当前位置:文档之家› 铅酸蓄电池使用寿命影响因素及其电池失效原因_张歆

铅酸蓄电池使用寿命影响因素及其电池失效原因_张歆

铅酸蓄电池使用寿命影响因素及其电池失效原因_张歆
铅酸蓄电池使用寿命影响因素及其电池失效原因_张歆

中国科技信息2014年第21期·CHINA SCIENCE AND TECHNOLOGY INFORMATION Nov.2014

实用技术推广

-125-

维护比较的方便,使用寿命也相对较长,质量较为稳定,

转化成PbSO 4,正极4,将化学能转化成电能。2SO 44+2H 2O

铅酸蓄电池和传统的电池相比较而言有着一些不同,铅酸蓄电池的电解液是封闭在隔离系统当中或者是以凝胶形式存在的。在设计和制造的工艺方面是对这一电池的使用寿命产生影响的一个重要因素。电池在一定的速率下的循环和起始酸的相对密度以及电池间的温度等都有着关系,连续循环的工作状态下,高充电电流以及电压电池比较容易产生氧气这样就会比较容易引起电池的失效。

充电接受能力的影响因素

在这一过程中,如果是充电不当就会使得电池在使用寿命上缩短,铅酸蓄电池的物理化学特征能够使得充电控制比较的简单,但是也要注意在动态充电接受能力以及恒电位下充电接受能力是对铅酸电池的使用寿命有重要影响的一个因素。合适的充电策略能够对电能的损失进行弥补,在电池的性能方面也能够得以有效的改善,实践证明,温度是充电条件的一个最为关键的影响因素,提高温度才能

DOI:10.3969/j.issn.1001-8972.2014.21.050

张?歆

张歆(1983-)女,河北邢台市人,工作单位:天能集团。

张?歆图1?铅酸蓄电池结构图

网络出版时间:2014-11-24 17:42

网络出版地址:https://www.doczj.com/doc/ab14576518.html,/kcms/doi/10.3969/j.issn.1001-8972.2014.21.050.html

中国科技信息2014年第21期·CHINA SCIENCE AND TECHNOLOGY INFORMATION Nov.2014

实用技术推广

-126-

够对电池完全快速的充电。

电解液质量及密度方面的影响因素

在铅酸蓄电池当中的电解液是其结构中最为关键的内容,所以将其维持在一定的水平比较重要,它不只是用来导电还能够产生热量从极板转移出来,倘若电解液的水平比极板的水平要低,那么裸露出来的极板区域就不会再具有电化学活性,这样就会造成铅酸蓄电池的局部热量聚集,最终使得极板变形以及活性物质脱落,蓄电池的使用寿命也会随之而缩短。

加强其使用寿命的策略

响,在Ca/Sn 等于重要。

充放电的反复进行过程中,二氧化铅颗粒间的结合就会松弛并软化,以致从板栅上脱落,这样就会直接导致电池的失效。

再者就是干涸或者热失控,对于少维护电池要求充电电压不超过单格2.4V,而在实际的使用过程中调压的装置则可能失控,这样就会使得充电电压过大就会使得电池的内阻下降,最终使得电池开裂失效。还有锑在活性物质上

的严重积累以及早期的容量的损失也会导致电池的失效。除此之外还有枝晶穿透以及电池的电压不均衡性和一些意外所造成的突然失效,例如部件选择的不正确以及设计方面的不合理和没有正确的使用等等。

强化铅酸蓄电池的使用寿命策略

在对铅酸蓄电池的使用寿命的影响因素以及电池失效的原因进行分析之后,下面就对其加强铅酸蓄电池的使用寿命的策略进行探究,从多个角度进行研究。

首先对铅酸蓄电池的使用以及维护要能够和普通的蓄2.33V/2.35V/单综上所述,对于铅酸蓄电池的使用寿命的提高主要根据其失效的原因进行针对性的控制,另外采用三大段大电流脉冲过充电的方法能够有效的对电池充电失水问题得以解决,与此同时在正常的使用过程中,要对电池进行常规性的检查,测试蓄电池的性能,只有从多方面进行加强才能够使蓄电池的使用寿命的问题得以有效的解决。

