当前位置:文档之家› 陶粒砂石油压裂支撑剂系列产品说明书

陶粒砂石油压裂支撑剂系列产品说明书

陶粒砂石油压裂支撑剂系列产品说明书
陶粒砂石油压裂支撑剂系列产品说明书

陶粒砂石油压裂支撑剂系列产品说明书

目录

第一章:产品说明。。。。。。。。。。第2页第二章:产品种类。。。。。。。。。。第2页第三章:产品规格。。。。。。。。。。第3页第四章:产品结构。。。。。。。。。。第5页第五章:产品性能。。。。。。。。。。第5页第六章:产品用途。。。。。。。。。。第6页第七章:产品营销。。。。。。。。。。第6页

第一章产品说明

陶粒砂石油压裂支撑剂是石油、天然气低渗透油气井开采压裂施工的关键材料。我公司开发生产的52MPa 、69MPa 、86MPa 、102 Mpa 的高强度石油压裂支撑剂,是一种高技术含量的产品。是利用山西得天独厚的铝矾土原料,经过独特的粉末制粒和烧结而成,具有耐高温、耐高压、耐腐蚀、高强度、高导流能力、低破碎率等特点,是开采石油压裂施工中不可缺少的固体材料。

陶粒支撑剂产品应用于深井压裂施工时,将其填充到低渗透矿床的岩层裂隙中,进行高闭合压裂处理,使含油气岩层裂开,起到支撑裂隙不因应力释放而闭合,从而保持油气的高导流能力,不但能增加油气产量,而且更能延长油气井服务年限。

产品经中国石油勘探开发研究院廊坊分院支撑评价实验室检测,各项性能指标完全达到ISO13503-2 标准,目前在国内处于领先水平。公司已在美国STIM-LAB 实验室进行API 标准分析检验,检验结果完全符合API 标准。

第二章产品种类

1.低密度高强度石油支撑剂

2.中密度高强度石油支撑剂

3.高密度高强度石油支撑剂

各油(气)田可根据裂缝的具体深度和宽度选择相适的石油支撑剂品种。

第三章产品规格

1. 低密度高强度石油支撑剂52MPa

规格

指标名称

40/70 20/40 30/50 16/30

低密度g/cm3 体密≦1.60 ≦1.60 ≦1.60 ≦1.60 视密≦2.75 ≦2.75 ≦2.75 ≦2.75

圆度0.9 0.9 0.9 0.9

球度0.9 0.9 0.9 0.9

破碎率52MPa ≦5% ≦7% ≦7% ≦10% 耐酸度≦4.5 ≦4.5 ≦4.5 ≦4.5 长期导流能力/ / / /

浊度≦50 ≦50 ≦50 ≦50

2. 中密度高强度石油支撑剂69MPa

规格

指标名称

40/70 20/40 30/50 16/30

中密度g/cm3 体密≦1.80 ≦1.80 ≦1.80 ≦1.80 视密≦3.35 ≦3.35 ≦3.35 ≦3.35

圆度0.9 0.9 0.9 0.9

球度0.9 0.9 0.9 0.9

破碎率69MPa ≦5% ≦7% ≦7% ≦10% 耐酸度≦4.5 ≦4.5 ≦4.5 ≦4.5 长期导流能力/ / / /

浊度≦50 ≦50 ≦50 ≦50

3. 高密度高强度石油支撑剂86MPa

规格

指标名称

40/70 20/40 30/50 16/30

高密度g/cm3 体密﹥1.80 ﹥1.80 ﹥1.80 ﹥1.80 视密﹥3.35 ﹥3.35 ﹥3.35 ﹥3.35

圆度0.9 0.9 0.9 0.9

球度0.9 0.9 0.9 0.9

破碎率69MPa ≦5% ≦7% ≦7% ≦10% 耐酸度≦4.5 ≦4.5 ≦4.5 ≦4.5 长期导流能力/ / / 、

浊度≦50 ≦50 ≦50 ≦50

第四章产品性能

陶粒砂石油压裂支撑剂系列产品,具有降低对水力压裂液流变性的要求,又能提高岩层裂缝内的输送性能和增加岩缝支撑剂剖面,本产品系列在水力压裂中工艺实践中取得了明显效果,为油(气)田压裂增产获得了较好的硕果,因此被中国各大油田首选水力压裂的支撑材料。

第五章产品结构

陶粒砂石油压裂支撑剂系列产品,为非金属陶瓷结构新材料。产品可根据油(气)田不同井深,不同岩石(缝)张力需求设计,采取矿物优化配比,掌握烧结温度,从而形成不同密度,不同强度,不同比重的人造陶瓷颗粒---陶粒砂石油支撑剂。

第六章产品用途

陶粒砂石油压裂支撑剂应用于石油开采水力压裂技术中支撑水力裂缝的高强度支撑剂(陶粒)。本产品由于其对水力裂缝具有良好的支撑性能,因而能够取得满意的增产油(气)井自产水平和提高油(气)田后期开发中必不可少的优质支撑剂材料。

第七章产品营销

长期以来,公司本着质优、价廉、服务的宗旨与国内各大油田建立了长期的供需网络关系,近几年来又与美国、俄罗斯、加拿大、哈萨克斯坦等国外油田建立了供需合作伙伴关系,其中与世界几大油(气)田服务公司(如美国哈里伯顿公司、斯伦贝歇公司等)建立了长期

合作伙伴关系,目前还正在与美国石油能源部洽谈长期合作事宜。近两年来,公司出口产品达10多万吨,并呈逐年上升趋势。至今,本公司供货品种较全,产品质量较优较稳的企业。

