当前位置:文档之家› 立体几何难题解析附有答案详解

立体几何难题解析附有答案详解

立体几何难题解析附有答案详解
立体几何难题解析附有答案详解

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

高考数学压轴专题最新备战高考《空间向量与立体几何》难题汇编含答案解析

数学《空间向量与立体几何》复习知识点 一、选择题 1.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A.16 9 π B. 8 9 π C. 16 27 π D . 8 27 π 【答案】A 【解析】 【分析】 根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】 解:设圆柱的半径为r,高为x,体积为V, 则由题意可得 3 23 r x - =, 3 3 2 x r ∴=-, ∴圆柱的体积为23 ()(3)(02) 2 V r r r r π =-<<, 则3 333 3 163331616 442 ()(3)() 9442939 r r r V r r r r ππ π ++- =-= g g g g …. 当且仅当 33 3 42 r r =-,即 4 3 r=时等号成立. ∴圆柱的最大体积为 16 9 π , 故选:A. 【点睛】 本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题. 2.在三棱锥P ABC -中,PA⊥平面ABC,且ABC ?为等边三角形,2 AP AB ==,则三棱锥P ABC -的外接球的表面积为()

A . 272 π B . 283 π C . 263 π D . 252 π 【答案】B 【解析】 【分析】 计算出ABC ?的外接圆半径r ,利用公式R =可得出外接球的半径,进而可 得出三棱锥P ABC -的外接球的表面积. 【详解】 ABC ? 的外接圆半径为 2sin 3 AB r π = = PA ⊥Q 底面ABC ,所以,三棱锥P ABC - 的外接球半径为 3R ===, 因此,三棱锥P ABC - 的外接球的表面积为2 2 284433R πππ?=?= ?? . 故选:B. 【点睛】 本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A B .3:1 C .2:1 D 2 【答案】A 【解析】 【分析】 设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】 设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l ==, ∴圆锥SC 的侧面积为2rl r π=; 圆柱OM 的底面半径为2r ,高为h ,

(完整word版)高考数学常见难题大盘点:立体几何

转化转化 2013高考数学常见难题大盘点:立体几何 1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1; 解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线 面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二 是通过面面平行得到线面平行. 答案:解法一:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5, ∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1; (II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点, ∴ DE//AC1,∵ DE?平面C D B1,AC1?平面C D B1, ∴AC1//平面C D B1; 解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3, BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C 为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴, 建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1 (0,0,4),B(0,4,0),B1(0,4,4),D( 2 3 ,2,0) (1)∵AC=(-3,0,0), 1 BC=(0,-4,0), ∴AC? 1 BC=0,∴AC⊥BC1. (2)设CB1与C1B的交战为E,则E(0,2,2).∵DE=(- 2 3 ,0,2), 1 AC=(-3,0, 4),∴ 1 2 1 AC DE=,∴DE∥AC1. 点评:2.平行问题的转化: 面面平行线面平行线线平行; 主要依据是有关的定义及判定定理和性质定理. 2.如图所示,四棱锥P—ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M 为PC的中点。 (1)求证:BM∥平面PAD; A B C A B C E x y z

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

立体几何经典难题汇编

1 / 6 立体几何难题汇编1 1. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体的以下判断中,所有正确的结论个数是( ) ①能构成矩形; ②能构成不是矩形的平行四边形; ③能构成每个面都是等边三角形的四面体; ④能构成每个面都是直角三角形的四面体; ⑤能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体. A .2 B .3 C .4 D .5 【考点】命题的真假判断与应用. 【专题】证明题. 【分析】画出图形,分类找出所有情况即可. 【解答】解:作出正方体: 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体z 只能有以下四种情况: ①任意一个侧面和对角面皆为矩形,所以正确; ③四面体A 1-BC 1D 是每个面都是等边三角形的四面体,所以正确; ④四面体B 1-ABD 的每个面都是直角三角形,所以正确; ⑤四面体A 1-ABD 的三个面都是等腰直角三角形,第四个面A 1BD 是等边三角 形. 由以上可知:不能构成不是矩形的平行四边形,故②不正确. 综上可知:正确的结论个数是4. 故选C . 【点评】全面了解正方体中的任意四个顶点构成的四面体和平面四边形是解题的关键. 2. 一个半径为1的小球在一个棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是____________ . 【考点】棱锥的结构特征. 【专题】计算题;压轴题. 【分析】小球与正四面体的一个面相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,正四面体的棱长为 4626 46