3

铅酸蓄电池修复具体过程详解

铅酸蓄电池修复具体过程详解 电池又称化学电源,是能为用电器提供直流电源的装置,化学电源是通过氧化还原的电化学反应,将化学能转化为电能.一次电池是一次性应用的电池,二次电池是可多次反复使用的电池,因此这里的二次实际上是多次的意思.二次电池又称为可充电电池或蓄电池。 相对于零电平或某一基准电平幅值为正的脉冲叫正极性脉冲,简称正脉冲,反之,则为负脉冲.正负脉冲按一定占空比出现的称组合脉冲.二十世纪以来,随着人们对负脉冲的认识的不断提高,负脉冲的应用范围不断扩大,在许多领域都得到了广泛的应用,如:能源、医疗、勘探、等。下面以铅酸蓄电池和锂离子电池为例,介绍一下组合脉冲修复机和组合脉冲充电器对蓄电池的维护与修复原理: 基础部分 一、铅酸蓄电池 铅酸蓄电池是蓄电池的一种.以其低廉的价格, 良好的高倍率放电性能,应用非常广泛,如汽车、摩托车、火车、轮船、通信以及UPS等均需运用.铅酸蓄电池主要由正极板、负极板、电解液、容器、极柱、隔膜、可导电的物质等组成。(一) 正极板(正极活性物质) 正极板活性物质的主要成分是二氧化铅.具有较强的氧化性,放电时,与硫酸发生反应生成硫酸铅,并吸收电子,二氧化铅有两种类型晶格,一种是α—Pb02 另一种是β—Pb02.这两种二氧化铅活性物质差别很大,它们在正极板所起的作用也不相同.?—Pb02 给出的容量是α—PbO2 的1.5~~~3倍.而α—Pb02具有较好的机械强度,它的存在,正极板活性物质不宜软化脱落,只有α—Pb02 和βα—PbO2 的比例达到0.8时,铅蓄电池会表现出良好的性 能 . 正极活性物质在放电状态下,与电解质硫酸发生反应生成硫酸铅与水.其反应式如 下:Pb02+3H++HSO4+2e==PbSO4+2H2O 充电时,在外线路的作用下转化为ρbO2与H2SO4放电时,二氧化铅的ρb4+接受了负极送来的电子形成ρb+2与溶液中的硫酸根离子结合生成ρbSO4 .当硫酸铅达到一定量时,变成沉淀物附着在极板上.充电时硫酸铅中的铅离子的电子被外线路带走转化为二氧化铅.将水中氢离子留在溶液中.氧离子与铅离子结合生成二氧化铅进入晶格,形成正极活性物质. (二)负极板(负极活性物质) 在铅酸蓄电池里,为了供负极活性物质充分与电解液发生反应,故将铅制成多孔海棉状,又称为海绵铅,在放电时,铅给出外线路电子形成 Pb+2 与溶液的硫酸根结合生成硫酸铅,充电时,部分PbSO4首先溶解成Pb2+与SO4.Pb+2接受电子还原成铅进入负极活性物质晶格。

铅酸电池储能系统方案设计 (有集装箱)

技术方案 2014年1月

目录 1需求分析 (3) 2集装箱方案设计 (3) 2.1集装箱基本介绍 (3) 2.2集装箱的接口特性 (5) 2.3系统详细设计方案 (6) 2.4集装箱温控方案 (13) 3电池组串成组方案 (15) 3.1电池组串内部及组间连接方案 (17) 3.2系统拓扑图 (18) 4蓄电池管理系统(BMS) (19) 4.1BMS系统整体构架 (19) 4.2BMS系统主要设备介绍 (20) 4.3BMS系统保护方式 (23) 4.4BMS系统通信方案 (24)

1需求分析 集装箱式铅酸蓄电池成套设备供货范围包括铅酸蓄电池、附属设备、标准40尺集装箱、备品备件、专用工具和安装附件等。 每个标准40尺集装箱含管式胶体(DOD80 1200次以上)或富液式(DOD80 1400次以上)免维护铅酸蓄电池、电池架及附件、电池管理系统(含外电路)、电池直流汇流设备、设备间的连接电缆及电缆附件(包括铜鼻、螺栓、螺母、弹垫、平垫等)、动力及控制信号接口等。 根据标书要求,综合铅酸电池特性,对于储能系统进行如下设计: 每3个标准40尺集装箱承载2MWh,每个集装箱由336只2V1000Ah管式胶体铅酸电池串联而成,电压672V,电池串容量672kWh。每3个集装箱并联到一台500kWh 储能双向变流器。三个电池堆的总容量可达2MWh,故本方案中三个集装箱为一单元,每个单元配置一套BMS电池管理系统,可监控每颗单体电池工作情况。集装箱中另含烟感探头、消防灭火器、加热器、摄像头、温湿度监测等设备,以保证铅酸电池安全稳定的工作环境,实现远程监控。 2集装箱方案设计 2.1集装箱基本介绍 根据项目要求,同时考虑电池堆的成组方式、集装箱内辅助系统的设计、安装以及日常巡视和检修等各方面,选用40英尺标准集装箱。外部尺寸: 12192*2438*2591mm 。 本项目共需要42个40英尺标准集装箱。集装箱设计静态承重60t,最大 起吊承重45t。 集装箱的主要任务是将铅酸电池、通讯监控等设备有机的集成到1个标准的40尺集装箱单元中,该标准单元拥有自己独立的供电系统、温度控制系统、隔热系统、阻燃系统、火灾报警系统、电气联锁系统、机械连锁系统、安全逃生系统

