当前位置:文档之家› 五种计算公式.

五种计算公式.

五种计算公式.
五种计算公式.

人力资源管理师三级(三版)计算题汇总

历年考点:定员,劳动成本,人工成本核算,招聘与配置,新知识:劳动定额的计算

一、劳动定额完成程度指标的计算方法

1.按产量定额计算产量定额完成程度指标=(单位时间内实际完成的合格产品产量/产量定额)×100%

2.按工时定额计算工时定额完成程度指标=(单位产品的工时定额/单位产品的

【能力要求】:

一、核定用人数量的基本方法(原)

(一)按劳动效率定员根据生产任务和工人的劳动效率,以及出勤率来计算。

实际上是根据工作量和劳动定额来计算。适用于:有劳动定额的人员,特别是以手工操作为主的工种。公式中:工人劳动效率=劳动定额×定额完成率。劳动定额可以分为工时定额和产量定额两种基本形式,两者转化关系为:

所以无论采用产量定额还是工时定额,两者计算的结果都是相同的。一般来说,某工种生产产品的品种单一,变化较小而产量较大时,宜采用产量定额来计算。可采用下面的公式:

如果把废品率考虑进来,则计算公式为:

二、劳动定员

【计算题】:

某企业主要生产A、B、C 三种产品,三种产品的单位产品工时定额和2011年的订单如表所示。预计该企业在2011 年的定额完成率为110%,废品率为 2.5%,员工出勤率为95%。

请计算该企业2011 年生产人员的定员人数

【解答】:

A 产品生产任务总量=150×100=15000(工时)

B 产品生产任务总量=200×200=40000(工时)

C 产品生产任务总量=350×300=105000(工时)

D 产品生产任务总量=400×400=160000(工时)

总生产任务量=15000+40000+105000+160000=320000(工时)

2011 年员工年度工日数=365-11-104=250(天/人年)

【解答】:

320000=250 ×8 ×1.1 ×0.98 ×(1 -0.025)≈152(人)

(二)按设备定员

根据设备需要开动的台数和开动的班次、工人看管定额,以及出勤率来计算定员人数。

属于按效率定员的一种特殊形式,主要适用于机械操作,使用同类型设备,采用多机床看管的工种。

(三)按岗位定员

根据岗位的多少,以及岗位的工作量大小来计算定员人数的方法。适用于连续性生产装置(或设备)组织生产的企业,以及一些既不操纵设备又不实行劳动定额的人员。

可分为以下两种

1.设备岗位定员。适用于设备开动时间内,必须由单人或多岗位多人共同看管的场合。具体定员时要考虑:

(1)看管(操纵)的岗位量

(2)岗位的负荷。(不足 4 小时的;三高作业连续不得超过 2 小时)

(3)每一岗位危险和安全程度,需走动的距离,可否交叉作业,设备仪器的复杂程度,需要听力、视力、触觉、感觉及精神集中度

(4)生产班次、倒班及替班的方法。对于多人一机共同进行操作的岗位,其定员人数的计算公式如下:

2.工作岗位定员。

适用于有一定岗位,但没有设备,而又不能实行定额的人员。如:检修工、警卫员、收发员等。这种定员方法和单人操纵的设备岗位定员的方法基本相似,主要根据工作任务、岗位区域、工作量,并考虑实行兼职工作的可能性等因素来确定定员人数。

(四)按比例定员

某一类人员总是和另一类人员存在着一定的数量依存关系,企业定员时应根据国家或主管部门确定的比例进行计算

某类人员的定员数=员工总数或某一类人员的总数×定员标准主要适用于:企业食堂、托幼工作人员、卫生保健人员等服务人员的定员。对于企业中某些非直接生产人员、辅助生产工人、工会、妇联、团委等脱产人员也可以比照此种方法。(五)按组织机构、职责范围和业务分工定员主要适用于企业管理人员与工程技术人员的定员总结:

一、成本效益评估(调整)

1.成本效用评估是对招聘成本所产生的效果进行的评估。包括:

总成本效用=录用人数/招聘总成本

招募成本效用=应聘人数/招募期间的费用

选拔成本效用=被选中人数/选拔期间的费用

录用成本效用=正式录用的人数/录用期间的费用

2.招聘收益成本比

招聘收益成本比=所有新员工为组织创造的总价值/招聘总成本

招聘收益-成本越高,说明招聘工作越有效。

二、人员录用数量评估

录用比=录用人数/应聘人数×100%

招聘完成比=录用人数/计划招聘人数×100%

当招聘完成比大于等于100%时,则说明在数量上完成或超额完成了招聘任务;