2 / 6 ,故小三角形的边长为,做出面积相减,得到结果. 【解答】解:考虑小球与正四面体的一个面相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,正四面体的棱长为 故小三角形的边长为 小球与一个面不能接触到的部分的面积为 ,∴几何体中的四个面小球永远不可能接触到的容器内壁的面积是 4×18 =72 故答案为:72 【点评】本题考查棱柱的结构特征,本题解题的关键是看出小球的运动轨迹是什么,看出是一个正三角形,这样题目做起来就方向明确. 3.(2012?上海)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2,若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 ______________. 【考点】棱柱、棱锥、棱台的体积. 【专题】计算题;压轴题. 【分析】作BE ⊥AD 于E ,连接CE ,说明B 与C 都是在以AD 为焦距的椭球上,且BE 、CE 都垂直于焦距AD ,BE=CE .取BC 中点F ,推出四面体 ABCD 的体积的最大值,当△ABD 是等腰直角三角形时几何体的体积最大,求解即可. 【解答】 解:作BE ⊥AD 于E ,连接CE ,则AD ⊥平面BEC ,所以CE ⊥AD ,由题设,B 与C 都是在以AD 为焦点的椭圆上, 且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD ≌△ACD ,所以BE=CE .取BC 中点F ,∴EF ⊥BC ,EF ⊥AD ,要求四面体ABCD 的体积的最大值, 46 26 131346*46**26*26*183,2222-=33 3 22.a c -

高考数学常见难题大盘点立体几何

转化 转化 2013高考数学常见难题大盘点:立体几何 1.如图, 在直三棱柱ABC -A 1B 1 C 1中,AC =3,BC =4,AA 1=4,点 D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1; 解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5, ∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点, ∴ DE//AC 1,∵ DE ?平面C D B 1,AC 1?平面C D B 1, ∴ AC 1//平面C D B 1; 解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3, BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D ( 2 3 ,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC ?1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-2 3 ,0,2),1AC =(-3,0,4),∴12 1 AC DE = ,∴DE ∥AC 1. 点评:2.平行问题的转化: 面面平行 线面平行线线平行; 主要依据是有关的定义及判定定理和性质定理. 2.如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点。 (1)求证:BM∥平面PAD ; A B C A B C E x y z

2018年立体几何选择、填空难题训练(含解析)

立体几何小题难题训练 一.选择题 1.已知正方体ABCD﹣A1B1C1D1,则过点A与AB、BC、CC1所成角均相等的直线有() A.1条 B.2条 C.4条 D.无数条 2.如图,平面PAB⊥平面α,AB?α,且△PAB为正三角形,点D是平面α内的动点,ABCD是菱形,点O为AB中点,AC与OD交于点Q,I?α,且l⊥AB,则PQ与I所成角的正切值的最小值为() A.B.C.D.3 3.如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有() ①存在点E使得直线SA⊥平面SBC; ②平面SBC内存在直线与SA平行 ③平面ABCE内存在直线与平面SAE平行; ④存在点E使得SE⊥BA. A.1个 B.2个 C.3个 D.4个 4.设三棱柱ABC﹣A1B1C1的侧棱与底面垂直,∠BCA=90°,BC=CA=2,若该棱柱的所有顶点都在体积为的球面上,则直线B1C与直线AC1所成角的余弦值为() A. B.C.D.

5.已知异面直线a与b所成的角为50°,P为空间一点,则过点P与a、b所成的角都是30°的直线有且仅有() A.1条 B.2条 C.3条 D.4条 6.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直 B.存在某个位置,使得直线AB与直线CD垂直 C.存在某个位置,使得直线AD与直线BC垂直 D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直 7.在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线() A.不存在B.有且只有两条C.有且只有三条D.有无数条 8.正方体ABCD﹣A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题: ①当P在BD1上运动时,恒有MN∥面APC; ②若A,P,M三点共线,则=; ③若=,则C1Q∥面APC; ④若过点P且与正方体的十二条棱所成的角都相等的直线有m条;过点P且与直线AB1和A1C1所成的角都为60°的直线有n条,则m+n=7. 其中正确命题的个数为() A.1 B.2 C.3 D.4