阀控式密封和免维护铅酸蓄电池的寿命影响

阀控式密封和免维护铅酸蓄电池的寿命影响 摘要:本文讨论了阀控式密封和免维护铅酸蓄电池作为太阳能灯具、光伏电站和光伏户用系统的储能电源,在全天候运行时的耐候性问题,即自然环境下温度对蓄电池寿命、容量的影响,以及光伏系统储能铅酸蓄电池研究、开发。 关键词:VRLA蓄电池胶体铅酸蓄电池免维护铅酸蓄电池环境温度蓄电池寿命蓄电池容量蓄电池研发方向 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目。太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池(以下简称铅酸蓄电池缩写为VRLAB)胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。本文主要讨论自然环境下温度对蓄电池寿命、容量的影响及解决方法,以及储能铅酸蓄电池研究发展方向。上述三种产品在河北奥冠电源公司已批量生产,山东皇明太阳能公司做储能蓄电池已配套应用,现场试验效果很好。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。(一)硫酸电解液干涸: 硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因:(1)气体再化合的效率偏低,析氢析氧、水蒸发;(2)从电池壳体内部向外渗水;(3)控制阀设计不当;(4)充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。 VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4)三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。 (二)热失控: 蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下非凡分类生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 (三)内部短路:由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。 由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。

电容失效模式和机理

电容的失效模式和失效机理 电容器的常见失效模式有: ――击穿短路;致命失效 ――开路;致命失效 ――电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上升等;部分功能失效 ――漏液;部分功能失效 ――引线腐蚀或断裂;致命失效 ――绝缘子破裂;致命失效 ――绝缘子表面飞弧;部分功能失效 引起电容器失效的原因是多种多样的。各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样。 各种常见失效模式的主要产生机理归纳如下。 3.1失效模式的失效机理 3.1.1 引起电容器击穿的主要失效机理 ①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子; ②电介质的电老化与热老化; ③电介质内部的电化学反应; ④银离子迁移; ⑤电介质在电容器制造过程中受到机械损伤; ⑥电介质分子结构改变; ⑦在高湿度或低气压环境中极间飞弧;

⑧在机械应力作用下电介质瞬时短路。 3.1.2 引起电容器开路的主要失效机理 ①引线部位发生“自愈“,使电极与引出线绝缘; ②引出线与电极接触表面氧化,造成低电平开路; ③引出线与电极接触不良; ④电解电容器阳极引出箔腐蚀断裂; ⑤液体电解质干涸或冻结; ⑥机械应力作用下电介质瞬时开路。 3.1.3 引起电容器电参数恶化的主要失效机理 ①受潮或表面污染; ②银离子迁移; ③自愈效应; ④电介质电老化与热老化; ⑤工作电解液挥发和变稠; ⑥电极腐蚀; ⑦湿式电解电容器中电介质腐蚀; ⑧杂质与有害离子的作用; ⑨引出线和电极的接触电阻增大。 3.1.4 引起电容器漏液的主要原因 ①电场作用下浸渍料分解放气使壳内气压上升; ②电容器金属外壳与密封盖焊接不佳; ③绝缘子与外壳或引线焊接不佳;

