当前位置:文档之家› 数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛之立体几何专题精讲(例题+练习)
数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题

立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度

这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.

立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.

例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?.

分析:如图,设射线OA 任意一点A ,过A 作

AB α⊥于点B ,又作BC OC ⊥于点C ,连

接AC .有:

cos ,cos ,cos ;OC OB OC

OA OA OB

αβγ=== 所以,cos cos cos αβγ=?.

评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.

②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.

例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上,

α

O

C B

A

E

A

F 在棱CD 上,使得:

()0AE CF

EB FD

λλ==<<∞,记()f λλλαβ=+, 其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少;

(C )()f

λ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.`

分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=?

例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则

sin α= .

分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于

α即可.如图所示的平面A BD '就是合乎要求的平面,于是:

sin α=

二、求体积

这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高

例十五、(2003年全国联赛一试)在四面体ABCD

中,设1,AB CD ==,直线AB 与CD 的距离为

2,夹角为

3

π

,则四面体ABCD 的体积等于 (

)()()(

11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1

V=3

S h ??. 从题目所给条件看,已知长度的两条线段分别位于

两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.

作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:

O

D

C

B

A

D '

C '

B ' A '

E

D

C

B

A

111

sin 362

A BCD A BDE D ABE BDE V V V S h A

B BE ABE h ---?====??∠?=

例十六、(2002年全国联赛一试)由曲线2

2

4,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所得旋转体的体积为V 1,满足

()()22

222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体

积为V 2,则: (A )V 1=

12V 2; (B )V 1=2

3

V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则

这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:

取()44y a a =-≤≤,则:

()

2

1162164S a

a ππππ=-??=-

当0a <时:(

)()()2

2

2

21642164S a

a a ππππ=?--?-+=+ 当0a >时:()()()2

2

2

2

1642164S a a a ππππ=?--?--=-

显然,12S S =,于是有:12V V =.

例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .

分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切

球的直径,于是有:2r = ∴

3

3

43424V a a π??=??= ? ???

练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,

可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.

又:h ===

,所以,,412R a r ==.

例十八、(1999年全国联赛一试)已知三棱锥S--ABC 的底面为正三角形,A 点在侧面SBC 上的射影H 是?SBC 的垂心,二面角H-AB-C 的平面角等于30?,

SA=.那么,三棱锥S-ABC 的体积

为 .

分析:在求解立体几何问题时,往往需要首先明白所要 考查对象的图形特点.连接BH 并延长交SC 于D ,连AD . ∵H 为?SBC 的垂心

∴BD ⊥SC , 且 HD ⊥SC ,故 AD ⊥SC ,SC ⊥平面ABC ∴SC ⊥AB

作SO ⊥平面ABC 于O ,连接CO 并延长交AB 于E ,易知:CE ⊥AB ,连DE . ∵AB=AC

∴HB=HC ,即A 在平面SBC 内的射影H 在线段BC 的垂直平分线上,而点H 是?SBC 的垂心,可知

?SBC 为SB=SC 的等腰三角形.

R

O

E

D

C A

P

r

B

O

E

D H

C

A

S B

∴S 在平面ABC 内的射影O 在线段BC 的垂直平分线上.

故射影O 为?ABC 的中心,三棱锥S —ABC 为正三棱锥.设底面边长为2a ,则CE=3a , ∵SA=SB=SC=23 ∴SO=3,OC=233=CE=233

a ∴11139333333224

S ABC

ABC V S h -?==?????=

例十九、(1998年全国联赛一试)ABC ?中,90,30,2C B AC ∠=?∠=?=,M 是AB 的中点.将

ACM ?沿CM 折起,使A 、B

两点间的距离为A —BCM 的体积等于 .

分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,

问题中经常会涉

及折叠图形形成

二面角,在折叠

前作一条直线与

折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.

如图,作BD ⊥CM 的延长线相交于D ,AF ⊥CM 于F ,并延长到E ,使EF=BD ,连BE . 显然,

,EB=DF=2,所以: AE 2=AB 2-EB 2=8-4=4

三棱锥A —BCM 的高即点A 到平面BCM 的距离也就是等腰?AEF 中点A 到边EF 的距离.根据面积相等可求得:

h =

=∴

1113233

V =

???= 例二十、(1995年全国联赛一试)设O 是正三棱锥P —ABC 底面△ABC 的中心,过O 的动平面与P —ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则和式

111

PQ PR PS

++ (A )有最大值而无最小值; (B )有最小值而无最大值; (C )既有最大值又有最小值,且最大值与最小值不等;

F

F M M

E E D D B

B C C A A

(D )是一个与平面QRS 位置无关的常量. 分析:借助于分割思想,将三棱锥P —QRS 划分成三个以O 为顶点,以三个侧面为 底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设

QPR ∠=RPS SPQ α∠=∠=,于是有:

()1

3

P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----???=++=

++? ()1

sin 6

PQ PR PR PS PS PQ h α=

?+?+??? 又:1

sin sin 6

P QRS Q PRS V V PQ PR PS αθ--==????,其中θ为PQ 与平面PRS 所成的角.