立体几何经典难题汇编

立体几何难题汇编1 1. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体的以下判断中,所有正确的结论个数是() ①能构成矩形; ②能构成不是矩形的平行四边形; ③能构成每个面都是等边三角形的四面体; ④能构成每个面都是直角三角形的四面体; ⑤能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体. A.2 B.3 C.4 D.5 【考点】命题的真假判断与应用. 【专题】证明题. 【分析】画出图形,分类找出所有情况即可. 【解答】解:作出正方体: 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体z只能有以下四种情况: ①任意一个侧面和对角面皆为矩形,所以正确; ③四面体A 1-BC1D是每个面都是等边三角形的四面体,所以正确; ④四面体B 1-ABD 的每个面都是直角三角形,所以正确; ⑤四面体A 1-ABD 的三个面都是等腰直角三角形,第四个面A1BD是等边三角 形. 由以上可知:不能构成不是矩形的平行四边形,故②不正确. 综上可知:正确的结论个数是4. 故选C. 【点评】全面了解正方体中的任意四个顶点构成的四面体和平面四边形是解题的关键.

【解答】 解:作BE ⊥AD 于E ,连接CE ,则AD ⊥平面BEC ,所以CE ⊥AD , 由题设,B 与C 都是在以AD 为焦点的椭圆上, 且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD ≌△ACD ,所以BE=CE . 取BC 中点F ,∴EF ⊥BC ,EF ⊥AD ,要求四面体ABCD 的体积的最大值, 因为AD 是定值,只需三角形EBC 的面积最大,因为BC 是定值,所以只需EF 最大即可, 当△ABD 是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a , ∴AB=a ,所以EB= EF= 所以几何体的体积为: . 故答案为: 【点评】本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能 力以及计算能力. 4. 如图,直线l ⊥平面α,垂足为O ,已知在直角三角形ABC 中,BC=1,AC=2, AB= .该直角三角形在空间做符合以下条件的自由运动:(1)A ∈l , (2)C ∈α.则B 、O 两点间的最大距离为 _________. 22.a c -22 1.a c --2222112*21*2* 1. 323a c c c a c --=--222 1. 3c a c --5

高中数学立体几何折叠问题大题精选

立体几何折叠问题大题精选 1.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ)当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由; (Ⅱ)设BE=x,问当x为何值时,三棱锥A CDF的体积有最大值?并求出这个最大值. 2.如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1. (1)当点E在棱AB上移动时,证明:D1E⊥A1D; (2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长; 若不存在,请说明理由. 3.如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD≥DA≥AB≥BC≥l,AS∥BC,A⊥AD,且二面角S-CD-A的大小为120o. (Ⅰ)求证:平面ASD⊥平面ABCD; (Ⅱ)设侧棱SC和底面ABCD所成角为,求的正弦值. 4.如图1所示,在边长为24的正方形中,点在边上,且,,

作分别交于点,作分别交于点, 将该正方形沿折叠,使得与重合,构成如图2所示的三棱柱 . (1)求证:平面; (2)求多面体的体积. 5.如图所示,在边长为的正方形中,点在线段上,且,, 作//,分别交,于点,,作//,分别交,于点, ,将该正方形沿,折叠,使得与重合,构成如图所示的三棱柱 . (1)求证:平面; (2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值. 6.已知平面五边形关于直线对称(如图(1)),, ,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))

高考以立体几何为背景的新颖问题

立体几何为背景的新颖问题 以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维”的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型. 【例1】(2020?全国二模)我国古代劳动人民在筑城、筑堤、挖沟、挖渠、建仓、建囤等工程中,积累了丰富的经验,总结出了一套有关体积、容积计算的方法,这些方法以实际问题的形式被收入我国古代数学名著《九章算术》中.《九章算术商功》:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”下图解释了这段话中由一个长方体,得到“堑堵”、“阳马”、“鳖臑”的过程.已知堑堵的内切球(与各面均相切)半径为1,则鳖臑的体积最小值为() A.2B.6+C.2+D.1+ 解:已知可得,堑堵的内切球直径恰为堑堵的边长a,则2 a=. 易知,截面的内切圆与堑堵内切球最大的圆全等,设内切圆半径为r,则1 r=.如图可知,