蓄电池修复技术原理与方法

蓄电池修复技术原理与方法 蓄电池修复技术原理与方法 电池又称化学电源,是能为用电器提供直流电源的装置,化学电源是通过氧化--还原的电化学反应,将化学能转化为电能.一次电池是一次性应用的电池,二次电池是可多次反复使用的电池,因此这里的二次实际上是多次的意思.二次电池又称为可充电电池或蓄电池. 相对于零电平或某一基准电平幅值为正的脉冲叫正极性脉冲,简称正脉冲,反之,则为负脉冲.正负脉冲按一定占空比出现的称组合脉冲.二十世纪以来,随着人们对负脉冲的认识的不断提高,负脉冲的应用范围不断扩大,在许多领域都得到了广泛的应用,如:能源.医疗.勘探.等. 我公司经过多年努力研制出微电脑语音系列修复机.微电脑快系列速充电站.对各种废旧蓄电池的修复与维护具有良好的效果.下面以铅酸蓄电池和锂离子电池为例.介绍一下微电脑语音系列修复机.微电脑快系列速充电站对蓄电池的维护与修复原理: 基础部分 一. 铅酸蓄电池 铅酸蓄电池是蓄电池的一种.以其低廉的价格(镉镍电池的六分之一~~`~~五分之一), 良好的高倍率放电性能,应用非常广泛,如汽车、摩托车、火车、轮船、通信以及UPS等均需运用.铅酸蓄电池主要由正极板、负极板、电解液、容器、极柱、隔膜、可导电的物质等组成. (一) 正极板(正极活性物质) 正极板活性物质的主要成分是二氧化铅.具有较强的氧化性,放电时,与硫酸发生反应生成硫酸铅,并吸收电子,二氧化铅有两种类型晶格,一种是α—Pb02 另一种是β—Pb02.这两种二氧化铅活性物质差别很大,它们在正极板所起的作用也不相同.?—Pb02 给出的容量是α—PbO2 的1.5~~~3倍.而α—Pb02具有较好的机械强度,它的存在,正极板活性物质不宜软化脱落,只有α—Pb02 和 βα—PbO2 的比例达到0.8时,铅蓄电池会表现出良好的性能 . 正极活性物质在放电状态下,与电解质硫酸发生反应生成硫酸铅与水.其反应式如下:Pb02+3H++HSO4-+2e==PbSO4+2H2O 充电时,在外线路的作用下转化为ρbO2与H2SO4放电时,二氧化铅的ρb4+接受了负极送来的电子形成ρb+2与溶液中的硫酸根离子结合生成ρbSO4 .当硫酸铅达到一定量时,变成沉淀物附着在极板上.充电时硫酸铅中的铅离子 的电子被外线路带走转化为 二氧化铅.将水中 氢离子留在溶液中.氧离子与铅离子结合生成二氧化铅进入晶格,形成正极活性物质. (二)负极板(负极活性物质) 在铅酸蓄电池里,为了供负极活性物质充分与电解液发生反应,故将铅制成多孔海棉状,又称为海绵铅,在放电时,铅给出外线路电子形成 Pb+2 与溶液的硫酸根 结合生成硫酸铅,充电时,部分PbSO4首先溶解成Pb2+与SO4.Pb+2接受电子还原成铅进入负极活性物质晶格. ( 三)电解液

电阻器常见的失效模式与 失效机理

电阻器常见的失效模式与失效机理失效模式:各种失效的现象及其表现的形式。 失效机理:是导致失效的物理、化学、热力学或其他过程。 1、电阻器的主要失效模式与失效机理为: 1)开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。 2)阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。 3)引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。 4)短路:银的迁移,电晕放电。 2、失效模式占失效总比例表 (1)、线绕电阻 失效模式占失效总比例 开路90% 阻值漂移2% 引线断裂7% 其它1% (2)、非线绕电阻 失效模式占失效总比例 开路49% 阻值漂移22% 引线断裂17% 其它7% 3、失效机理分析 电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。 (1)、导电材料的结构变化:

薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无 定型结构。按热力学观点,无定型结构均有结晶化趋势。在工作条件或环境条 件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内 部结构趋于致密化,能常会引起电阻值的下降。结晶化速度随温度升高而加快。 电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因 此发生变化。 结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器 使用期间终止。可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。与它们有关的阻值变化约占原阻值的千分之几。 电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负 荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体 与引线帽接触部分的温升超过了电阻体的平均温升。通常温度每升高10℃, 寿命缩短一半。如果过负荷使电阻器温升超过额定负荷时温升50℃,则电阻 器的寿命仅为正常情况下寿命的1/32。可通过不到四个月的加速寿命试验, 即可考核电阻器在10年期间的工作稳定性。 直流负荷-电解作用:直流负荷作用下,电解作用导致电阻器老化。电解 发生在刻槽电阻器槽内,电阻基体所含的碱金属离子在槽间电场中位移,产生 离子电流。湿气存在时,电解过程更为剧烈。如果电阻膜是碳膜或金属膜,则 主要是电解氧化;如果电阻膜是金属氧化膜,则主要是电解还原。对于高阻薄 膜电阻器,电解作用的后果可使阻值增大,沿槽螺旋的一侧可能出现薄膜破坏 现象。在潮热环境下进行直流负荷试验,可全面考核电阻器基体材料与膜层的 抗氧化或抗还原性能,以及保护层的防潮性能。 (2)、气体吸附与解吸: 膜式电阻器的电阻膜在晶粒边界上,或导电颗粒和黏结剂部分,总可能 吸附非常少量的气体,它们构成了晶粒之间的中间层,阻碍了导电颗粒之间的 接触,从而明显影响阻值。 合成膜电阻器是在常压下制成,在真空或低气压工作时,将解吸部分附 气体,改善了导电颗粒之间的接触,使阻值下降。同样,在真空中制成的热分 解碳膜电阻器直接在正常环境条件下工作时,将因气压升高而吸附部分气体,