高强度低密度陶粒支撑剂的研究_郭子娴

44│中国陶瓷│CHINA CERAMICS │2013(49)第 3 期44 │中国陶瓷│CHINA CERAMICS │2013(49)第 3 期【摘 要】以铝矾土为原料,白云石为辅料,添加一 定量的复合添加剂,经粉磨、成球和烧成,制备了性能优良的高强度低密度陶粒支撑剂,讨论了复合添加剂掺量及烧成温度对陶粒支撑剂材料性能的影响。结果表明,当白云石掺量为2%,复合添加剂的掺量为6%,烧成温度在1330℃时,制备出的陶粒支撑剂的视密度为2.61g/cm -3,体积密度为1.55g/cm -3,52MPa 闭合压力下的破碎率为6.70%。 【关键词】陶粒支撑剂,高强度,低密度中图分类号:TB383 文献标示码:A 0 引 言 压裂支撑剂是石油、天然气开采压裂操作过程用来支撑岩缝的具有一定强度的固体颗粒。在使用过程中,把支撑剂混入压裂液中,利用高压手段注入深层岩石裂缝中支撑岩层,以提高导油率,增加原油产量[1~4]。目前,除石英砂外,最常用的支撑剂是用铝矾土制造的陶粒,随着压裂技术的不断发展,石油行业对支撑剂的需求越来越大,对性能的要求也越来越高。目前,深层低渗透油井压裂对高密度超高强度石油压裂陶粒支撑剂有着较大需求,而高强度低密度支撑剂的应用也是提高深油井石油产量的重要措施。视密度大的支撑剂容易在压裂产生的裂缝端口处产生丘状的堆积,对导流极其不利;体积密度大则会增加填充地层裂缝所需支撑剂的质量,增加压裂作业的成本。高强度低密度陶粒支撑剂的研制,不仅能够满足深井压裂的要求,而且有助于提高产层的导流能力并增产增效[5~9]。 以贵州高铁铝矾土为原料,白云石为辅料,配以特殊的复合添加剂,讨论了复合添加剂及烧成温度对陶粒支撑剂性能的影响。通过实验室试验及工业性试生产,制备出高强度低密度陶粒支撑剂的综合性能已达到中国石油化工集团公司企业标准Q/SH0051-2007的要求。 1 实验部分 1.1 原 料 所采用的铝矾土、白云石均来自某厂,其化学组成 高强度低密度陶粒支撑剂的研究 郭子娴,陈前林,喻芳芳 (贵州大学, 贵阳 550003) 如表1、表2所示。添加剂为实验室自配复合添加剂。 1.2 实验方法 将铝矾土(小于400目)、白云石(小于400目)及复合添加剂(小于400目)按照表3配料方案配比,放入混料机中机械混料均匀,将混合均匀的粉料润湿并陈腐2~3小时,再将陈腐的粉料放入粉碎机中粉碎成粉状,置于糖衣机中成球,间歇喷入水雾和加入干粉,待球形颗粒直径达到20~40目时,取出干燥,使含水量低于3%。将干燥后的样品放入硅钼棒高温炉中分别在1310℃、1320℃、1330℃、1340℃下烧成,保温2个小时,随炉自然冷却后取出,取出后的试样,根据中国石油化工集团公司企业标准Q/SH0051-2007方法测定和计算烧成样品的体积密度、视密度及抗破碎能力。用日本电子 JSM-6490LV 扫描电镜观察试样的微观结构,用英国牛津 INCA-350 X 射线能谱进行元素分析。XRD 分析仪器为帕纳科公司制造的X’Pert PRO 型X 射线衍射仪,衍射条件:Cu 靶,管电流40mA,管电压20 KV。 2 结果与讨论 2.1 烧成温度、复合添加剂掺入量对破碎率的影 响 不同烧成温度和配比的陶粒支撑剂的破碎率如图1所示。图a、图b 的白云石掺量分别为2%和2.5%。由图a 可知,随着烧成温度的升高,1#、2#试样的破碎率逐渐降低,3#、4#和5#试样的破碎率呈先下降后上升,其主要原因是当烧成温度为1310℃时,试样均为欠烧状态,内部结构烧成不充分,形成过少的液相,导致破碎率较高;随着温度继续上升,促进试样内部烧结,使致密化程度提高,破碎率呈下降趋势,但当烧成温度继续升高,液相逐渐增多,样品存在过烧现象,破碎率反而上升;当烧成温度为1330℃时,3#试样的破碎率最低。当烧成温度在1310℃、1320℃、1340℃时,随着复合添加剂掺量增加,破碎率逐渐增大,这是由于掺入量过多,使表面形成更多的开孔,导致破碎率增大;当温度在1330℃时,复合添加剂的掺入量为6%时,此时的破碎率最小。由图b 可知,随着烧成温度的上升,各试样的破碎率呈逐渐降低趋势,但破碎率均大于10%,则不采用白云石掺量为 2.5%的配方。 当白云石掺量为2%时,对比添加剂掺入量为6%的3#试样和9%的4#试样,3#试样在1330℃烧成后,试样横断面如图2所示。由图2可知,气孔分布均匀,密 收稿日期:2013-1-5 基金项目:贵阳市科技局攻关项目(筑科合同[2011101]48号) 通讯作者:陈前林,男,教授,博士生导师。E-mail:cql1018@https://www.doczj.com/doc/ab18608749.html,

硅烷偶联剂kh 化学品安全技术说明书 MSDS

硅烷偶联剂KH-550化学品安全技术说明书 (MSDS) 第一部分:化学品名称 化学品中文名称:硅烷偶联剂KH-550 化学品英文名称:?Silanc Coupling?Agcm KH-550? 中文名称2: 分子式: 分子量: 第二部分:成分/组成信息 主要成分:γ-氨丙基-乙氧基硅烷? 含量:≥97% CAS No. 919-30-2 第三部分:危险性概述 危险性类别:腐蚀性。对眼睛、皮肤和粘膜组织有腐蚀性。该物质和水或湿气接触时会反应生成乙醇。乙醇可能对中枢神经系统造成影响。 侵入途径:吸入、食入、皮肤接触、眼睛接触 健康危害:眼睛:接触液体或蒸汽可能导致眼睛疼痛、红肿和烧伤 皮肤:可能导致疼痛、红肿和皮肤烧伤 吸入:吸入可能引起呼吸道刺激,烧灼感,咳嗽,咽喉痛 食入:误食可能导致消化道刺激、烧灼感和灼伤。吞咽有害 第四部分:急救措施 皮肤接触:立即就医。移除受污染衣物和鞋子。擦去后用水和肥皂清洗至少15分钟。化学烧伤必须由医生及时处理。衣物和鞋子再次使用前应彻底清洗。 眼睛接触:立即就医。立即用清水冲洗眼睛至少15分钟,反复提起上下眼睑。如果可行,检查并移除隐形眼镜。化学烧伤必须由医生及时处理。 吸入:立即就医。移至通风良好处。患者应注意保暖和休息。如果出现呼吸停止、呼吸困难和呼吸不规则,由受过训练的人员进行人工呼吸或给予氧气。如果患者失去意识,将其处于复原体位,立即就医。保持气道畅通。放松患者紧束的衣物,如衣领、领带、皮带或腰带。食入:立即就医。切勿催吐。如果患者清醒,漱口后饮用足量的清水。患者应注意保暖和休息。如果患者失去意识,切勿从口腔给其服用任何物品。 第五部分:消防措施 危险特性:可燃液体。和水反应生成乙醇 有害燃烧产物:碳氧化物、碳氢化物、氦氧化物、二氧化硅 灭火方法:砂、专用粉末和合适的泡沫,严禁灭火剂接触容器内容物。禁用含水灭火剂,禁用水。可以用水雾冷却暴露于火场中的容器。禁止让水进入容器 特殊的灭火方法:如果发生火灾,及时疏散和隔离人群。在不危及人员安全情况下,由受过训练的专业人员进行灭火。在不危及人员安全情况下尽可能将容器从火场移至空旷处。灭火时应处于上风处,以避免接触有害蒸汽和有毒分解产物。采取措施避免该物质和灭火的流出物进入溪流或供水系统。