根据三角形面积公式可得:11 (22bc r b c =+,则222b c bc +=+, 0b >,0c >,222224b c b c bc ∴+b c =时取等号. 24bc bc ∴+,即220-.解得:022<-或22+. 又内切圆半径1r b =<,r c <,∴1>.∴22+,即642bc +. ∴鳖臑的体积为1 1142 23233 V a bc bc ==+ .故选:C . 【例2】(2020?3月份模拟) 111ABC A B C -中,ABC ?的边长为2,D 为棱11B C 的中点,若一只蚂蚁从点A 沿表面爬向点D ,则蚂蚁爬行的最短距离为( ) A .3 B . C . D .2 解:如图: 当按图①走时,DE = ;13 222 AE =-=;3AD ===; 当按图②走时,DE =;213AE =+=;AD 故蚂蚁爬行的最短距离为:3;故选:A . 【例3】(2019?全国三模)如图,直角梯形ABCD ,//AB CD ,90ABC ∠=?,2CD =,1AB BC ==,E 是边CD 中点,ADE ?沿AE 翻折成四棱锥D ABCE '-,则点C 到平面ABD '距离的最大值为( ) A . 1 2 B C D .1 解:直角梯形ABCD ,//AB CD ,90ABC ∠=?,2CD =,1AB BC ==,

(完整版)立体几何中的轨迹问题(总结+讲义+练习),推荐文档

立体几何中的轨迹问题 在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的 位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与 完备性. 立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值; 2、代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数 的单调性、有界性,以及不等式的均值定理等,求出最值. 轨迹问题 【例1】如图,在正四棱锥S-ABCD 中,E 是BC 的中点,P 点在侧面△ SCD 内及其边界上运动,并且总是保持PE ⊥AC.则动点P 的轨迹与△SCD 组 成的相关图形最有可能的是( ) A.B.C. 解析:如图,分别取CD、SC 的中点F、G,连结EF、EG、FG、BD.设AC 与BD 的交点为O,连结SO,则动点P 的轨迹是△SCD 的中位线FG.由正四棱锥可得SB⊥AC,EF⊥AC.又∵EG∥SB ∴EG⊥AC ∴AC⊥平面EFG, ∵P∈FG,E∈平面EFG, ∴AC⊥PE. 另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC;C 中P 点所在的轨π 迹与CD 平行,它与CF 成4角,显然不满足PE ⊥AC;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角 为锐角,显然也不满足PE ⊥AC. 评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处 设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为 活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的 平面,而平面间的交线往往就是动点轨迹. 【例2】(1)如图,在正四棱柱ABCD —A 1 B1C1D1中,E、F、G、H 分别是CC1、C1D1、DD1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足时,有MN∥平面B1BDD1. (2)正方体ABCD —A1B1C1D1中,P 在侧面BCC1B1及其边界上运动,且总保持AP⊥BD1,则动点P 的轨迹是线段B1C . (3)正方体ABCD —A1B1C1D1中,E、F 分别是棱A1B1,BC 上的动点,且A1E=BF,P 为EF 的中点,则点P 的轨迹是线段MN(M、N 分别为前右两面的中心). (4)已知正方体ABCD —A1B1C1D1的棱长为1,在正方体的侧面BCC1B1上到点A 距离为的点的集合形成一条曲线,那么这条曲线的形状是,它的长度是. A (1) C1 A E C (2) 1 A1 (3) 1 C1 A C (4) 若将“在正方体的侧面BCC 1 B1上到点A 距离为的点的集合”改为“在正方体表面上与点A 距离为的 点的集合”那么这条曲线的形状又是,它的长度又是. B

高一立体几何理科难题练习、简答题(含解析)

高中数学立体几何练习 一.选择题(共13小题) 1.如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则() A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α 2.在长方体ABCD﹣A1B1C1D1中,AB=BC=AA1,P、Q分别是棱CD、CC1上的动点,如图.当BQ+QD1的长度取得最小值时,二面角B1﹣PQ﹣D1的余弦值的取值范围为() A.[0,] B.[0,]C.[,]D.[,1] 3.如图,在矩形ABCD中,AB=2,AD=4,点E在线段AD上且AE=3,现分别沿BE,CE将△ABE,△DCE翻折,使得点D落在线段AE上,则此时二面角D﹣EC ﹣B的余弦值为() A.B.C.D.