铅酸蓄电池的失效模式及其修复方法

自放电,是指铅酸蓄电池内电自行消耗,一般认为每昼夜容量下降不大于2%,就认为正常, 因铅酸蓄电池本身有自放电缺点,如果每昼夜容量下降大于2%时,那就是有故障了,自放 电原因主要有:生产制造中材料不纯(如含锑过高或其它有害杂质),电解液中含有害杂质 (铁、锰、砷、铜等离子),正负极板硫化后极隔板孔隙堵塞,导致铅酸蓄电池 内阻消耗增大,都有导致铅酸蓄电池产生自放电的原因,所以,要求电解液必须是专用硫酸, 水必须是蒸馏水或去离子水。 引起自放电的因素很多,如电解液及极板材料有杂质,引起局部电池效应自放电,隔板破裂,活性物质脱落,蓄电池盖上有浸润性灰尘,电解液或水形成回路自放电。 我们能做到的是保持蓄电池盖上的干燥和清洁。冬天从屋外移到屋内的蓄电池其表现上会有 冷凝水,可擦拭或静置屋内待其蒸发后再充电。 铅酸蓄电池的失效模式及其修复方法 现在电池按照容量来计算,还是以铅酸蓄电池为主。铅酸蓄电池以其容量大为优势,是其他电池目前还无法取代的。另外,其大电流放电的特性,也决定了在启动电池方面的优势。但 铅作为重金属,除了成本外,它还存在着一定的毒性,对环境和人体都有不同程度的危害。 所以延长铅蓄电池的寿命,不仅仅是可以降低运行成本以外,还是环保的需要,也是拓展铅酸蓄电池的应用领域的一个重要问题。所以研究修复铅酸蓄电池,延长它寿命的问题,使铅酸蓄电池的销售量不仅仅不会减少,而且会增加,但是对环境的污染确可以不增加。 要了解铅酸蓄电池的修复,首先要明白铅酸蓄电池的失效模式。然后针对不同的失效模式谈 修复方法。 一、铅酸蓄电池的失效模式 由于极板的种类、制造条件、使用方法有差异,最终导致蓄电池失效的原因各异。归纳起来,铅酸蓄电池的失效有下述几种情况: 1、正极板的腐蚀变型 目前生产上使用的合金有3类:传统的铅锑合金,锑的含量在4%?7%质量分数;低锑或 超低锑合金,锑的含量在2%质量分数或者低于1%质量分数,含有锡、铜、镉、硫等变型晶剂;铅钙系列,实际为铅一钙—锡—铝四元合金,钙的含量在0.06%?0.1%质量分数。上述合金铸成的正极板栅,在蓄电池充电过程中都会被氧化成硫酸铅和二氧化铅,最后导致丧失支撑活性物质的作用而使电池失效;或者由于二氧化铅腐蚀层的形成,使铅合金产生应力, 使板栅长大变形,这种变形超过4%时将使极板整体遭到破坏,活性物质与板栅接触不良而 脱落,或在汇流排处短路。 2、正极板活性物质脱落、软化。 除板栅长大引起活性物质脱落之外,随着充放电反复进行,二氧化铅颗粒之间的结合也松弛, 软化,从板栅上脱落下来。板栅的制造、装配的松紧和充放电条件等一系列因素,都对正极板活性物质的软化、脱落有影响。 3、不可逆硫酸盐化 蓄电池过放电并且长期在放电状态下贮存时,其负极将形成一种粗大的、难以接受充电的硫