硅烷化处理

金属表面处理环保新技术——硅烷化处理硅烷化处理是以有机硅烷水溶液为主要成分对金属或非金属材料进行表面处理的过程。在涂装行业,涂装前的表面处理以磷化为主,硅烷化处理与传统磷化相比具有节能、环保和降低成本的优点。本文简述了硅烷化处理的特点、基本原理、施工工艺等。 Si-OH的低聚硅氧烷;(3)低聚物中的Si-OH与基材表面上的OH形成氢键;(4)加热固化过程中伴随脱水反应而与基材形成共价键连接,但在界面上硅烷的硅羟基与基材表面只有一个键合,剩下两个Si-OH 或者与其他硅烷中的Si-OH缩合,或者游离状态。 为缩短处理剂现场使用所需熟化时间,硅烷处理剂在使用之前第

一步是进行一定浓度的预水解。 ①水解反应:在水解过程中,避免不了在硅烷间会发生缩合反 应,生成低聚硅氧烷。低聚硅氧烷过少,硅烷处理剂现场的熟 化时间延长,影响生产效率;低聚硅氧烷过多,则使处理剂浑 浊甚至沉淀,降低处理剂稳定性及影响处理质量。 随着涂装行业中环保压力的逐渐增大,环保型涂装前处理产品以代替传统磷化如今显的尤为重要。硅烷前处理技术做为磷化替代技术之一,目前已引起了世界涂装行业的广泛关注。与传统磷化相比,硅烷处理技术具有环保性(无有毒重金属离子)、低能耗(常温使用)、低使用成本(每公斤处理量为普通磷化的5-8倍),无渣等优点。

美国已于上世纪90年代就开始对金属硅烷前处理技术进行理论研究,欧洲于上世纪90年代中期也开始着手对于硅烷进行试探性研究。我国在本世纪初迫于环保方面的巨大压力,各大研究机构及生产企业也着手对硅烷进行研究。 1.1工位工序方面比较 备用。在改换槽位功能的同时提高链速进行生产,以加快前处理生产节拍,提高生产率。 1.2处理条件方面比较 传统磷化处理因沉渣、含磷及磷化后废水等环保问题,一直是各涂装生产企业为之困扰的问题。随着国家对环保及节能减排的重视程

硅烷产品介绍

美国Momentive迈图产品硅烷偶联剂源自美国联合碳化(Union Carbide)公司。美国联合碳化公司经美国奥斯佳(OSi)、威科(Witco)、康普顿(Crompton)重组。在2003年8月正式被美国通用电气(GE)收购,在亚太区列入GE东芝有机硅部门。迈图高新材料集团,由美国阿波罗投资公司于2006年12月完成对GE高新材料集团的收购后正式创立。 SILQUEST?系列硅烷偶联剂 乙烯基硅烷 A-171、A-151、A-172NT、A-2171、RC-1 氨基硅烷 A-1100、A-1102、A-1106、A-1110、A-1120、A-1128、A-1130、A-1170/Y-9627、A-1387、A-1637、A-2120、A-2639、Y-9669、A-Link 15 硫基/巯基 A-189、A-1891(橡胶和弹性体)、A-Link 599、A-1289(轮胎)、NXT(轮胎) 脲基硅烷 A-1160、A-1524 环氧 A-186、A-187、A-1871、WetLink 78、CoatOSil 1770 异氰酸酯硅烷 A-Link 25、A-Link 35 甲基丙烯酸酯 A-174、CoatOSil 1757 硅烷酯 A-137、A-138、A-162、A-1230、A-1630A、A-Link 597、HDTMS --------------------------------------------------------------------------------------- Silquest? A-171? 硅烷偶联剂Silane coupling agent A-171 化学名称:乙烯基三甲氧基硅烷Vinyltrimethoxysilane