应聘比=应聘人数/计划招聘人数×100%

应聘比则说明招募的效果,该比例越大,则招聘信息发布的效果越好。

三、匈牙利分析法

在解决员工任务指派问题是企业普遍采用——匈牙利法应用条件:

1.员工数目与任务数目相等;

2.求解的是最小化问题,如工作时间最小化,费用最小化等。

(注:教材中的例题)计算步骤:

1.根据所给表格建立矩阵;

2.对矩阵进行行约减(每一行减去本行最小数)和列约减(没有0 的列减去本列最小数);

3.画“盖0”线(从含0 最多的行或列开始);

4.数据转换(“盖0”线的数目小于矩阵维数,将未被“盖0”线覆盖的数减去最小数,“盖0”线交叉点加上最小数);

5.求最优解。

计算题

某车间产品装配组有甲、乙、丙、丁四位员工,现有A、B、C、D四项任务,在现有生产技术及组织条件下,每位员工完成每项工作所需要的工时如表1所示,请运用匈牙利法求出员工与任务的最佳分派方案,以保证完成任务的总时间最短,并求出完成任务需要的总工时。

表1 每位员工完成四项工作任务的的工时统计表单位:工时

计算题提示 [2007年5月]

匈牙利法

1 构成矩阵

2 使每行每列至少包含一个零 (用每行每列数分别减该行或该列最小数)

3 画盖零的直线数等于维数

a 首先从零最多的行或列画盖零的直线

b 直线数<维数,将进行数据转换

(找未被直线盖的最小数;所有未被直线盖的数-最小数;两直线相交点+最小数)

c 直线数>=维数,完成第三步

4 求最优解

a 找只有一个零的行或列,将其打√

b 将其对应的行或列的其它零打×

c 将最后打√的零对应的数(表格中)相加,即为最少工作时间

最后 =5+8+9+12=34

【能力要求】:(计算题出题点)

四、核算人工成本的基本指标基本指标包括:

五、核算人工成本投入产出指标

二、合理确定人工成本的方法

确定人工费支出的极限的方法:

(一)劳动分配率基准法

劳动分配率:是指企业人工成本占企业附加价值的比率。

附加值:由企业本身所创造的价值,是可以用来进行分配的收入。可以用扣除法和相加法计算。

应用劳动分配率基准法的步骤:

1.计算目标销售额

目标销售额=目标人工费用/人工费用率

=目标人工费用/(目标净产值率×目标劳动分配率)

2.在计算上年度和确定本年度目标劳动分配率的基础上,根据本年度的目标销售额计算出本年目标人工费用,并计算出薪酬总额的增长幅度

(二)销售净额基准法

根据前几年实际人工费用率、上年平均人数、平均薪酬和本年目标薪酬增长率,求出本年的目标销售额,并以此作为本年应实现的最低销售净额。

其公式为:目标人工成本=本年计划平均人数×上年平均薪酬×(1+计划平均薪酬增长率)

目标销售额=目标人工成本÷人工费用率

利用人工费用率(人工费用/销货额)还可计算销售人员每人的目标销售额。

步骤:先确定推销员的人工费用率,再根据推销员的月薪或年薪及推销员人工费用率计算推销员的年度销售目标。

计算公式:销售人员年度销售目标=推销人工费用/推销员的人工费用率

还有一种根据毛利率及人工费用率,计算推销员目标销售毛利额及推销人员毛利与工资的大致比例。

其公式是:推销人员人工费用率=推销人员人工费用总额/毛利额

目标销售毛利=某推销员工资/推销员人工费用率

(三)损益分歧点基准法

指在单位产品价格一定的条件下与产品制造和销售及管理费用相等的销货额,或者说达到这一销货额的产品销售数量。还可以简要概括为公司利润为零时的销货额或销售量。

损益分歧点,可用公式表示为:

销售收人=制造成本+销售及管理费用

【能力要求】:

一、各类标准工作时间的计算方法(新)

1.制度工作时间的计算

年制度工作日=365 天-104 天-11 天=250天

季制度工作日=250 天÷4 季=62.5天/季

月制度工作日=250 天÷12 月=20.83天

年制度工作工时=250×8=2000(工时/人·年)

季制度工作工时=62.5×8=500(工时/人·季)

