选择小的负载R ; 2、需要大的电压输出,则选择大的负载R ; 3、需要输出最大功率,则选择与信号源内阻匹配的电阻R 。(功率传递!) 低频时,信号的波长相对与传输线来说很长,传输线可以看成短线,反射可以不考虑。 高频时,f c λ=;信号频率很高时,信号的波长就很短,当波长和传输线的长度可以比拟时,反射信号叠加在原来信号上将会改变原信号的形状。例:传输线的特性阻抗跟负载阻抗不匹配时,在负载端就产生反射,能量传输不过去,降低效率,功率发射不出去,甚至会顺坏发射设备。 当信号源和传输线、负载的阻抗相互匹配时候,有更多的能量从信号源中发射出来!!! 问题:、25kHz~80kHz 用示波器50ohm 输入阻抗实测,为何信号源输出和示波器显示信号的幅度不一致?(据说这种射频源有些频段幅度不准,建议下次问问罗德斯瓦茨做源的代理)

阻抗匹配网络的计算

附件1: 基础训练 题目阻抗匹配网络的计算 学院自动化学院 专业电气工程及其自动化 班级1004班 姓名南杨 指导教师朱国荣 2012 年7 月 4 日

基础强化训练的目的 1.较全面的了解常用的数据分析与处理原理及方法 2.能够运用相关软件进行模拟分析 3.掌握基本的文献检索和文献阅读的方法 4.提高正确的撰写论文的基本能力 训练内容与要求 阻抗匹配网络的计算 使信号源(其内阻Rs=12Ω)与负载(RL=3Ω)相匹配 插入一阻抗匹配网络 求负载吸收的功率 初始条件 Matlab软件基本操作及其使用方法 指导老师签名﹍﹍﹍﹍日期:﹍﹍年﹍﹍月﹍﹍日

目录 1.摘要 (4) 2.MATLAB简介 (5) 3.阻抗及阻抗匹配的概念 (6) 3.1阻抗的概念 (6) 3.2阻抗匹配的概念 (6) 4.阻抗匹配网络的计算 (6) 4.1对阻抗匹配网络进行原理分析 (7) 4.2 建模: (7) 4.3应用MATLAB对上面的题目编程 (8) 4.4 结果 (9) 5.结果对比与分析 (10) 6.心得体会. (11) 7.参考文献. (12)

1. 摘要 本文主要是通过训练使学生掌握相关的理论知识及实际处理方法,熟练使用MATLAB语言编写所需应用程序,上机调试,输出实验结果,并对实验结果进行分析。MATLAB 的名称源自 Matrix Laboratory ,它是一种科学计算软件,专门以矩阵的形式处理数据。 MATLAB 将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作。 本文运用了MATLAB的M程序编程的方法对于一个电路进行了分析。体现了MATLAB的强大功能。 关键字:MATLAB,M文件,矩阵,计算 Abstract This paper is mainly to ask students to master relevant theoretical knowledge and practical operating methods by training. We should use MATLAB to write applications, computer debugging, then output results and analysis it. The full name of MATLAB is Matrix Laboratory. It is a kind of special scientific calculation software with the matrix form data processing. Because MATLAB not only combines the high-performance numerical calculation and visualization, but also provided a lot of built-in functions, it widely used in scientific calculations, the control system, information processing, simulation and design work. This paper is based on the M programming and design methods of module simulink. We use these two methods to analyzes the circuit.We can see the strong function of MATLAB. keyword: MATLAB, M files, simulation module, Matrix, calculating

详解Polar Si 软件计算阻抗

一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包 括:Si6000,Si8000,及Si9000. 二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗. 1.外层特性阻抗模型: 2.内层特性阻抗模型: 3.外层差分阻抗模型: 4.内层差分阻抗模型: 5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗. 三,再次给大家介绍一下芯板(即Core)及半固化片(即PP), 每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分 有:0.10MM ,0.15MM,,0.2MM ,,0.25MM.0.3MM,0.4MM,0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为 0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度 是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM. 半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为 0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM. 当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:1,一般不允许4张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.2,7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.3,另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象. 后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用! 四, 怎样使用Polar Si9000软件计算阻抗: 首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求! 五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构: 1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。Zdiff为阻抗值。Calculate为计算按钮,各因素是可以互相推算的,例如我们要控制50欧姆的阻抗,线宽为