铅酸免维护蓄电池保养手册

铅酸免维护蓄电池保养手册 1、环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右,UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。一般情况:电池存放容量:1个月(25℃),96%。3个月,(25℃)90%。6个月(25℃),80%。 2、充电电压。由于EPS电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长电池的使用寿命,EPS的充电器一般采用恒压限流的方式控制,电池充满后即转为浮充状态,每节浮充电压设置为左右。在使用温度15~30℃环境中,电池浮充使用过程容量递减。递减情况:1年容量为90%左右;2年容量为70%左右;3年容量为50%左右。 3、放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然EPS都有电池低电位保护功能,一般单节电池放电至左右时,EPS就会自动关机。但是,如果EPS处于轻载放电或空载放电的情况下,也会造成电池的深度放电。? ?4、电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开路电压高于,则表示电池储能还有80%以上,若开路电压低于,则应该立刻进行补充充电。若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。? 5、免维护电池由于采用吸收式电解液系统,在正常使用时不会产生任何气体,但是如果用户使用不当,造成电池过充电,就会产生气体,此时电池内压就会增大,将电池上的压力阀顶开,严重的会使电池爆裂。?? 6、电池应尽可能安装在清洁、阴凉、通风、干燥的地方,并要避免受到阳光、加热器或其他辐射热源的影响。电池应正立放置,不可倾斜角度。每个电池间端子连接要牢固。? 7、定期保养。电池在使用一定时间后应进行定期检查,如观察其外观是否异常、测量各电池的电压是否平均等。如果长期不停电,电池会一直处于充电状态,这样会使电池的活性变差。因此,即使不停电,UPS也需要定期进行放电试验以便使电池保持活性。放电试验一般可以三个月进行一次,做法是EPS带载--最好在50%以上,然后断开市电,使EPS 处于电池放电状态,放电持续时间视电池容量而言一般为几ms至几十ms,放电后恢复市电供电,继续对电池充电。? 蓄电池性能曲线:

片式电阻的主要失效机理与失效模式

片式电阻的主要失效机理与失效模式 1.什么是片式电阻,片式电阻的概念。 片式电阻器又称为片式电阻,也叫表面贴装电阻,它与它片式元器件(SMC 及SMD)一样,是适用于表面贴装技术(SMT)的新一代无引线或短引线微型电子元件。其引出端的焊接面在同一平面上。片式电阻在电路内的主要作用是降低电压,分担一部分电压即分压,限流保护电路,分流等,也可以用做时间电路元件和传感器等。 2.片式电阻的特性及分类。 表面组装的电阻器是表面组装元气件的组成之一,它属于无源元件,其作用主要供厚膜、薄膜电路作外贴元件用。它一般按两种方式进行分类。按特性与材料分类分为:厚膜电阻、薄膜电阻。按外形结构分类分为:矩形片式电阻、圆柱片式电阻、异形电阻。矩形片式电阻的结构如下图(a): (a)矩形片式电阻结构示意图 2.1矩形片式电阻结构介绍: 矩形片式电阻由基板、电阻膜、保护膜、电极四大部分组成。 基板:基板材料一般使用96%的Al2O3(三氧化二铝)陶瓷。基本应具体有

良好的电绝缘性,在高温下具有良好的导热性、电性能和一定强度的机械性能。电阻膜:电阻膜是用具有一定电阻率的电阻浆料印刷在陶瓷基本上的,在经过烧结而形成厚膜电阻。电阻浆料一般用RuO2(二氧化钉)。近年来开始使用贱金属系的电阻浆料,比如氧化系(TaN-Ta)、碳化系(WC-W)和Cu系材料,目的是降低成本。 保护膜:将保护膜覆盖在电阻膜上,保护膜的主要作用是保护电阻。它一方面起机械保护作用,另一方面使电阻体表面具有绝缘性,避免电阻与邻近导体接触而产生故障。保护膜一般是低熔点的玻璃浆料,进过印刷烧结而成。 电极:电极是为了保证电阻器具有良好的可焊性和可靠性,一般采用三层电极结构:内层电极、中间电极、外层电极。内层电极作用:连接电阻体的内部电极。中间电极是镀镍层,其阻挡作用,提高电阻散热,缓冲焊接的热冲击。外层电极是锡铅层,主要作用是使电极具有可焊性。 3片式电阻常见的失效模式与失效机理。 图(1)线绕电阻失效总比例图(2)非线绕电阻失效总比例 片式电阻的主要失效模式与失效机理为: 1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体受力发生断裂,引线帽与电阻体发生脱落。