月制度工作工时=2000÷12=166.67(工时/人·月)

2.日工资、小时工资的折算

月计薪天数=(365-104)÷12=21.75(天/月)

日工资=月工资收入÷月计薪天数

小时工资=月工资收入÷(月计薪天数×8 小时)

初二数学利用公式法(完全平方公式)因式分解课堂

设计思路: 教师是学习活动的引导者和组织者,学生是课堂的主人。教师在教学中要充分体现教师的导向作用,尊重学生的个体差异,选择适合自己的学习方式,鼓励学生自主探索与合作交流,让学生经历数学知识的形成与应用过程,鼓励学生的直觉并且运用基本方法进行相关的验证,指导学生注重数学知识之间的联系,不断提高解决问题的能力。 教学过程: 师生问好,组织上课。 师:我们在初一第二学期就已经学习了乘法完全平方公式,请一位同学用文字语言来描述一下这个公式的内容? 生1:(答略) 师:你能用符号语言来表示这个公式吗? 生1:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2 师:不错,请坐。由此我们可以看出完全平方公式其实包含几个公式? 生齐答:两个。 师:接下来有两道填空题,我们该怎么进行填空? a2++1=(a+1)24a2-4ab+=(2a-b)2 生2:(答略) 师:你能否告诉大家,你是根据什么来进行填空的吗? 生2:根据完全平方公式,将等号右边的展开。 师:很好。(将四个式子分别标上○1○2○3○4) 问题:○1、○2两个式子由左往右是什么变形? ○3、○4两个式子由左往右是什么变形? 生3:(答略) 师:刚才的○1和○2是我们以前学过的完全平方公式,那么将这两个公式反过来就有:

a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(板书) 问题:这两个式子由左到右的变形又是什么呢? 生齐答:因式分解。 师:可以看出,我们已将左边多项式写成完全平方的形式,即将左边的多项式分解因式了。 这两个公式我们也将它们称之为完全平方公式,也是我们今天来共同学习的知识(板书课题) 师:既然这两个是公式,那么我们以后遇到形如这种类型的多项式可以直接运用这个公式进行分解。这个公式到底有哪些特征呢?请同学们仔细观察思考一下,同座的或前后的同学可以讨论一下。 (经过讨论之后) 生4:左边是三项,右边是完全平方的形式。 生5:左边有两项能够写成平方和的形式。 师:说得很好,其他同学有没有补充的? 生6:还有一项是两个数的乘积的2倍。 师:这“两个数的乘积”中“两个数”是不是任意的? 生6:不是,而是刚才两项的底数。 师:刚才三位同学都回答得不错,每人都找出了一些特征。再请一位同学来综合一下。 生7:左边的多项式要有三项,有两项是平方和的形式,还有一项是这两个数的积的2倍。右边是两个数的和或差的平方。 教师在学生回答的基础上总结: 1)多项式是三项式 2)有两项都为正且能够写成平方的形式 3)另一项是刚才写成平方项两底数乘积的2倍,但这一项可以是正,也可以是负 4)等号右边为两平方项底数和或差的平方。

(完整版)平方差完全平方公式提高练习题

平方差公式专项练习题 一、选择题 1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示() A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是() A.(a+b)(b+a)B.(-a+b)(a-b)C.(1 3 a+b)(b- 1 3 a)D.(a2-b)(b2+a) 3.下列计算中,错误的有() ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2. A.1个B.2个C.3个D.4个 4.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4. 7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 三、计算题9.利用平方差公式计算:202 3 ×21 1 3 .10.计算:(a+2)(a2+4)(a4+16)(a-2). (1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)- 4016 3 2 . 2.(一题多变题)利用平方差公式计算:2009×2007-20082. (1)一变:利用平方差公式计算: 22007 200720082006 -?.(2)二变:利用平方差公式计算: 2 2007 200820061 ?+ . 二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3). C卷:课标新型题 1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(?1+x+x2+x3)=1-x4. (1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数) (2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______. ②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.