高铝陶粒支撑剂的研制

46│中国陶瓷│CHINA CERAMICS │2010(46)第 2 期46 │中国陶瓷│CHINA CERAMICS │2010(46)第 2 期【摘 要】:以工业氧化铝为主要原料,加入适量的辅 助原料,在1360~1560℃下烧结制备高铝陶粒支撑剂。讨论烧成温度、原料粒度、外加剂—BaCO 3的加入对陶粒支撑剂耐酸性、抗破碎性的影响。结果表明:实验室研制的样品,其酸溶解度低达0.75%,86MPa 下破碎率<2.5%。BaCO 3的加入能显著提高陶粒支撑剂的耐酸性,只要控制好加入量,不会造成破碎率的显著提高。 关键词:高铝,陶粒支撑剂,耐酸性,抗破碎性中图分类号:TQ174.75+8.11 文献标识码:A 引 言 陶粒支撑剂是石油、天然气开采压裂操作过程中用来支撑岩缝的具有一定强度的固体颗粒。在压裂操作过程中,把支撑剂混入压裂液中,利用高压手段将其注入深层岩缝,形成高渗透性的通道,使石油或天然气从这些裂缝中流出。实践证明,使用高铝支撑剂压裂的油井可提高产量30~50%,还能延长油井服务年限[1~3]。 目前,国内生产的陶粒支撑剂多是以铝矾土为主要原料制备的产品,耐酸腐蚀性、抗破碎性差。性能最好的喷吹陶粒支撑剂在69MPa 下的破碎率为2%~4%,酸溶解度为3%~5%,很难满足塔河油田压裂与酸化复合改造工艺的要求[4-6]。用于塔河储层超高压油藏改造的支撑剂,多是以氧化铝为主要原料的高档化产品,国内暂时无法生产,主要依赖于美国进口,价格相当昂贵(约为7500~15000元/吨,而成本还不及此价格的一半)。用工业氧化铝制备高铝陶粒支撑剂的研究,国内目前未见报道。鉴于以上情况,国内迫切需要研制出自己的高档化陶粒支撑剂。本文以工业氧化铝为主要原料,加入适量的辅助原料,通过实验室小试,制备高铝陶粒支撑剂,研究了烧结温度、原料粒度、外加剂-BaCO 3的加入对陶粒支撑剂各项性能的影响。 1 实 验 1.1 原料制备 以工业氧化铝为主要原料,高岭土、菱镁矿、滑石、 方解石、碳酸钡等为辅助原料。按表1的化学成分进行配料,使烧成后4个样品的主晶相为刚玉,分别含0%、5%、10%、15%的钡长石。将配好的混合料按球∶料∶水(wt%)=2∶1∶1.2的比例在以刚玉球为研磨介质的球磨罐中球磨24h,倒出后在105℃下烘干、磨细备用。 1.2 样品制备 将制备好的原料加适量的水,经特殊成球工艺,制成850~1350um(16~29目)的小球,放入烘干箱内在105℃下烘干。将烘干后的样品放入硅钼炉中,在相应温度下烧结,保温60min,随炉自然冷却。 1.3 性能测试 利用欧美克粒度分析仪(LS-POPIV)测试物料的粒度,荷兰帕纳科公司生产的X’ Pert PRO 型X 射线衍射仪对样品的物相进行分析,日本JSM-6380LV 型扫描电子显微镜(SEM)对样品的表面形貌进行显微观察。根据国标GB/T3810.3-1999 测试陶粒支撑剂的吸水率(W), 按(1) 式计算。 w = (m 1-m 0)/m 0 ×100% (1)其中,m 0、m 1为样品干燥时和浸水饱和后的质量,单位为g。 陶粒支撑剂的视密度、酸溶解度和破碎率是衡量支撑剂好坏的重要标准,视密度影响压裂液的选择,酸溶解度和破碎率影响石油、天然气的产量,均根据石油天然气行业标准SYT5108-2006进行测试。视密度按(2)式计算,酸溶解度按(3)式计算,破碎率能按(4)式计算。 p = m 2/V 1 (2)其中,m 2为样品的质量,单位为g;V 1为样品体积,单位为cm 3;ρ为样品的视密度,单位为(g/cm 3)。 S = (m 3-m 4)/m 3×100% (3)其中,m 3、m 4为酸溶前、酸溶后样品的质量,单位为g ;S 为酸溶解度。 η=m 5/m 6×100% (4)其中, m 5、m 6分别为破碎样品和支撑剂样品的质量,单位为g ;η为破碎率。 2 结果与讨论 2.1 烧结温度对样品性能的影响 烧成温度是指陶瓷坯体烧成时获得最佳性能时的相应温度,即烧成时的止火温度。烧成温度的高低,直接影 高铝陶粒支撑剂的研制 赵艳荣1,2,吴伯麟1,2,吴婷婷1,2 (1有色金属材料及其加工新技术教育部重点实验室, 桂林 541004; 2桂林理工大学 材料科学与工程学院, 桂林 541004) 收稿日期:2009-12-7 项目来源:国家自然科学基金项目,编号:50972028作者简介:赵艳荣(1982-),女,硕士研究生,主要从事无机材料的合成与制备研究。 E-mail:zhaoyanrong07@https://www.doczj.com/doc/ab18608749.html,

金属加工液添加剂产品说明书

地址: 成都市太升北路56号江信大厦707室 电话(Tel ):+86-28-83219136 传真(Fax):+86-28-83219136 E-mail :xyxtrading@https://www.doczj.com/doc/ab18608749.html, Web :https://www.doczj.com/doc/ab18608749.html, 品名:Code L46 规格:硬脂润滑剂 原产地:英国 生产商:Hornett Bros & Co Ltd 应用:软金属加工液如铜、镁,典型添加量10%;纺织机械、岩石钻机润滑剂,典型添加量5%;淬火油。 安全、健康和运输:普通货物,无危险分类 产品处理:如果在10℃以下长期存放,使用前需要将整个容器或容器的某部分加热至少25℃并搅拌以使产品均一。 性能: 项目 测试方法 比重(15.6℃) IP160 0.890—0.910 40℃运动粘度 IP71,cSt 14.0—18.0 颜色(纯品) ASTM D1500 ≤3.0 总酸 ASTM D974,mgKOH/g ≤2.0 浊点 IP219,℃ <5 生物降解性 CEC-L-33-T-82,% >90 皂化值 计算mgKOH/g 190 负载能力 *1* 烧结负载 磨斑直径 IP239 Kg mm 100 0.40 包装 每桶净重180公斤,或每集装桶净重900公斤 仓储 40℃下干燥存放12个月 注:1、实验样品为100SN 基础油添加5%本品。

地址: 成都市太升北路56号江信大厦707室 电话(Tel ):+86-28-83219136 传真(Fax):+86-28-83219136 E-mail :xyxtrading@https://www.doczj.com/doc/ab18608749.html, Web :https://www.doczj.com/doc/ab18608749.html, 品名:Epoil LO10 规格:非活性硫化极压剂 原产地:英国 生产商:Hornett Bros & Co Ltd 应用:冷轧钢乳液,典型添加量5%;高粘度铜材加工液,典型添加量10%。 安全、健康和运输:普通货物,无危险分类 产品处理:如果在10℃以下长期存放,使用前需要将整个容器或容器的某部分加热到25℃至40℃并搅拌。 性能: 项目 测试方法 比重(15.6℃) IP160 0.990— 1.010 100℃运动粘度 IP71,cSt 64.0—107 铜片腐蚀 *1* IP154,3h@100℃ ≤2级 酸值 ASTM D974,mgKOH/g 20—40 总硫 IP242,%w/w 9.5—10.5 生物降解性 CEC-L-33-T-82,% >60 40℃运动粘度 IP71,cSt 1200 颜色 *1* ASTM D1500 7.5 活性硫 ASTM D1662,%wt 1 皂化值 计算mgKOH/g 170 负载能力 *1* 烧结负载 磨斑直径 IP239 Kg mm 260 0.50 包装 每桶净重200公斤,或每集装桶净重1000公斤 仓储 40℃下干燥存放12个月 注:1、实验样品为100SN 基础油添加10%本品。 2、实验样品为100SN 基础油中添加5%本品。