阻抗匹配基本认识

阻抗匹配基本認識 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U×[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=(U/(R+r))2×R=U2×R/(R2+2×R×r+r2) =U2×R/((R-r)2+4×R×r) =U2/(((R-r)2/R)+4×r) 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则 是由我们来选择的。注意式中((R-r)2/R),当R=r时,(R-r)2/R可 取得最小值0,这时负载电阻R上可获得最大输出功率 Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可 获得最大输出功率,这就是我们常说的阻抗匹配之一。 对于纯电阻电路,此结论同样适用于低频电路及高频电路。 当交流电路中含有容性或感性阻抗时,结论有所改变,就是需 要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。 Z=R+jX ﹐Z=R-jX 在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。 有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.doczj.com/doc/ad14555461.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

输入阻抗、输出阻抗、阻抗匹配分析_.

输入阻抗、输出阻抗、阻抗匹配分析 输入阻抗 四端网络、传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配,从信号源、传感器等获取输入信号。阻抗是电路或设备对交流电流的阻力,输入阻抗是在入口处测得的阻抗。高输入阻抗能够减小电路连接时信号的变化,因而也是最理想的。在给定电压下最小的阻抗就是最小输入阻抗。作为输入电流的替代或补充,它确定输入功率要求。 天线的输入阻抗定义为输入端电压和电流之比。其值表征了天线与发射机或接收机的匹配状况,体现了辐射波与导行波之间能量转换的好坏。 输出阻抗 阻抗是电路或设备对交流电流的阻力,输出阻抗是在出口处测得的阻抗。阻抗越小,驱动更大负载的能力就越高。 输入阻抗和输出阻抗在很多地方都用到,非常重要。 首先,输入阻抗和输出阻抗是相对的,我们先要明白阻抗的意思。 阻抗,简单的说就是阻碍作用,甚至可以说就是电阻,即一种另一层意思上的等效电阻。 引入输入阻抗和输出阻抗这两个词,最大的目的是在设计电路中,要提高效率,即要达到阻抗匹配,达到最佳效果。 有了输入输出阻抗这两个词,还可以方便两个电路独立的分开来设计。当A电路中输入阻抗和B电路的输出阻抗相同(或者在一定范围时,两个电路就可不作任何更改,直接组合成一个更复杂的电路(或者系统。

由上也可以得出:输入阻抗和输出阻抗实际上就是等效电阻,单位自然就是欧姆了。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对 信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源,内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

阻抗匹配

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文利用史密斯圆图作为RF 阻抗匹配的设计指南。文中给出了反射系数、阻抗和导 纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大 器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预 知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF 测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ? 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ? 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ? 经验: 只有在RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ? 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 w w w . p c b t e c h .n e t

阻抗匹配与阻抗线线宽设置_1129

一、阻抗匹配概念 定义: 1、指信号源或者传输线跟负载之间的一种合适的搭配方式;阻抗匹配分为低频和高频两种情况讨论。 2、阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 我们以下例(软管送水浇花)来感性认识一下阻抗匹配的功用 A、一端于手握处加压使其射出水柱,另一端接在水龙头,。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区.如下图所示: B、然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源。也有可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱(阻抗太高);如下图所示: C、反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。(阻抗太低),如下图所示;唯有拿捏恰到好处才能符合实际需求的距离。(阻抗匹配)

二、PCB走线的阻抗匹配与阻抗控制 (1)定义 阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路。传输线阻抗和负载阻抗达到匹配的定义,简单说就是:Z0=ZL。在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。 (2)PCB走线作阻抗控制的原因 1:针对目前高频高速的要求,及对信号失真状况越来越高的要求,在设计PCB时方波信号在多层板讯号线中,其特性阻抗值必须要和电子元件的内置电子阻抗相匹配,才能保证信号的完整的传输。 2:当特性阻抗值超出公差时,所传讯号的能量将出现反射、散失、衰减或延误等劣化现象,严重时会出现错误讯号。 3:由于元件的电子阻抗越高,其传输速率越快。总之,是为了配合电子元器件的电子阻抗,避免信号传输时失真的现象,所以要控制阻抗。 (3)、决定阻抗控制大小的因素,主要包括以下几个方面: 1、W-----线宽/线与地平面间距 2、H----绝缘介质厚度 3、T------铜厚 4、H1---绿油厚 5、Er-----介电常数 6、参考地平面层 射频信号在多层板传输线(Transmission Line,是由信号线、介质层、及接地层三者所共同组成)中所进行的快速传送;如下图所示: 三、PCB阻抗控制线计算概述 对于常见的FR4 板材的 PCB 板上, 对于微带线,线宽 W 是介质厚度 h的2 倍。对于带状线,线条两侧介质总厚度b 是线宽 W 的两倍(估算法);精确计算公式分别如下所示:

matlab在阻抗匹配网络的应用

目录 摘要 (1) 1 理论知识 (2) 1.1基尔霍夫定律 (2) 1.2结点电压法 (2) 2 阻抗匹配网络的计算 (3) 2.1原理分析 (3) 2.2 建模 (4) 2.3应用MATLAB对上面的题目编程 (5) 2.4 绘图 (6) 3 simulink程序仿真 (8) 3.1电路图及仿真效果 (8) 3.2仿真过程中发现的问题 (9) 4 结果对比分析 (10) 5 心得体会 (11) 参考文献 (12)

摘要 做为一名自动化专业的学生,掌握基本的电路知识是非常重要的。但是在掌握基本的知识点的时候,我们也需要掌握一些解决电路方面的“诀窍”,比如某些软件。本文就以电路中的一些基本知识点引入这些软件在解决电路问题中的一些具体应用。而且本文是以Matlab为例,说明如何运用Matlab来进行电路的求解和仿真。 在求解和仿真的过程中,我们可以发现应用这些软件可以让非常复杂的电路的分析、计算编的非常简单,是一个非常实用、有效的工具。 关键词:电路;Matlab;仿真;

1 理论知识 1.1基尔霍夫定律 基尔霍夫定律包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 基尔霍夫电流定律(KCL):在集总电路中,任何时候,对任意结点,所有流出结点的支路电流的代数和恒为零。电流的“代数和”是根据电流是流出结点还是流入结点判断的。若流出节点的电流前面取“+”号,则流入结点的电流前面取“-”号;电流是流出结点还是流入结点,均根据电流的参考方向判断。所以对任一结点都有 Σi=0; 基尔霍夫电压定律(KVL): 在集总电路中,任何时候,对任意回路,所有支路电压的代数和恒为零。在应用时,需要任意指定一个回路的绕行方向,凡是支路电压的参考方向与回路的绕行方向一致者,该电压前面取“+”号;支路电压参考方向与回路绕行方向相反者,前面取“-”。最后,对任一回路都有 Σu=0; 1.2结点电压法 定义:结点电压是在为电路任选一个结点作为参考点(此点通常编号为“0”),并令其电位为零后,其余结点对该参考点的电位。并根据KCL写出方程,求出每个结点的电压。 在电路中任意选择某一结点为参考结点,其他结点为独立结点,这些结点与次参考结点之间的电压称为结点电压,结点电压的参考极性是以参考结点为负,其余独立结点为正。由于任意支路都连接在两个节点上,根据KVL,不难断定支路电压就是两个结点电压表示。在具有n个结点电压的共(n-1)个独立结点的KCL方程,就得到变量为(n-1)个独立方程,称为结点电压方程,最后由这些方程解出结点电压,从而求出所需的电压、电流。这就是结点电压法。

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能 2008-05-15 17:51:20 作者:未知来源:电子设计技术 关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。 由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为: 这里,是负载反射系数,是匹配网络的s参数, 损失就是增益的倒数。因此,耗散损失可以定义为: Ldiss = 1/GP。 对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为: 在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。 因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。 在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

怎样理解阻抗匹配,很难得的资料

怎样理解阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R 越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的

匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上

关于阻抗匹配原则

关于阻抗匹配原则 阻抗匹配是无线电技术中常见的一种工作状态,它反映了输人电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真。因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输人、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路。下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分析。

阻抗匹配的基本原理: 1.纯电阻电路 在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上,在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2.电抗电路 电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感。元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示。其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而。容抗和感抗的值除了与电容和电感本身大小有关之外,还与所工作的交流电的频率有关。值得注意的是,在电抗电路中,电阻R,感抗而与容抗双的值不能用简单的算术相加,而常用阻抗三角形法来计算(见图2)。因而电抗电路要做到匹配比纯电阻电路要复杂一些,除了输人和输出电路中的电阻成分要求相等外,还要求电抗成分大小相等符号相反