4.已知A、B、C、D是球面上四点,若AB=AC=,BD=DC=CB=2,二面角A﹣BC﹣D的平面角等于150°,则该球的表面积为() A.B.C.7πD.9π 5.棱长为的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些球的最大半径为() A.B. C.D. 6.某三棱锥的三视图如图所示,则该三棱锥的体积为() A.60 B.30 C.20 D.10 7.三棱柱ABC﹣A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,N是BC的中点,点P在A1B1上,且满足=λ,直线PN与平面ABC所成角θ的正切值取最大值时λ的值为() A.B. C.D. 8.在平行四边形ABCD中,BC=2AB=2,∠B=60°,点E是线段AD上任一点(不包含点D),沿直线CE将△CDE翻折成△CD′E,使D′在平面ABCE上的射影F落在直线CE上,则AD′的最小值是() A.B.C.2 D. 9.已知二面角α﹣l﹣β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是35°的直线的条数为() A.1 B.2 C.3 D.4

高考数学压轴专题2020-2021备战高考《空间向量与立体几何》难题汇编附答案解析

【最新】《空间向量与立体几何》专题解析(1) 一、选择题 1.以下说法正确的有几个( ) ①四边形确定一个平面;②如果一条直线在平面外,那么这条直线与该平面没有公共点;③过直线外一点有且只有一条直线与已知直线平行;④如果两条直线垂直于同一条直线,那么这两条直线平行; A .0个 B .1个 C .2个 D .3个 【答案】B 【解析】 【分析】 对四个说法逐一分析,由此得出正确的个数. 【详解】 ①错误,如空间四边形确定一个三棱锥. ②错误,直线可能和平面相交. ③正确,根据公理二可判断③正确. ④错误,在空间中,垂直于同一条直线的两条直线可能相交,也可能异面,也可能平行.综上所述,正确的说法有1个,故选B. 【点睛】 本小题主要考查空间有关命题真假性的判断,属于基础题. 2.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若 1D E CF ⊥,则当EBC V 的面积取得最小值时, EBC ABCD S S =△( ) A . 25 B . 12 C .5 D . 5 【答案】D 【解析】 【分析】 根据1D E CF ⊥分析出点E 在直线1B G 上,当EBC V 的面积取得最小值时,线段EB 的长度为点B 到直线1B G 的距离,即可求得面积关系. 【详解】 先证明一个结论P :若平面外的一条直线l 在该平面内的射影垂直于面内的直线m ,则l ⊥m ,

即:已知直线l 在平面内的射影为直线OA ,OA ⊥OB ,求证:l ⊥OB . 证明:直线l 在平面内的射影为直线OA , 不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ?平面PAO , 所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理. 如图所示,取AB 的中点G , 正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C , 由三垂线定理可得:11CF D B ⊥, CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥ 由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线, 所以CF ⊥平面11B D G , ∴当点E 在直线1B G 上时,1D E CF ⊥, 设BC a =,则11 22 EBC S EB BC EB a = ??=??△, 当EBC V 的面积取最小值时, 线段EB 的长度为点B 到直线1B G 的距离, ∴线段EB 5 , 52510 EBC ABCD a S S ??∴ == △. 故选:D . 【点睛】 此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算. 3.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ? ∠=∠=,则异 面直线1AB 与1BC 所成角的余弦值为( )

立体几何垂直问题练习题

垂直问题 线面垂直判定定理:ααα⊥?⊥⊥=??l b l a l O b a b a ,,,,I 若 面面垂直判定定理:βααβ⊥??⊥a a , 1、 如图:在斜边为AB 的R t △ABC 中,过点A 作PA ⊥平面ABC ,AE ⊥PB 于E ,AF ⊥PC 于F , (1)求证:BC ⊥平面PAC ;(2)求证:PB ⊥平面AEF. 2、如图9-29,P A ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点. 求证:MN ⊥AB . 3、如图:PA ⊥平面PBC ,AB =AC ,M 是BC 的中点,求证:BC ⊥PM. 4、已知等腰梯形PDCB 中,A PD DC PB ,2,1,3===为PB 边上一点,且PB DA ⊥,将 PAD ? 沿AD 折起,使AB PA ⊥ 求证:(1)PAB CD 面//;(2)PAC CB 面⊥ 5、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA =AB =BC , E 是PC 的中点. C F E P B A B A M P