石油压裂支撑剂行业情况

二、市场情况 1、产品的市场体量 (1)使用量:陶粒砂市场在2014年度过了一段冷却期,在2015年复苏回暖,中石油年度网络公示显示:陶粒砂使用量已从2008年的21万吨上升至2015年的50度万吨; (2)市场规模:国内石油需求量继续增加,石油对外依存度继续增大。为了满足国内日益增加的石油需求,石油开采业发展迅速。与此相对应的就是相关产品生产的迅速扩大。 我国石油压裂支撑剂行业在这段时间,发展比较迅速,市场规模增速达到20%。 2、产品的市场销售情况

3、国内市场需求量 (1)随着石油天然气工业的发展,石油天然气井的深度越来越大,开采的难度越来越大。例如,塔里木油田的深度达到了6500 米以上。据资料介绍,中国低渗透型矿床占中国未开采总量的55%以上,因此国内对高强度陶粒产品的需求量必将增大。目前我国石油压裂支撑剂年总需求量约为70 万吨。其中,大庆、塔里木、长庆、中原等几大油田,约需45 万吨以上;随着油价的升高、开采力度的加大,对支撑剂的需求量还在快速增长。2012需求将达120万吨,年均增长率约15%。 4、进出口及国际市场需求量 (1)总体而言,出口量小于进口量。我国的陶粒砂产品占据整个北美市场的13%,平均每年的业务总量达30亿美元; (2)目前国际市场对石油压裂支撑剂的年需求量约300 万吨,对高强度压裂支撑剂的需求量约60 万吨。资料显示:世界第一产油国俄罗斯石油支撑剂年需求量60 万吨。南美、北美、苏丹、委内瑞拉、印尼、哈萨克斯坦、澳大利亚等国的年需求量250 万吨。 三、行业现状 1、发展速度 该行业发展较慢,市场规模年均增长率约为15%。企业总产能年均增速约为12%。 2、企业现状 企业数量众多,大多数是小型企业,产量低,技术含量低。 3、行业增长速度 我国石油压裂支撑剂行业的增长速度约为10%。 4、对该行业的投资 四、行业竞争情况 1、竞争要素 (1)技术水平、企业规模、研发能力、营销渠道、原材料的获得。 (2011-2016 年中国石油压裂支撑剂行业市场运营格局及投资商机研究报告) 2、竞争手段 (1)主要集中在产品价格上。

硅烷处理剂

硅烷处理剂 前言概述 引进国外最新转化膜技术,结合本研发中心的“水溶共聚结晶技术”,开发出的“硅烷处理剂”,可取代磷化产品,用于涂装前处理,本剂形成的转化膜是一种较为致密的均匀的微孔隙的微纳米结晶三维立体网型交联封闭膜,该膜厚度约为0.5μm,可提高涂装附着力“硅烷处理剂”是本科研中心“金五规划”的重点培育项目,详情见本说明书。 产品用途 1、要求取代磷化,且要求环保的场合,可以使用本品有效取代; 2、要求取代磷化,且要求杜绝酸性腐蚀的场合,可以使用本品有效取代; 3、适用于碳钢、碳钢类合金钢、铸铁等黑色金属的涂装前处理、防锈; 4、使用传统的水性防锈剂,影响附着力的场合,可使用本品有效替代; 5、对于要求水性防锈后,后期配套喷漆、喷粉、喷塑、电泳涂装,增加附着力的场合。选用本 品为最佳选择; 性能特点 ●无锈蚀现象。 在连续施工场合的工艺线上,不会出现腐蚀或返锈的现象; ●无附着力缺陷。 与漆膜涂层具有极佳的附着力,克服了传统水性防锈剂影响附着力的缺点; 涂装附着能力优于铁系磷化液,等同于锌系磷化的附着力。 ●无磷、无铬、无亚硝酸盐、无镍、无铜、无氟、无锌、无锰、无重金属离子污染。 减轻了水处理负担,对操作工人及环境更友好; ●无酸性腐蚀。不含磷酸、硝酸、氢氟酸及有机酸。 本品呈中性范围,克服了传统磷化液的酸蚀性。不会腐蚀金属,不会腐蚀人体; ●无强氧化性。 杜绝了亚硝酸钠、六价铬等传统钝化防锈剂对人体的危害; ●无繁琐的工艺程序。 直接浸泡、喷淋、涂刷均可。施工后无需水洗,直接晾干、风干或烘干即可; ●无色变现象。 可以杜绝传统磷化处理后,金属表面色变的现象。传统磷化液,磷化后,表面出现灰色、黑色、蓝紫色、彩色等显色现象,使金属失去原色。本剂处理后的金属表面呈原色,不影响金属的质感和色泽。 ●无需表调。 只要工件表面洁净即可。 ●无需经常添加促进剂。 体系性能稳定,不需额外添加其它助剂。 ●无沉渣,无需经常维护。

10万吨陶粒砂(石油压裂支撑剂)生产线项目可行性研究报告

10万吨陶粒砂(石油压裂支撑剂)生产线项目 可行性研究报告

柳林县森泽特种耐火材料有限责任公司 二○一二年三月 目录 第一章总论 1.1 项目概况 1.2 项目建设单位概况 1.3 项目提出的背景 1.4 项目报告编制依据和原则 1.5 报告编制范围 1.6 建设规模及内容 1.7 主要经济技术指标 1.8 研究结论 1.9 存在问题与建议 第二章项目建设的必要性和产业关联度分析 2.1 建设的必要性 2.2 产业关联度分析 第三章市场需求分析 3.1产品简介 3.2 石油压裂支撑剂市场前景分析 第四章主要原辅材料供应 4.1 主要原材料供应与来源