平方差公式和完全平方公式强化练习及答案汇编

平方差公式 公式: ( a+b)(a-b)= a2-b2 语言叙述:两数的和乘以这两个数的差等于这两个数的平方差, . 。 公式结构特点: 左边: (a+b)(a-b) 右边: a2-b2 熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。 (5+6x)(5-6x)中(5+6x) 是公式中的a, (5-6x) 是公式中的b (5+6x) (5+6x)中 (5+6x) 是公式中的a, (5+6x) 是公式中的b (x-2y)(x+2y)中 (x+2y)是公式中的a, (x-2y) 是公式中的b (-m+n)(-m-n)中 (-m-n) 是公式中的a, (-m+n) 是公式中的b (a+b+c)(a+b-c)中(a+b+c)是公式中的a, (a+b-c) 是公式中的b (a-b+c)(a-b-c)中(a-b+c)是公式中的a, (a-b-c) 是公式中的b (a+b+c)(a-b-c)中(a+b+c)是公式中的a, (a-b-c) 是公式中的b 填空: 1、(2x-1)( (2x+1 )=4x2-1 2、(-4x- 7y )( 7y -4x)=16x2-49y2 第一种情况:直接运用公式 1.(a+3)(a-3) 2..( 2a+3b)(2a-3b) 3. (1+2c)(1-2c) 4. (-x+2)(-x-2) 5. (2x+1 2 )(2x- 1 2 ) 6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b) 第二种情况:运用公式使计算简便 1、1998×2002 2、498×502 3、999×1001 4、1.01×0.99 5、30.8×29.2 6、(100-1 3 )×(99- 2 3 ) 7、(20- 1 9 )×(19- 8 9 ) 第三种情况:两次运用平方差公式 1、(a+b)(a-b)(a2+b2) 2、(a+2)(a-2)(a2+4) 3、(x- 1 2 )(x2+ 1 4 )(x+ 1 2 ) 第四种情况:需要先变形再用平方差公式 1、(-2x-y)(2x-y) 2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1) =1-a2b2 第五种情况:每个多项式含三项 1.(a+2b+c)(a+2b-c) 2.(a+b-3)(a-b+3) 3.x-y+z)(x+y-z) 4.(m-n+p)(m-n-p)

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

完全平方公式法练习题

完全平方公式法练习题 一. 选择题: 1. 下列四个多项式:a?b,a?b,?a?b,?a?b中,能用平方差公式分解因式的式子有 A. 1个 B.个 C.个 D.个 2. ?是下列哪个多项式分解因式的结果 A.x2?4y B.x2?4y C. ?9x2?4y D. ?9x2?4y2 3. 下列各式中,能运用完全平方公式分解因式的是2222222 12b2 A. a?b B. a?2ab?4b C. a?ab? D. a?2ab?b422222 2x?k是一个完全平方公式,则k的值为 1111 A. B. C. D.3364. 如果x?2 5. 如果9a?kab?25b是一个完全平方式,则k的值 A. 只能是30 B. 只能是?30 C. 是30或?30 D. 是15或?15 6. 把2?6?9分解因式为 22A. B. x?C. D. 22 7. a?16因式分解为 A. B. C. D. 8.a?4a?1因式分解为 A. B. C. D.

22A. B. C. D. 222222222222210. 把a?2ab?b分解因式为 A. c B. c C. c D. c 二. 填空题: 1. 把x?12x?36因式分解为______。 第1页2222222 2. 把1?6ab?9ab因式分解为______。 3. 把4m?n因式分解为______。2326 b因式分解为______。. 把144a?256 5. 把16x16?y4z4因式分解为______。 6. 把25abc241622?1因式分解为______。 7. 把2?2?2分解因式为______。 8. 把169y2?25x2?130xy因式分解为______。 9. 把2?8?162分解为______。 10. 把4?81b4因式分解为______。 三. 解答题: 1. 把下列各式因式分解: ?ab?16ab?64ab a?2a?1 3223bxy?4xy?2xy 16a?72ab?8142245433542 2acd?ca?ad 2. 因式分解4ab?

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数学教案的运用完全平方公式法

数学教案的运用完全平方公式法 1。使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法; 2。理解完全平方式的意义和特点,培养学生的判断能力。 3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力. 4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。 1。问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法? 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解。我们学过的因式分解的方法有提取公因式法及运用平方差公式法。 2。把下列各式分解因式: (1)ax4-ax2 (2)16m4-n4。 解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1) (2) 16m4-n4=(4m2)2-(n2)2 =(4m2+n2)(4m2-n2) =(4m2+n2)(2m+n)(2m-n)。 问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

答:有完全平方公式。 请写出完全平方公式。 完全平方公式是: (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。 这节课我们就来讨论如何运用完全平方公式把多项式因式分解。 和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到 a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。式子 a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式。运用这两个式子,可以把形式是完全平方式的多项式分解因式。 问:具备什么特征的多项是完全平方式? 答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式。 问:下列多项式是否为完全平方式?为什么? (1)x2+6x+9; (2)x2+xy+y2; (3)25x4-10x2+1; (4)16a2+1。