6、如图,四棱锥P ABCD -中,底面ABCD为平行四边形。60,2, DAB AB AD PD ∠==⊥ o底 面ABCD,证明:PA BD ⊥ 7、已知如图,P?平面ABC,PA=PB=PC,∠APB=∠APC=60°,∠BPC=90°求证:平面ABC⊥平面PBC . 8、如图AB为⊙O的直径,C为⊙O上一点,AD⊥平面ABC,AE⊥BD于E,AF⊥CD于F, 求证:⑴平面⊥ BCD平面ACD⑵BD⊥平面AEF 9、、如图,在三棱柱 111 ABC A B C -中, 1 ,BC BC BC AB⊥ ⊥, 1 BC AB=,,, E F G分别为线段 1111 ,, AC AC BB的中点,求证:(1)平面ABC⊥平面 1 ABC; (2)// EF面 11 BCC B;(3)GF⊥平面 11 AB C 10、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VAD V D C B A

必修二立体几何较难题汇总

1.四面体ABCD 四个面的重心分别为E 、F 、G 、H ,则四面体EFGH 的表面积与四面体ABCD 的表面积的比值是( ) A)271 B)161 C)91 D)8 1 如图,连接AF 、AG 并延长与BC 、CD 相交于M 、N , 由于F 、G 分别是三角形的重心, 所以M 、N 分别是BC 、CD 的中点, 且AF :AM=AG :AN=2:3, 所以FG :MN=2:3, 又MN :BD=1:2,所以FG :BD=1:3, 即两个四面体的相似比是1:3, 所以两个四面体的表面积的比是1:9;故选C . 如图,平面α∥平面β∥平面γ,两条直线l ,m 分别与平面α,β,γ相交于点A ,B ,C 和点D ,E ,F .已知AC =15cm ,DE =5cm ,AB ︰BC =1︰3,求AB ,BC ,EF 的长 设平面α‖β,A 、C ∈α,B 、D ∈β直线AB 与CD 交于S ,若AS=18,BS=9,CD=34,则CS=?68/3或68 与空间四边形ABCD 四个顶点距离相等的平面共有多少个? 七个 你可以把它想象成一个三棱锥

四个顶点各对应一个 有四个, 两条相对棱对应一个 共三组相对棱 因此有三个 总共有七个 如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形, 已知BD=2AD=8, AB=2DC= 。 (1)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (2)求四棱锥P-ABCD 的体积 解:(1)证明:在中,由于 , , , 所以 故 又平面 平面 ,平面 平面 , 平面 , 所以平面, 又平面 , 故平面 平面。

立体几何好题及答案

A 1 C B A B 1 C 1 D 1 D O 高三数学·单元测试卷(九) 第九单元 [简单几何体],交角与距离 (时量:120分钟 150分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.过三棱柱任意两个顶点的直线共15条,其中异面直线有 A .18对 B .24对 C .30对 D .36对 2..一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 A .π28 B .π8 C .π24 D .π4 3.设三棱柱ABC -A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA =QC 1,则四棱锥B -APQC 的体积为 A .V 6 B .V 4 C .V 3 D .V 2 4.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为 A . 3 2 B . 3 3 C .3 4 D .32 5.设α、β、γ为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 A .l m l ⊥=?⊥,,βαβα B .γβγαγα⊥⊥=?,,m C .αγβγα⊥⊥⊥m ,, D .αβα⊥⊥ ⊥m n n ,, 6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离为 A .12 B .2 4 C .22 D .32 7.不共面的四个定点到平面α的距离都相等,这样的平面α共有 A .3个 B .4个 C .6个 D .7个

立体几何难题探究(含答案)