铅酸蓄电池原理和种类

铅酸蓄电池原理和种类 储能电池及器件是太阳能光伏发电系统不可缺少的存储能电能的部件,其主要功能是存储光伏发电系统的电能,并在日照量不足,夜间以及应急状态下为负载供电。常用的储能电池有铅酸蓄电池、碱性蓄电池、锂电池、超级电容,它们分别应用于不同场合或者产品中。目前应用最广是铅酸蓄电池,从19世纪50年代开发出来至今,已经有160余年的历史,目前衍生出很多种类,如富液铅酸电池、阀控密封铅酸电池、胶体电池,铅碳电池等。 一、工作原理及基本结构 铅酸电池是用铅和二氧化铅作为电池负极和正极活性物质,以稀硫酸为电解质的化学储能装置,具有电能转换效率高、循环寿命长、端电压高、安全性强、性价比高、安装维护简单等特点,目前是各类储能、应急供电、启动装置中首选的化学电源。铅酸电池的主要构成包括: 1.极板:正负极板均是以特殊的合金板栅涂敷上活性物质所得,极板在充放电时存储和释放能量,确保电池的容量和性能可靠。 2.隔板:是置放于电池正负极中间的一个隔离介质,防止电池正负极直接接触而短路的装置,不同类型的铅酸电池隔板材质不同,阀控类电池主要以AGM、PE、PVC 为主。 3.电解液:铅酸电池的电解液是用蒸馏水配制的稀硫酸,电解液在充放电时起到在正负极间传输离子的作用,因而电解液必须要没有杂质。 4.容器(电池壳盖):电池包覆的容器,电解液和极板均在容器内,主要起支撑作用,同时防止内部物质外溢,外部物质进入内部结构污染电池。 二、种类及优势 铅酸电池的工作原理就是通过电化学反应,电能和化学能之间相互转化,电极主要由铅及其氧化物制成,电解液是硫酸溶液的一种蓄电池。英语:Lead-acid battery 。 放电状态下,正极主要成分为二氧化铅,负极主要成分为铅。 充电状态下,正负极的主要成分均为硫酸铅。 铅酸蓄电池种类较多,应用在光伏储能系统中,比较多的有三种,富液型铅酸蓄电池、阀控式密封铅酸蓄电池、铅碳蓄电池等等。 2.1 富液型铅酸蓄电池

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗? 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化! 这个说法对吗? ⑴维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

铅酸蓄电池电池失效的主要原因和分析

铅酸蓄电池电池失效的主要原因和分 析 铅酸蓄电池失效可能有多种原因造成的,例如硫化、失水、热失控、活性物质脱落、极板软化等等,接下来将一一为大家介绍和分析。 1.硫化 铅酸蓄电池充放电的过程是电化学反应的过程,放电时,生成硫酸铅,充电时硫酸铅还原为氧化铅。这个电化学反应过程正常情况下是循环可逆的,但硫酸铅是一种容易结晶的盐化物,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会"抱成"团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,这就破坏了原本可逆的循环,导致硫酸铅部分不可逆。结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会吸附在栅板上,造成了栅板工作面积下降,铅酸蓄电池发热失水,铅酸蓄电池容量下降,这一现象叫硫化,也就是常说的老化。硫化还会导致短路、活性物质松弛脱落、栅板变形断裂等"并发症"。 只要是铅酸蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电蓄池却比电动自行车上使用的铅酸蓄电池有着更长的寿命,这是因为电动车的铅酸蓄电池有着一个更容易硫化的工作环境。与汽车用启动电池不同,汽车电池点火放电后,电池始终处于浮充状态,放电形成的硫酸铅很快又被转化为氧化铅,而电动车放电时,不可能同时进行充电,这就造成硫酸铅大量堆集,如果深放电,这时硫酸铅浓度更高,而且电动车骑行后很难有条件及时充电,放电形成的硫酸铅不能及时充电转化为氧化铅,就会形成结晶。所以,循环寿命,根据放电深度不同而差别很大,放电深度越深,循环次数越少,放电深度越浅,循环次数越多,根据试验结果放电深渡与循环次数联系如下表:放电深度70%50%20%10% 循环寿命500次1000次2800次7000次 一些铅酸蓄电池在做70%的1C充电和60%的2C放电中,由于采用连续大电流循环,破坏了电池生成大硫酸铅结晶的条件,所以可能看不到铅酸蓄电池硫化对电池的破坏。如果试验中途停顿,铅酸蓄电池硫化的问题就会显现。由于电池重量大,一些用户经常采取电池经过多次使用放完电才再次充电,这样电池放电以后没有及时充电,铅酸蓄电池硫化就比较严重。另外,铅酸蓄电池的硫酸比重比较高,也是铅酸蓄电池硫化的重要因素。而铅酸蓄电池硫化,破