平方差与完全平方公式教案与答案

平方差与完全平方公式教案与答案

15.2.1 平方差公式 知识导学 1.平方差公式:(a+b)(a-b)=a2-b2 即两个数的和与这两个数的差的积,等于这两个数的平方差。 2. 平方差公式的灵活运用:通过变形,转化为符合平方差公式的形式,也可以逆用平方差公式,连续运用平方差公式,都可以简化运算。 典例解悟 例1. 计算:(1)(2x+3y)(2x-3y) (2) (-4m2-1)(-4m2+1) 解:(1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2 (2) (-4m2-1)(-4m2+1)=(-4m2)2-12=16m4-1 感悟:正确掌握平方差公式的结构,分清“相同项”与“相反项”,再结合已学知识计算本题。其中第(2)题中的相同项是-4m2,不能误以为含有负号的项一定是相反项。 例2.先化简,再求值:(x+2y)(x-2y)-(2x-y)(-2x-y),其中x=8,y=-8. 解:原式=(x2-4y2)-(y2-4x2)=5x2-5y2. 当x=8,y=-8时,原式=5×82-5×(-8)2=0.

感悟:本题是整式的混合运算,其中两个多项式相乘符合平方差公式的特征。在本题(2x-y)(-2x-y)中,相同项是-y,相反项是2x与-2x,应根据加法的交换律,将此式转化为(-y+2x)(-y-2x)。阶梯训练 A级 1.下列各多项式乘法中,可以用平方差公式计算的是() A.(-a-b)(a+b) B.(-a-b)(a-b) C.(-a+b)(a-b) D.(a+b)(a+b) 2.在下列各式中,计算结果是a2 -16b2 的是() A.(-4b+a)(-4b-a) B.(-4b+a)(4b-a) C.(a+2b)(a-8b) D.(-4b-a)(4b-a) 3.下列各式计算正确的是() A.(x+3)(x-3)=x2 -3 B.(2x+3)(2x-3)=2x2 -9 C.(2x+3)(x-3)=2x2 -9 D.(2x+3)(2x-3)=4x2 -9 4.(0.3x-0.1)(0.3x+0.1)=_________ 5. (2 3x+3 4 y) (2 3 x-3 4 y) = _________ 6.(-3m-5n)(3m-5n)=_________

数列求和公式证明

1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边 数学归纳法可以证 也可以如下做比较有技巧性 n^2=n(n+1)-n 1^2+2^2+3^2+......+n^2 =1*2-1+2*3-2+....+n(n+1)-n =1*2+2*3+...+n(n+1)-(1+2+...+n) 由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 所以1*2+2*3+...+n(n+1) =[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3 [前后消项] =[n(n+1)(n+2)]/3 所以1^2+2^2+3^2+......+n^2 =[n(n+1)(n+2)]/3-[n(n+1)]/2 =n(n+1)[(n+2)/3-1/2] =n(n+1)[(2n+1)/6] =n(n+1)(2n+1)/6 2)1×2+2×3+3×4+...+n×(n+1)=? 设n为奇数, 1*2+2*3+3*4+...+n(n+1)= =(1*2+2*3)+(3*4+4*5)+...+n(n+1) =2(2^2+4^2+6^2+...(n-1)^2)+n(n+1) =8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1) =8*[(n-1)/2][(n+1)/2]n/6+n(n+1) =n(n+1)(n+2)/3 设n为偶数, 请你自己证明一下! 所以, 1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3 设an=n×(n+1)=n^2+n Sn=1×2+2×3+3×4+...+n×(n+1) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

运用公式法

运用公式法 教学设计示例――完全平方公式(1) 教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2.理解完全平方式的意义和特点,培养学生的判断能力.3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。教学重点和难点重点:运用完全平方式分解因式. 难点:灵活运用完全平方公式公解因式.教学过程设计一、复习1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法? 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法. 2.把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4. 解(1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2) 16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n).问:我们学过的乘法公式除了平方差公式之外,还有哪些公式? 答:有完全平方公式.请写出完全平方公式. 完全平方公式是:(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2. 这节1 ————来源网络整理,仅供供参考