第五章生产工艺 5.1 产品技术特点优势 5.2 工艺说明 5.3 工艺技术特点和优势 5.4 产品方案 5.5 设备选型 第六章建厂条件与厂址选择 6.1 项目选址 6.2 建设条件 6.3 公用配套工程 第七章土建工程技术方案 7.1 设计指导思想 7.2 编制原则 7.3 建设内容 7.4 总平面布置 7.5 土建 7.6 公用工程 7.7 给排水方案 7.8 供电方案 第八章环境保护 8.1 设计依据 8.2 项目对区域环境影响分析及污染治理措施 8.2.1 施工期环境影响分析及治理措施 8.2.1 营运期环境影响分析及治理措施 8.3 环境影响评价初步结论 8.4 绿化 8.5 水土流失与水土保持 第九章消防

第十章节能 10.1 编制依据 10.2 设计原则 10.3节能措施综述 10.4 节能效果分析 10.5 资源综合利用 第十一章劳动安全与工业卫生 11.1 编制依据 11.2 危害因素和危害程度 11.3 安全措施方案 11.4 劳动卫生 第十二章管理体制及定员 12.1 管理体制 12.2 组织机构 12.3 劳动定员 12.4 人员培训 第十三章项目实施计划 13.1 建设工期 13.2 进度安排 13.3 建设期管理 13.4 项目进度管理 13.5 项目费用管理 13.6 项目质量管理 第十四章投资估算与资金筹措 14.1 投资估算 14.2 费用估算说明 14.3 资金筹措 14.4 资金使用计划

金属表面处理环保新技术——硅烷化处理

金属表面处理环保新技术——硅烷化处理[摘要] 硅烷化处理是以有机硅烷水溶液为主要成分对金属或非金属材料进行表面处理的过程。在涂装行业,涂装前的表面处理以磷化为主,硅烷化处理与传统磷化相比具有节能、环保和降低成本的优点。本文简述了硅烷化处理的特点、基本原理、施工工艺等。[关键词] 硅烷;表面处理;磷化硅烷化处理是以有机硅烷为主要原料对金属或非金属材料进行表面处理的过程。硅烷化处理与传统磷化相比具有以下多个优点:无有害重金属离子,不含磷,无需加温。硅烷处理过程不产生沉渣,处理时间短,控制简便。处理步骤少,可省去表调工序,槽液可重复使用。有效提高油漆对基材的附着力。可共线处理铁板、镀锌板、铝板等多种基材0 基本原理硅烷含有两种不同化学官能团,一端能与无机材料(如玻璃纤维、硅酸盐、金属及其氧化物)表面的羟基反应生成共价键;另一端能与树脂生成共价键,从而使两种性质差别很大的材料结合起来,起到提高复合材料性能的作用。硅烷化处理可描述为四步反应模型,(1)与硅相连的3个Si-OR基水解成Si-OH;(2)Si-OH之间脱水缩合成含Si-OH的低聚硅氧烷;(3)低聚物中的Si-OH与基材表面上的OH形成氢键;(4)加热固化过程中伴随脱水反应而与基材形成共价键连接,但在界面上硅烷的硅羟基与基材表面只有一个键合,剩下两个Si-OH或者与其他硅烷中的Si-OH缩合,或者游离状态。为缩短处理剂现场使用所需熟化时间,硅烷处理剂在使用之前第一步是进行一定浓度的预水解。①水解反应:在水解过程中,避免不了在硅烷间会发生缩合反应,生成低聚硅氧烷。低聚硅氧烷过少,硅烷处理剂现场的熟化时间延长,影响生产效率;低聚硅氧烷过多,则使处理剂浑浊甚至沉淀,降低处理剂稳定性及影响处理质量。 ②缩合反应:成膜反应是影响硅烷化质量的关键步骤,成膜反应进行的好坏直接影响涂膜耐蚀性及对漆膜的附着力。因此,对于处理剂的PH值等参数控制显的尤为重要。并且对于硅烷化前的工件表面状态提出了更高的要求:1、除油完全;2、进入硅烷槽的工件不能带有金属碎屑或其他杂质;3、硅烷化前处理最好采用去离子水。③成膜反应:其中R为烷基取代基,Me为金属基材成膜后的金属硅烷化膜层主要由两部分构成:其一即在金属表面,硅烷处理剂通过成膜反应形成反应③产物,二是通过缩合反应形成大量反应②产物,从而形成完整硅烷膜,金属表面成膜状态微观模型可描述为图1所示结构。1 硅烷处理与磷化的比较随着涂装行业中环保压力的逐渐增大,环保型涂装前处理产品以代替传统磷化如今显的尤为重要。硅烷前处理技术做为磷化替代技术之一,目前已引起了世界涂装行业的广泛关注。与传统磷化相比,硅烷处理技术具有环保性(无有毒重金属离子)、低能耗(常温使用)、低使用成本(每公斤处理量为普通磷化的5-8倍),无渣等优点。美国已于上世纪90年代就开始对金属硅烷前处理技术进行理论研究,欧洲于上世纪90年代中期也开始着手对于硅烷进行试探性研究。我国在本世纪初迫于环保方面的巨大压力,各大研究机构及生产企业也着手对硅烷进行研究。1.1 工位工序方面比较硅烷化处理对传统磷化处理在操作工艺上有所改进,在工艺过程方面现有磷化处理线无需改造即可投入硅烷化生产。表1对传统磷化工艺和硅烷化处理进行比较。传统磷化硅烷化传统磷化硅烷化①预脱脂★★②脱脂★★③水洗★★④水洗★★⑤表调★☆⑥表面成膜★★⑦水洗★☆⑧水洗★☆注:★—需要☆—不需要表1 磷化与硅烷化工位布置比较由表1可见,硅烷化处理与磷化处理相比较可省去表调及磷化后两道水洗工序。因硅烷化处理时间短,因此在原有磷化生产线上无需设备改造,只需调整部分槽位功能即可进行硅烷化处理:(1)对于悬链输送方式改造,可将①预脱脂、②脱脂、④水洗、保留;③水洗改为脱脂槽;⑤表调、⑥磷化改为水洗槽;⑦水洗改为硅烷化处理;⑧备用。在改换槽位功能的同时提高链速进行生产,以加快前处理生产节拍,提高生产率。1.2 处理条件方面比较传统磷化处理因沉渣、含磷及磷化后废水等环保问题,一直是各涂装生产企业为之困扰的问题。随着国家对环保及节能减排的重视程度不断提高,在未来时间里,涂装行业的环保及能耗问题会越来突出。硅烷技术的推出,对于整个涂装行业的前处理环保及节能降耗问题,进行了革命性的改