()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴?+?+???=????

于是得:

111PQ PR PS ++sin h

θ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;

(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:

1

2

DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.

O

S

R

Q

C

B

A

P

G

F

M

E

D '

D

C

B

A S

H

例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意 两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,

所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.

例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接

AE ,AF ,则平面AEF 为合乎要求的截面. 作OH ∥PG ,交AG 于点H ,则:OH=PG .

5

1112BC PD PG GD GD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2

425A PEF PEF A PBC PBC V S EF V S BC -?-???

=== ???;于是:421A PEF A EFBC

V V --=. 三、求面积

这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系

A 1

D

C

B

A D 1

C 1

B 1

F E O

M D C

B

A

P

H

G

四、求距离

这类题常是以几何体为依托 ,求其中的某些点、线、面之间的距离解决这类题的关键在于 ,根据已知条件

判断出或作出符合题意的线段 ,其长度就是符合题意的距离

4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.

解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点

G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=

b 2-a 2,BF=DF=

2a b 2-a 2

b

,AE=2b 2-(2

3

3a )2=2

b 2-4

3

a 2.由

cos ∠AGE=cos ∠BFD ,得

2AG 2-AE 2

2AG 2

=

2BF 2-BD 2

2BF 2

.∴ 4(b 2-432a 2)

b 2-a 2=4a 2b 24a 2(b 2-a 2)

?9b 2=16a 2,?b=4

3a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3. 分析:设正三棱锥的底面边长为a ,侧棱长为

b

,则:

a =

即:2b =化简得: 32

b

a =

所以,3,2a b ==.于是可求得线段PP '的长:2pp '==.于是有最远距离为底边长3.

2a

b

a

b

b

G

E

F

B

C

D

A

A

C

B

D E

F

O

P '

P

五、求元素个数

这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数 ,作到不重复、不遗漏

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

高一必修二经典立体几何专项试题

高一必修二经典立体几何专项试题

作者: 日期:

高一必修二经典立体几何专项练习题 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内——有无数个公共点 (2)直线与平面相交一一有且只有一个公共点 (3)直线在平面平行——没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示 a a a Aa =A a //a 22直线、平面平行的判定及其性质 2.2.1直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行, 则该直线与此平面平行。 简记为:线线平行,则线面平行。符号表示: a B => a // b 2.2.2平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则 这两个平面平行。 符号 示:

// b // 2、判断两平面平行的方法有三种: (1) 用定义; (2) 判定定理; (3) 垂直于同一条直线的两个平面平行。— 223 — 224直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任 平面与此平面的交线与该直线平行 作用:利用该定理可解决直线间的平行问题 么它们的交线平行。 符号表示: // □ Y =a 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 、、亠 1 注意点: a)定理中的“两条相交直线”这一条件不可忽视; 简记为:线面平行则线线平行。 符号表示: 2、 ] a // b // 2.3.1直线与平面垂直的判定 1、定义:如果直线L 与平面a 内的任意一条直线都垂直,我们就说直线 L 与平 面a 互相垂 直,记作L 丄a ,直线L 叫做平面a 的垂线,平面a 叫做直线 L 的垂