课我们就来讨论如何运用完全平方公式把多项式因式分解. 二、新课和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2. 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式. 问:具备什么特征的多项是完全平方式? 答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式. 问:下列多项式是否为完全平方式?为什么? (1)x2+6x+9;(2)x2+xy+y2;(3)25x4-10x2+1;(4)16a2+1. 答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以x2+6x+9=(x+3) . (2)不是完全平方式.因为第三部分必须是2xy. (3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以25x -10x +1=(5x-1) . (4)不是完全平方式.因为缺第三部分. 请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=? 答:完全平方公式为:其中a=3x,b=y,2ab=2·(3x)·y. ————来源网络整理,仅供供参考 2

平方差+完全平方公式

1.若M (3x -y 2)=y 4-9 x 2,则代数式M 应是 ( ) A .-(3 x +y 2) B .y 2-3x C .3x + y 2 D .3 x - y 2 2.( )(1-2x )=1—4 x 2. 3.(-3x +6 y 2)(-6 y 2-3 x )= . 4.(x -y+z )( )=z 2-( x -y )2. 5.(4 x m -5 y 2) (4 x m +5y 2)= . 6.(x+y -z ) (x -y -z )=( ) 2-( ) 2. 7.(m+n+p+q ) (m -n -p -q )=( ) 2-( ) 2. 8.计算. (1)(0.25 x - 41)(0.25 x +0.25); (2)(x -2 y )(-2y - x )-(3x +4 y )(-3 x +4 y ); (3)(2 a + b -c -3d ) (2 a -b -c+3d ); (4) ( x -2)(16+ x 4) (2+x )(4+x 2). 9.某农村中学进行校园改造建设,他们的操场原来是正方形,改建后变为长方形,长方形的长比原来的边长多5米,宽比原来的边长少5米,那么操场的面积是比原来大了,还是比原来小了呢?相差多少平方米? 10.化简. (1)( x - y )( x + y ) ( x 2+ y 2) ( x 4+ y 4)·…·(x 16+ y 16); (2)(22+1)(24+1)(28+1)(216+1). 11.先化简,再求值.(a 2 b -2 ab 2- b 3)÷b -( a+b )(a -b ),其中a = 2 1,b =-1.

平方差公式完全平方公式

乘法的平方差公式 平方差公式的推导 两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式,22 (a+b)(a-b)=a-b,平方差公式结构特征: 左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数; ①右边是乘式中两项的平方差。即用相同项的平方减去相反项的平方 熟悉公式:公式中的a和b既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。 22 (a+b)(a-b)=a-b (5+6x)(5-6x)中是公式中的a,是公式中的b (5+6x)(-5+6x)中是公式中的a,是公式中的b (x-2y)(x+2y)中是公式中的a,是公式中的b (-m+n)(-m-n)中是公式中的a,是公式中的b (a+b+c)(a+b-c)中是公式中的a,是公式中的b (a-b+c)(a-b-c)中是公式中的a,是公式中的b (a+b+c)(a-b-c)中是公式中的a,是公式中的b 填空: 1、(2x-1)( )=4x2-1 2、(-4x+ )( -4x)=16x2-49y2 第一种情况:直接运用公式 1.(a+3)(a-3) 2..( 2a+3b)(2a-3b) 3. (1+2c)(1-2c) 4. (-x+2)(-x-2) 5. (2x+1 2)(2x-1 2 ) 6. (a+2b)(a-2b) 7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)

第二种情况:运用公式使计算简便 1、1998×2002 2、498×502 3、999×1001 4、1.01×0.99 5、30.8×29.2 6、(100-1 3)×(99-2 3 )7、(20-1 9 )×(19-8 9 ) 第三种情况:两次运用平方差公式 1、(a+b)(a-b)(a2+b2) 2、(a+2)(a-2)(a2+4) 3、(x- 1 2)(x2+ 1 4 )(x+ 1 2 ) 第四种情况:需要先变形再用平方差公式 1、(-2x-y)(2x-y) 2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1)

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

因式分解(公式法之完全平方公式与平方差公式)

因式分解基础习题 (公式法) 专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式 1.24x - 2.2 9y - 3.21a - 4.224x y - 5.2125b - 6.222 x y z - 7.2240.019m b - 8.2219 a x - 9.2236m n - 10.2249x y - 11.220.8116a b - 12.222549p q - 13.2422a x b y - 14.41x - 15. 44411681 a b m - 题型(二):把下列各式分解因式 1.22()()x p x q +-+ 2. 22 (32)()m n m n +-- 3.2216()9()a b a b --+ 4.22 9()4()x y x y --+ 5.22()()a b c a b c ++-+- 6.22 4()a b c -+ 题型(三):把下列各式分解因式 1.53x x - 2.22 4ax ay - 3.322ab ab -