石油压裂支撑剂行业情况

二、市场情况、产品的市场体量1年复苏回暖,中石油在2015年度过了一段冷却期,陶粒砂市场在)(1使用量:2014 年度网络公示显示:陶粒砂使用量已从年的50度万吨;2015212008年的万吨上升至石油对外依存度继续增大。为了满足国内日2()市场规模:国内石油需求量继续增加,与此相对应的就是相关产品生产的迅速扩大。,益增加的石油需求石油开采业发展迅速。发展比较迅速我国石油压裂支撑剂行业在这段时间,,20%市场规模增速达到。、产品的市场销售情况2(单位:亿元)

3、国内市场需求量 (1)随着石油天然气工业的发展,石油天然气井的深度越来越大,开采的难度越来越大。例如,塔里木油田的深度达到了6500 米以上。据资料介绍,中国低渗透型矿床占中国未开采总量的55%以上,因此国内对高强度陶粒产品的需求量必将增大。目前我国石油压裂支撑剂年总需求量约为70 万吨。其中,大庆、塔里木、长庆、中原等几大油田,约需45 万吨以上;随着油价的升高、开采力度的加大,对支撑剂的需求量还在快速增长。2012需求将达120万吨,年均增长率约15%。 4、进出口及国际市场需求量 (1)总体而言,出口量小于进口量。我国的陶粒砂产品占据整个北美市场的13%,平均每年的业务总量达30亿美元; (2)目前国际市场对石油压裂支撑剂的年需求量约300 万吨,对高强度压裂支撑剂的需求量约60 万吨。资料显示:世界第一产油国俄罗斯石油支撑剂年需求量60 万吨。南美、北美、苏丹、委内瑞拉、印尼、哈萨克斯坦、澳大利亚等国的年需求量250 万吨。 三、行业现状 1、发展速度 该行业发展较慢,市场规模年均增长率约为15%。企业总产能年均增速约为12%。 2、企业现状 企业数量众多,大多数是小型企业,产量低,技术含量低。 3、行业增长速度 我国石油压裂支撑剂行业的增长速度约为10%。 4、对该行业的投资 (单位:亿元) 年度投资金额增长率 年2009 4.7 2011 年32% 6.2 年201213% 7 四、行业竞争情况、竞争要素1(1)技术水平、企业规模、研发能力、营销渠道、原材料的获得。 (2011-2016 年中国石油压裂支撑剂行业市场运营格局及投资商机研究报告)

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

10万吨陶粒砂(石油压裂支撑剂)生产线项目可行性研究报告

10万吨陶粒砂(石油压裂支撑剂) 生产线项目 可行性研究报告

目录第一章总论 1.1 项目概况 1.2 项目建设单位概况 1.3 项目提出的背景 1.4 项目报告编制依据和原则 1.5 报告编制范围 1.6 建设规模及内容 1.7 主要经济技术指标 1.8 研究结论 1.9 存在问题与建议 第二章项目建设的必要性和产业关联度分析 2.1 建设的必要性 2.2 产业关联度分析 第三章市场需求分析 3.1产品简介 3.2 石油压裂支撑剂市场前景分析 第四章主要原辅材料供应 4.1 主要原材料供应与来源 第五章生产工艺 5.1 产品技术特点优势 5.2 工艺说明 5.3 工艺技术特点和优势 5.4 产品方案 5.5 设备选型

第六章建厂条件与厂址选择 6.1 项目选址 6.2 建设条件 6.3 公用配套工程 第七章土建工程技术方案 7.1 设计指导思想 7.2 编制原则 7.3 建设内容 7.4 总平面布臵 7.5 土建 7.6 公用工程 7.7 给排水方案 7.8 供电方案 第八章环境保护 8.1 设计依据 8.2 项目对区域环境影响分析及污染治理措施 8.2.1 施工期环境影响分析及治理措施 8.2.1 营运期环境影响分析及治理措施 8.3 环境影响评价初步结论 8.4 绿化 8.5 水土流失与水土保持 第九章消防 第十章节能 10.1 编制依据 10.2 设计原则 10.3节能措施综述 10.4 节能效果分析 10.5 资源综合利用

_ 第十一章劳动安全与工业卫生 11.1 编制依据 11.2 危害因素和危害程度 11.3 安全措施方案 11.4 劳动卫生 第十二章管理体制及定员 12.1 管理体制 12.2 组织机构 12.3 劳动定员 12.4 人员培训 第十三章项目实施计划 13.1 建设工期 13.2 进度安排 13.3 建设期管理 13.4 项目进度管理 13.5 项目费用管理 13.6 项目质量管理 第十四章投资估算与资金筹措 14.1 投资估算 14.2 费用估算说明 14.3 资金筹措 14.4 资金使用计划 第十五章财务评价 15.1 评价依据 15.2 基础数据 15.3 收入估算 15.4 总成本费用估算 15.5 利润总额及分配 15.6 财务评价指标 15.7 财务评价结论