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中数学立体几何习题精选精讲

例谈立体几何中的转化 立体几何中所蕴含的数学思想方法非常丰富,其中最重要的就是转化的思想方法,它贯穿立体几何教学的始终,在立体几何教学中占有很重要的地位。立体几何中的转化主要是空间问题向平面问题的转化,具体从以下几个方面入手。 1、 位置关系的转化 线线、线面、面面平行与垂直的位置关系是立体几何中的一个重点内容,其精髓就是平行与垂直位置关系的相互依存及转化,平行与垂直问题不但能横向转化,而且可以纵向转化。 例1 已知三棱锥S -ABC 中,∠ABC =90°,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E 、F 。求证EF ⊥SC 。 分析:∵A 、E 、F 三点不共线,AF ⊥SC , ∴要证EF ⊥SC ,只要证SC ⊥平面AEF , 只要证SC ⊥AE (如图1)。 又∵BC ⊥AB ,BC ⊥SA ,∴BC ⊥平面SAB , ∴SB 是SC 在平面SAB 上的射影。 ∴只要证AE ⊥SB (已知),∴EF ⊥SC 。 例2 设矩形ABCD ,E 、F 分别为AB 、CD 的中点,以EF 为棱将矩形 折成二面角A -EF -C 1(如图-2)。求证:平面AB 1E ∥平面C 1DF 。 分析一(纵向转化): ∵AE ∥DF ,AE ?平面C 1DF , ∴ AE ∥平面C 1DF.同理,B 1E ∥平面C 1DF , 又AE ∩B 1E =E ,∴平面AB 1E ∥平面C 1DF 。 分析二(横向转化): ∵AE ∥EF ,B 1E ⊥EF ,且AE ∩B 1E =E ,∴EF ⊥平面C 1DF 。 同理,EF ⊥平面C 1DF 。平面AB1E ∥平面C 1DF 。 2、降维转化 由三维空间向二维平面转化,是研究立体几何问题的重要数学方法之一。降维转化的目的是把空间的基本元素转化到某一 个平面中去,用学生们比较熟悉的平面几何知识来解决问题。如线面垂直的判定定理的证明就是转化为三角形全等的平面问题。 例3 如图-3,在直三棱柱ABC —A 1B 1C 1中,AB=BC= 2,BB 1=2, ο90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 . 22 3 分析:这类问题通常都是将几何体的侧面展开成平面图形来解决。 又如异面直线所成的角、线面角、面面角的计算,最终都是转化为平面上两 相交直线成的角来进行的。 B E A D1 C F C 1 图-2 D 图-1 E S F C B A 图-3

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

2013高中数学精讲精练第七章立体几何初步

2013高中数学精讲精练第七章立体几何初步

2013高中数学精讲精练第七章立体几何初步 【知识图解】 【方法点拨】 立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。空间的元素是点、线、面、体,对于线线、线面、面面的位置关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。在复习时我们要以下几点: 1.注意提高空间想象能力。在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。 2.归纳总结,分门别类。从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间中角与距离的计算。 3.抓主线,攻重点。针对一些重点内容加以训练,平行和垂直是

(2)如图,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是图的 ②③ (要求:把可能的图的序号都. 填上). 【范例导析】 例1.下列命题中,假命题是 (1)(3) 。(选出所有可能的答案) (1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱 (2)四棱锥的四个侧面都可以是直角三角形 (3)有两个面互相平行,其余各面都是梯形的多面体是棱台 (4)若一个几何体的三视图都是矩形,则这个几何体是长方体 分析:准确理解几何体的定义,真正把握几何体的结构特征是解决概念题的关键。 (1)中将两个斜棱柱对接在一起就是反例。(3)中是不是棱台还要看侧棱的延长线是否交于一点。 例2.C B A '''?是正△ABC 的斜二测画法的水平放置图形的直观图,若 C B A ' ''?的面积为3,那么△ABC 的面积为_______________。 解析:62。

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题2分,共40分) 1.设直线l,m和平面α,β,下列条件能得到α∥β的有() ①l?α,m?α,且l∥β,m∥β; ②l?α,m?α且l∥m; ③l∥α,m∥β且l∥m. A.1个B.2个C.3个D.0个 2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是() A.36πB.24πC.18πD.12π

3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D. 4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为() A.16B.2C.4D. 5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是() A.2πB.4πC.πD.8π 6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是() ①四边形BFD′E一定是平行四边形 ②四边形BFD′E有可能是正方形 ③四边形BFD′E在底面ABCD的投影一定是正方形 ④四边形BFD′E有可能垂于于平面BB′D. A.①②③④B.①③④C.①②④D.②③④ 7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()