4.316x x - 5.2433ax ay - 6.2 (25)4(52)x x x -+- 7.324x xy - 8.343 322x y x - 9.4416ma mb - 10.238(1)2a a a -++ 11.416ax a -+ 12.2216()9()mx a b mx a b --+ 题型(四):利用因式分解解答下列各题 1.证明:两个连续奇数的平方差是8的倍数。 2.计算 ⑴22758258- ⑵22429171- ⑶223.59 2.54?-? ⑷222221 1111(1)(1)(1)(1)(1) 234910---???-- 专题训练二:利用完全平方公式分解因式 题型(一):把下列各式分解因式 1.221x x ++ 2.2441a a ++ 3. 2169y y -+ 4.2 14m m ++ 5. 221x x -+ 6.2816a a -+

平方差和完全平方公式教案(经典)

平方差公式、完全平方公式、整式的化简 【平方差公式】 ()()b a b a b a ——+=22(b a ,可以表示任何数或者代数式,善于观察) 例:(1)()()77—x x + (2)()()1111———m m + (3)()()t s t s 310310+— (4)()()2 2212x x —+ 变式:下列计算对吗?如果不对,请改正 (1)()()22422a b b a a b ——=+ (2)()()2 2n m n m n m —————= 例:计算(1)108112× (2)7 1117610× (3)5.495.50× (4)2567956805678—× (5) ()()b a b a 3232+— (6)()()()() 112121212842+++++ 变式:当41=x 时,求())2 12(21234—)(—x x x x ++ 例:甲、乙两家超市3月份的销售额均为a 万元,在4月和5月这两个月中,甲超市的销售额平均每月增长 X %,而乙超市的销售额平均每月减少x % (1)5月份甲超市的销售额比乙超市多多少 (2)若a=150,x=2,则5月份甲超市的销售额比乙超市多多少 变式:有两块底面呈正方形的长方体金块,它们的高都为h ,较大一块的底面边长比0.5大acm ,较小一块的 底面边长比0.5小acm ,已知金块的密度为19.33 /cm g ,问两金块的质量相差多少?请表示出来

【完全平方公式】 ()2222b ab a b a ++=+(b a ,可以表示任何数或者代数式,善于观察) ()2222b ab a b a +=——(b a ,可以表示任何数或者代数式,善于观察) 例:计算(1)()22b a + (2)()23y x +— (3)()2 32y x —— (4)()2 c b a ++ 例:一块方巾铺在正方形的茶几上,四周都刚好垂下15cm,如果设方巾的边长为a,,怎样求茶几的面积?请用a 的多项式表示 变式:将一张边长为a 的正方形纸板的四角各剪去一个边长为x 的小正方形,然后把它折成一个无盖纸盒,求 纸盒的容积,结果用a ,x 的多项式表示。 ? 例:已知4 5,3= =+xy y x ,你能求出22y x +、()2y x — 、22y x —吗? 【利用公式对整式化简】 整式的化简应遵循:先乘方、再乘除、最后算加减的顺序,能运用乘法公式的则运用公式。总而言之,怎么 简单怎么做,计算顺序不能错 例:口算:(1)298 = (2)2 51= (3)101×99 = (4)2515121+×— =

数列公式大全

数列公式大全 设An为等差数列,d为公差 性质1)An=A1+(n-1)d=Am+(n-m)d Sn=n(A1+An)/2=nA1+n(n-1)d/2 2)An=Sn-S(n-1),2An=A(n-1)+A(n+1)=A(n-k)+A(n+k) 3)若a+b=c+d,则Aa+Ab=Ac+Ad 设An为某数列,Sn为前n项和,则有以下几点性质: 4)形如Sn=an^2+bn+c(ab≠0),当且仅当c=0时,An为等差数列.即当An为等差 数,Sn是不含常数项的关于n的二次函数. 5)形如aAn=bA(n-1)+c(a≠b)的数列,总可以化为等比数列,即令ax=bx+c,即 x=c/(a-b),即An-c/(a-b)=a[A(n-1)-c/(a-b)] 所以Bn=An-b/(1-a)为等比数列 6)形如aAn+bA(n-1)+cA(n-2)=0(abc≠0)的数列,总可以化为等比数列,即令 ax^2+bx+c=0的根为x1,x2,则 An-x1A(n-1)=x2[A(n-1)-x1A(n-2)] An-x2A(n-1)=x1[A(n-1)-x2A(n-2)] 令B(n-1)=An-x1A(n-1) (1) B(n-1)'=An-x2A(n-1) (2) 则Bn,Bn'为等比数列,从而可以求出Bn,Bn'。再解(1)(2)方程组可求出An。 7)若An>0,形如An^a=cA(n-1)^b的数列可化为5)的形式,即两边取对数 即:algAn=blgA(n-1)+lgc,令Bn=lgAn,即aBn=bB(n-1)+c 等差数列:Sn=a1n+n(n-1)d/2