PCB阻抗匹配总结

PCB阻抗匹配总结 网名:chinawei97qq: 1219658831 做硬件工程师好几年,有最初的不做阻抗,到后面认为做阻抗是PCB厂家的事情,导致设计的pcb交给pcb厂家后重新修改修改布线,影响项目进度,下面把总结写在后面,以面再犯同样的错误。 做4层板,正片工艺,这样就对做半孔工艺带来加工不方便,半孔工艺会带来价格的增加,单价增加0.05元/cm2 1.6mm厚度的4层PCB板加工,建议做阻抗设计的时候按照1.5mm厚度进行设计,剩下0.1mm厚度留给工厂作为其他工艺要求用(后制诚厚度,绿油、丝印等)。 (1)满足我们TOP层及BOTTOM层5mil线宽单端阻抗控制为55ohm,见附图一;

(2)满足差分线阻抗为100ohm,见附图二

附图二 一般是通过调整层与层之间的填充(如FR-4)的厚度来满足整个板厚及阻抗控制(单端阻抗与填充厚度及导线宽度有关)的要求。 0.5OZ的铜相当于1.2mil ,1OZ的铜相当于1.9mil 。4层板来说,第一、第二层的厚度和第三、第四层的厚度相同,这样平衡对称有利用PCB板加工和使用,放置翘板。采用了外层1.7mil 内层1.4mil 的填充工艺。采用外层1OZ,内存0.5OZ 的工艺。 附图一中H1为第一层、第二层的间距为3MIL 这样第三层、第四层也为3MIL; 整板厚度为1.6mm,取1.5mm 等于 60mil 。叠层设计的厚度为:1.7+1.7+1.4+1.4+3+3+47.8,大致设计以后可以参考candece下面的计算,见附图三。具体阻抗要求 还是以工厂为准。

附图三 差分阻抗比单端阻抗还要多一个影响参数间距,和要设置Coupling Type 对线的类型,参考附图二的trace separation 中S1 参数为 6.5mil ,allegro 计算如附图四。 附图四

阻抗匹配的原理与方法

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

实验四阻抗匹配网络理论

实验四 阻抗匹配网络理论 一、 实验目的 1. 了解基本的阻抗匹配理论; 2. 利用实验模组实际测量以了解匹配电路的特性。 二、 实验原理 在高频电路设计中,阻抗匹配是很重要的一环。从直流电路的基本理论中,我们知道若信号源的电阻与输出之负载电阻相同时,就可在输出端得到最大的功率输出。但是在交流电路中,除了电阻,尚有电容与电感等电抗性组件,因此若要求得到最大功率输出时,除了两端的电阻相等外,还需信号源的电抗与负载的电抗互成共轭才行。所以阻抗匹配的目的就是经由适当方法选择组件使得信号源与负载两端的电抗值成共轭关系,以便产生谐振而互相抵消,使得电路中仅存电阻性,而能得到最大功率传输。其次,由于现成的网络组件,其阻抗值会随着频率的变化而变化,因此阻抗匹配只能适用于某一特定的频率,但是对于宽频的电路来说,所设计的电路都期望能涵盖整个频宽。就理论而言,可借着适当方法来增加阻抗匹配的频宽范围。 如图7-1(a )所示:输入信号经过传输以后,其输出功率与输入功率之间存在以下关系,信号的输出功率直接决定于输入阻抗与输出阻抗之比。 in out S S in S L L L S S L P k k P R V P R k R R R R V R I Pout ?+= ?= ?=?+=?=2 2 2 22 )1() ( 图7-1(a ) 输出输入功率关系图 输出功率与阻抗比例的关系图见图7-1(b )。由图可知,当R L =R S 时可获得最大输出功率,此时为阻抗匹配状态。

图7-1(b)输出功率与阻抗比例关系图 推而广之,如图7-1(c)所示,当输入阻抗Z S与负载阻抗Z L间成为Z S=Z L*的关系时,满足广义阻抗匹配的条件。所以,阻抗匹配电路也可以称为阻抗变换器。 当Z L=Z S*,即是[匹配] 图7-1(c) 广义[阻抗匹配]关系图 欲得到最大的功率输出,则须对电路加以阻抗匹配,阻抗匹配网络一般可分为三种:L 型、π型及T 型三种。选用何种匹配端视情况而定,除非有特别需求,一般都是以最少的零件来完成匹配。 说到阻抗匹配,不能不介绍史密斯圆图。为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似法使得有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。该图解方法称为Smith圆图,在实验四我们已经有过详细的介绍。 三、实验内容 实验设备:

相关主题
文本预览
相关文档 最新文档