高中简单立体几何体(附例题详解)资料讲解

2. 简单几何体 知识网络 简单几何体结构简图 画龙点晴 概念 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行由这些面所围成的几何体称为棱柱。两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点.不在同一个平面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高. 棱柱的分类: 按侧棱与底面的关系,棱柱可分为: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱. 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱. 正棱柱:底面是正多边形的直棱柱叫做正棱柱. 按底面的多边形的边数可分为: 底面是三角形、四边形、五边形……我们把这些棱柱分别叫做三棱柱、四棱柱、五棱柱…… 棱柱的表示法: 棱柱用表示底面各顶点的字母表示,或者用棱柱对角线的两个端点的字母表示,如五棱柱 可表示为:棱柱ABCDE-A /B /C /D /E /,或棱柱AC / . 棱柱的性质: (1)侧棱都相等,侧面都是平行四边形; (2)两个底面与平行于底面的截面都是全等的多边形; (3)过不相邻的两条侧棱的截面(对角面)是平行四边形; 直棱柱的性质: 直棱柱的侧棱长和高相等,侧面及经过不相邻的两条侧棱的截面都是矩形。 平行六面体: 底面是平行四边形的四棱柱叫做平行六面体. 长方体: 底面是矩形的直平行六面体叫做长方体, 长方体的一条对角线长的平方和等于一个顶点上三条棱的长的平方和. 正方体: 棱长都相等的长方体叫做正方体. 公式 棱柱的侧面积和全面积: 直棱柱的侧面积等于它的底面周长C 与高h 的乘积, 即Ch S =直棱柱, 斜棱柱的侧面积等于它的直截面(垂直于侧棱并与每条侧棱都相交的截面)的周长C 1与侧棱长l 的乘积, 即l C S ?=1斜棱柱侧, 棱柱的全面积等于侧面积与两底面积的和. [活用实例] [例1] 如图,在平行六面体ABCD-A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3 π, (1)求证:顶点A1在底面ABCD 的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的表面积.

立体几何复习(知识点经典习题)

考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1) 有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2) 有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是( ) A .空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行; (3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。 上面命题中,真命题...的序号 (写出所有真命题的序号). 2.在空间,下列命题正确的是 (A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 考点二 三视图与直观图及面积与体积 【基础训练】 1.如图(3),,E F 为正方体的面11ADD A 与面11BCC B 的中心,则四边形1BFD E 在该正方体的面上的投影可能是 . 2.如果一个水平放置的图形的斜二测直观图是一个底角为0 45,腰和上底均为1的等腰梯形,那么原图形的面积是( ) A. 222+ B 122+ C 22 2 + D 123.在ABC ?中, 0 2 1.5120AB BC ABC ==∠=,, 若使其绕直线BC 旋转一周,则它形成的几何体的体积是( ) A.9 2π B. 72π C. 52π D. 32 π 4. 已知一个长方体共一顶点的三个面的面积分别是 236,,是 . 若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积为 . 5.正方体的内切球和外接球的半径之比为( ) A. 3 3: C.23: D. 33 6.一个正方体的顶点都在球面上 ,它的棱长为2,则球的表面积是( ) A.2 8cm π B. 2 12cm π C. 2 16cm π D. 2 20cm π 7.若三个球的表面积之比是1:2:3,则它们的体积之比是 . 8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A.25π B. 50π C.125π D. 以上都不对 9..半径为 R 的半圆卷成一个圆锥,则它的体积为 . 【高考链接】 1.一个棱锥的三视图如图,则该棱锥的全面积为( ) (A )2 (B )2 (C )2 (D )2 F E D1 C1 B1 D C B A

立体几何知识点和例题讲解

立体几何知识点和例题讲解(高二) 一、知识点 1.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉 . 2.异面直线所成角:cos |cos ,|a b θ== 21 || |||| a b a b x ?= ?+(其中θ(090θ<≤)为异面直线a b , 所成角,,a b 分别表示异面直线a b ,的方向向量) 3.直线AB 与平面所成角:sin |||| AB m arc AB m β?=(m 为平面α的法向量). 4.空间四点A 、B 、C 、P 共面OC z OB y OA x OP ++=?,且 x + y + z = 1 5.二面角l αβ--的平面角 cos ||||m n arc m n θ?=或cos |||| m n arc m n π?-(m ,n 为平面α,β的法向量). 6.异面直线间的距离: || || CD n d n ?= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 7.点B 到平面α的距离:|| || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 〈二〉温馨提示: 1.直线的倾斜角、两条异面直线所成的角等时它们各自的取值范围? ① 异面直线所成的角、直线与平面所成的角、二面 角的取值范围依次 . ② 直线的倾斜角、到的角、与的夹角的 取值范围依次是 . 二、题型与方法 【考点透视】 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成。 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ;

必修二立体几何典型例题

必修二立体几何典型例题 【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:异面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交. 直线在平面内,记作:a?α . 直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥α . (3)空间两个平面: ①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:α ∥β . 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图: 【例题分析】

相关主题
文本预览
相关文档 最新文档