等比数列:1:q=1时;Sn=na1 2:q#1时;Sn=a1(1-q的n次方)/(1-q) 求和 等差“(首数+末数)*项数/2 等比数列求和公式=首项*(1-比值^项数)/(1-比值) 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、 等比数列求和公式: 自然数方幂和公式: 3、 4、 5、 [例] 求和1+x2+x4+x6+…x2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x2的等比数列而且有n+3项 当x2=1 即x=±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x是否为0进行讨

12.5.3因式分解完全平方公式法

12.5.3因式分解 (完全平方公式法) 教学目标: 1、能熟练运用公式将多项式进行因式分解. 2、能找到适当的方法将多项式因式分解并分解彻底. 3、提高对因式分解的认识和将多项式因式分解的能力. 重点: 掌握公式法进行因式分解. 难点: 找到适当的方法将多项式因式分解并分解彻底. 学习过程: 一、课前导入: 1、分解因式学了哪些方法? ⑴提取公因式法:ma +mb +mc =m (a +b +c ) ⑵运用公式法: ①a 2-b 2=(a +b )(a -b ) 练习 把下列各式分解因式 ① ② x 4-16 2.除了平方差公式外,还学过了哪些公式? 完全平方式: 用公式法正确分解因式关键是什么? 仔细观察,试着发现以上式子所具有的特征: 从每一项看:都有两项可化为两个数(或整式)的平方,另一项为这两个数 (或整式)的乘积的2倍. 从符号看:平方项符号相同(即:两平方项的符号同号,首尾2倍中间项) 二、讨论探究: 填一填 四、巩固提高 练习填空: (1)a 2+ +b 2=(a +b )2 (2)a 2-2ab + =(a -b ) 2 (3)m 2+2m + =( ) 2 (4)n 2-2n + =( ) 2 (5)x 2-x +0.25=( ) 2 (6)4x 2+4xy +( ) 2=( ) 2 例题(先观察再因式分解) ① x 2+14x +49 ② ③ 3ax 2+6axy +3ay 2 ④ -x 2-4y 2+4xy ⑤ ⑥ 16x 4-8x 2+1 判断因式分解正误,并写出正确过程 (1) -x 2-2xy -y 2= -(x -y )2 (2)a 2+2ab -b 2 2 4ax ax -9)(6)(2 ++-+n m n m 229124b ab a ++2)(b a -=

初中数学 完全平方公式的五种常见应用举例

完全平方公式的五种常见应用举例 完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明. 一、正用 根据算式的结构特征,由左向右套用. 例1 计算22 (23)m m -- 分析 本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解.解 22(23)m m --22 [(2)3]m m =--222(2)6(2)9 m m m m =---+4322446129 m m m m m =-+-++43242129 m m m m =--++ 思考 本题中三项式转化为二项式的根据是什么?还有其它的方法吗? 二、逆用 将公式逆向使用,即由右向左套用. 例2 己知,,,则多项式20172018a x =+20172019b x =+20172020c x =+的值为( ) 222a b c ab bc ac ++--- (A) 0 (B)1 (C)2 (D)3 分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到,而,,的值可求,故本题巧妙得解.222()()()a b b c c a -+-+-a b -b c -c a -解 ∵20172018a x =+20172019 b x =+20172020 c x =+∴,,1a b -=-1b c -=-2 c a -=∴222 a b c ab bc ac ++---2221(222222)2 a b c ab bc ac = ++---2222221(222)2 a a b b b b c c c ac a =-++-++-+2221[()()()]2 a b b c c a =-+-+-2221[(1)(1)2]2=-+-+

相关主题
文本预览
相关文档 最新文档