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,

陶粒支撑剂定稿

六支撑剂 在水力压裂中压裂效果成败,有效期长短主要取决于支撑剂的质量。支撑剂的作用在于填充压裂产生的水力裂缝,使之不再重新闭合,且形成一个具有高导流能力的流动通道。在储层特征与裂缝几何尺寸相同的条件下,压裂井的增产效果及其生产动态取决于裂缝的导流能力。裂缝导流能力是指裂缝传导(输送)储层流体的能力,并以裂缝支撑剂层的渗透率(K f)与裂缝支撑缝宽(W f)的乘积[KW]f来表示。一般认为,支撑剂的类型、物理性质(粒度、强度、球度、圆度、密度等)及其在裂缝中的分布(铺置浓度,即单位裂缝面积上的支撑剂量)、以及裂缝的闭合压力是控制裂缝导流能力的主要因素。因此,掌握支撑剂的物理性质及影响裂缝导流能力的诸多因素,有利于合理的选择支撑剂,有利于对压裂液与支撑剂等压裂材料提出更为确切的要求。本节将从支撑剂的类型、支撑剂的物理性质及其评价方法、裂缝导流能力及其影响因素、以及支撑剂的选择等四方面对支撑剂与裂缝导流能力做一介绍。其中引用或节录了中国石油天然气总公司颁发的“水力压裂用支撑剂的评定标准”(SY/T 5108—1997);(SY/T 6302—1997)及美国石油学会推荐方法(API RP56,RP61)中的有关内容,以供掌握使用。 1、支撑剂的类型 压裂用支撑剂可大致分为天然的与人造的两大类。前者以石英砂为代表,后者则是通常称之为陶粒的支撑剂。 目前在油气增产市场上广泛使用五种价格不同的标准支撑剂,它们是天然石英砂、人造的中等强度低密度的硅酸铝支撑剂(陶粒砂)、人造的中等强度高密度的氧化铝和硅酸盐支撑剂、高强度的铝矾土和高强度的硅酸锆支撑剂、以及涂敷预固化涂层和可固化涂层树脂的天然砂或人造支撑剂。它们在油气生产中各自起到不同的作用。 1)石英砂 石英是自然界中构成地壳的主要成分。部分以硅酸盐化合物状态存在,构成各种矿物岩石。另一部分则以独立状态存在,成为单独的矿物实体。虽然它们的化学成分相同,均为SiO2,但由于造岩成矿的条件不同,而有许多种状态和同质异形体;又由于成矿之后所经历的地质作用不同,而呈现出多种状态。从最纯的结晶态二氧化硅(水晶)到无定型的二氧化硅(蛋白质)均属它的范畴。不同的工业部门和科技领域,只能依据自身的要求,从不同的角度去研究和利用它们。 在石油工业中,在水利压裂增产之初,只有天然石英砂是始终并用作支撑剂压裂的材料。一般用于水利压裂的石英砂颗粒相对密度为2.65 g/㎝3左右,体积密度1.60 g/㎝3~1.65 g/㎝3之间。属于α-石英和β-石英晶型。 50年代和60年代开发了不同的砂源并通过筛选,得到了更高的导流能力。60年代世界上渥太华砂、得克萨斯洲砂、约旦砂、圣彼得砂翁渥克砂等已成为可用的标准压裂砂。70年代至今我国也筛选了兰州砂、承德砂、岳阳砂和内蒙砂等作为标准砂广泛的应用在水利压裂中。 (1)特征 石英砂是一种分布广、硬度大的稳定产物。石英的外观视其种类而异,有的呈乳白色,有的呈灰色半透明状态,断面有玻璃光泽或脂肪光泽,加热后颜色自行消失,条痕为白色,性脆而坚硬。热稳定好,加热到1500℃时开始软化,在1710~1756℃时熔化,但没有固定的

金属表面硅烷化处理的研究现状

金属表面硅烷化处理的研究现状 李晓媛,李莉 摘要:随着人们对管饱的日益重视,硅烷偶联剂金属表面处理技术逐渐成为研究重点。本文简要介绍了硅烷偶联剂的结构以及成膜机理,概述了硅烷化处理技术最新的研究进展并对该技术的应用进行了展望。 关键字:硅烷偶联剂;表面处理;环保 1.引言 当前在涂装行业中,喷漆、喷粉或电泳前处理多采用磷化工艺,传统的磷化使用温度大多为30~50℃,因此需要辅助加热设备及热源对磷化槽进行加热;磷化处理后产生的大量磷化渣也需要一套除渣装置与之配套;并且工艺过程含锌、锰、镍等重金属离子。这些都导致磷化的污染较重且成本较高。随着国家对涂装行业的环保性要求以及使用成本的方面的考虑,寻找一种新型的环保、节能、低排放、地使用成本的表面处理技术成为人们研究的重点。 硅烷偶联剂用于金属表面处理的早期理论出现于1985年,即“不经阳极化处理等高成本表面处理,硅烷偶联就可以防腐蚀并能提高金属附着力”的论断。硅烷化处理是以硅烷偶联剂为主要原料对金属或非金属材料进行表面处理的过程。其与传统磷化相比具有以下多优点;无有害重金属离子、磷化沉渣、无需加热,处理时间短,处理步骤少,可省去毕表调工序,槽液可重复使用,有效提高油漆对基材的附着力,可共线处理铁板、镀锌板、铝板等多种基材。

2.硅烷偶联剂的结构与机理 硅烷偶联剂是一类具有特殊结构的有机化合物,它最大的特点就是含有有机和无机官能团,能够同时与阴极和非极性物质产生结合力。硅烷偶联剂的化学通式为Y-R-SiX3,式中Y是通过碳原子与硅相连的非水解性有机官能团,可与粘结剂机体中的树脂发生反应从而提高相容性,如氨基、乙烯基、环氧基、巯基、丙烯酰氧丙基等;R 为具有饱和和不饱和键的碳链,将Y和Si原子连接起来;X为水解性基团,如卤族、烷氧基、异丙烯氧基等。这些基团水解形成的硅醇能与金属表面的氧化物或烃基反应,从而在金属表面形成Si-O-Si三维网络结构的硅烷莫,防止金属的腐蚀。现在市售的硅烷偶联剂都是烷氧基为水解性基团的硅烷,主要原因是烷氧基水解产物是醇,为中性,比较稳定。简言之,正因为硅烷偶联剂分子中存在这两种功能团,才使得两种性质相差悬殊的物质能够通过它连接起来,从而改善了金属基材和涂层间的结合力[4,5,6]。 硅烷偶联剂在使用前通常会进行水解。硅烷膜的形成一般为以下步骤[7,8]; (1)SiX基水解成SiOH (2)SiOH基团与金属表面的MeOH基团(其中,Me=金属)形成氢键而快速附于金属表面,形成Me-O-Si键。 (3)SiOH之间脱水缩合形成SI-O-Si键。 经过硅烷化反应金属表面上就形成一层致密的具有Me-O-Si和Si-O-Si特征结构的保护膜,改硅烷膜在烘干过程中和后道的电泳漆

相关主题
文本预览
相关文档 最新文档