立体几何难题探究 1.(2020届安徽省合肥市高三第二次质检)某几何体是由一个半球挖去一个圆柱形成的,其三视图如图所示.已知半球的半径为6,则当此几何体体积最小时,则当此几何体体积最小时,它的表面积等于( ) A .24π B .() 1833+π C .21π D .() 1842+π 【答案】D 【解析】设圆柱高为x (06)x << ,则圆柱底面半径为26r x =-, 圆柱体积为2 2 3 (6)(6)V r x x x x x πππ==-=-, 2(63)V x π'=-,由0V '=得2x =(2-舍去), 当(0,2)x ∈时,0V '>,函数3 (6)V x x π=-递增,(2,6)x ∈时,0V '<,函数3 (6)V x x π=-递减,∴2x =时,3max [62(2)]42V ππ=-=, 262r x =-=, 圆柱体积最大时,此几何体体积最小. 22(6)2222(6)(1842)S ππππ=?+??+?=+全. 故选D 。 2.(2020届安徽省皖南八校高三第三次联考)在三棱锥P ABC -中,已知4 APC π ∠= ,3 BPC π ∠= , PA AC ⊥,PB BC ⊥,且平面PAC ⊥平面PBC ,三棱锥P ABC -的体积为 3 6 ,若点,,,P A B C 都在球O 的球面上,则球O 的表面积为( )

A .4π B .8π C .12π D .16π 【答案】A 【解析】取PC 中点O ,连接,AO BO ,设球半径为R ,因为3 BPC π ∠=,PA AC ⊥,PB BC ⊥, 所以AO BO R ==,2PC R =,PB R =,3BC R =, 因为4 APC π ∠= ,PA AC ⊥,所以PA AC =,则AO PC ⊥, 因为平面PAC ⊥平面PBC ,所以AO ⊥平面PBC ,即133 6 P ABC PBC V S AO -= ?= , 所以 333 R = ,1R ∴=,∴球的表面积为244R ππ=. 故选A 。 3.(2020届甘肃省高三第一次高考诊断)侧棱长与底面边长都相等的四棱锥P ABCD -中,若E 为侧棱PB 的中点,则异面直线PD 与AE 所成角的正弦值为( ) A 6 B . 23 C 3 D . 22 【答案】A 【解析】设四棱锥P ABCD -的棱长为2,连接AC 、BD 交于点O ,连接OE ,如下图所示:

立体几何存在性问题

立体几何存在性问题 未命名 一、解答题 1.在多面体中,底面是梯形,四边形是正方形,,,面面,。。 (1)求证:平面平面; (2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由? (3)在(2)的条件下,求点到平面的距离. 2.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面 平面,点分别是棱上的点,平面平面 (Ⅰ)确定点的位置,并说明理由; (Ⅱ)求三棱锥的体积. 3.如图,在长方体中,,点在棱上,,点

为棱的中点,过的平面及棱交于,及棱交于,且四边形为菱形. (1)证明:平面平面; (2)确定点的具体位置(不需说明理由),并求四棱锥的体积. 4.如图2,已知在四棱锥中,平面平面,底面为矩形。 (1)求证:平面平面; (2)若,试求点到平面的距离. 5.如图,三棱锥的三条侧棱两两垂直,,,分别是棱,的中点. (1)证明:平面平面; (2)若四面体的体积为,求线段的长. 6.如图,在四棱锥中,,,,。

(1)求证:; (2)若,,为的中点. (i)过点作一直线及平行,在图中画出直线并说明理由; (ii)求平面将三棱锥分成的两部分体积的比. 7.如图1所示,在梯形中,//,且,,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示. (1)求证:; (2)若,,四棱锥的体积为,求四棱锥的表面积. 8.如图,在四棱锥中,底面为矩形,平面平面,. (1)证明:平面平面; (2)若,为棱的中点,,,求四面体的体积.

9.如图,在梯形中,,,,四边形是矩形,且平面平面,点在线段上. (1)求证:平面; (2)当为何值时,平面?证明你的结论。 10.10.如图,已知菱形的对角线交于点,点为的中点。将三角形沿线段折起到的位置,如图2所示。 图1图2 (Ⅰ)求证:平面; (Ⅱ)证明:平面平面; (Ⅲ)在线段上是否分别存在点,使得平面平面?若存在,请指出点的位置,并证明;若不存在,请说明理由。

相关主题
文本预览
相关文档 最新文档