铅酸蓄电池使用说明

铅酸蓄电池使用说明 GFM系列阀控密封铅酸蓄电池是充分消化吸收国外先进技术及多年的研制、生产经验积累、不断创新的新一代产品,产品技术先进、质量可靠、运行稳定。 GFMG系列高能型阀控密封铅酸蓄电池是采用新型电解质和进口微孔隔板,优化了电池正负极板配方,使其比传统的阀控电池具有如下优点:体积更小,重量更轻,耐深放电性能优良,荷电保持能力高,循环寿命更长等特点。产品广泛应用于通信、电力、储能、船舶、航空军事工业等。一、执行标准 GFM/GFMG固定型阀控密封铅酸蓄电池符合如下标准: 1、JISC8707-1992 阴极吸收式密封固定型铅酸蓄电池标准 2、GB/T 19368-2005 中华人民共和国国家标准 3、YD/T 799-2002 中华人民共和国通信行业标准 4、DL/T 637-1997中华人民共和国电力行业标准 5、GB/T 14436-93 工业产品保证文件总则 6、JB/T 8451-96 中华人民共和国机械行业标准 二、组成及原理 1、阀控密封铅酸蓄电池的组成:阀控密封铅酸蓄电池主要由正负极板、 硫酸电解液、隔板、槽盖、安全阀、汇流排和极柱端子等组成。 2、阀控密封铅酸蓄电池的原理 (1)放电过程的电化学反应式PbO 2+ 2H 2 SO 4 + Pb→ PbSO 4 + 2H 2 O +PbSO 4

(2)充电过程时,在正极板上发生下列电化学反应:PbSO 4+2H 2O → PbO 2+H 2SO 4+2H++2e -H 2O →2H++O 2+2e -在负极上发生下列化学反应:PbSO 4+2H++2e →Pb+H 2SO 42H++2e →H 2由于蓄电池在充电过程中,正、负极板发生的电化学反应各具特点,所以当正极板充电到70%时,开始析出氧气O 2,而负极板充电到90%时,开始析出氢气H 2。为了抑制H 2和O 2的析出,实现密封和免维护功能,在负极板材料中加入了钙金属以提高H 2析出的电位,使电池在正常充电下不产生H 2。同时又采用贫电解液设计加上超细玻璃纤维隔板膜,使纯铅的氧化反应:Pb+O 2 → PbO 和PbO + H 2 SO 4→PbSO 4 + H 2 O 得以进行,以此来消除O 2的析出。 三、性能特点 耐腐蚀铅钙锡多元合金 高倍率放电极优 自放电率极低 超细玻璃纤维隔膜吸液 无有害气体溢出 低温性能优越 高强度A B S 树脂外壳 与设备同处安装 不会污染环境 全密封不漏液无需加水 安全阀自动开闭 免建蓄电池室 四、存放与安装 1、蓄电池的存放 (1)存放环境应干燥、清洁,不受阳光直射。 (2)存放位置应远离火源或易于产生火花的物体。 (3)存放环境温度为-10℃~45℃。 (4)电池存放应避免与有机溶剂或其他具有腐蚀性的物品和气体靠近。

电容失效模式及失效机理

电容器失效模式和失效机理 电容器的常见失效模式有:击穿、开路、电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、引线腐蚀或断裂、绝缘子破裂或表面飞弧等.引起电容器失效的原因是多种多样的.各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样. 各种常见失效模式的主要产生机理归纳如下. 1、常见的七种失效模式 (1) 引起电容器击穿的主要失效机理 ①电介质材料有疵点或缺陷,或含有导电杂质或导电粒子; ②电介质的电老化与热老化; ③电介质内部的电化学反应; ④银离子迁移; ⑤电介质在电容器制造过程中受到机械损伤; ⑥电介质分子结构改变; ⑦在高湿度或低气压环境中极间飞弧; ⑧在机械应力作用下电介质瞬时短路. (2) 引起电容器开路的主要失效机理 ①引线部位发生“自愈“,使电极与引出线绝缘; ②引出线与电极接触表面氧化,造成低电平开路; ③引出线与电极接触不良; ④电解电容器阳极引出箔腐蚀断裂; ⑤液体工作台电解质干涸或冻结; ⑥机械应力作用下电介质瞬时开路. (3) 引起电容器电参数恶化的主要失效机理 ①受潮或表面污染; ②银离子迁移; ③自愈效应; ④电介质电老化与热老化; ⑤工作电解液挥发和变稠; ⑥电极腐蚀; ⑦湿式电解电容器中电介质腐蚀; ⑧杂质与有害离子的作用; ⑨引出线和电极的接触电阻增大. (4) 引起电容器漏液的主要原因 ①电场作用下浸渍料分解放气使壳内气压一升; ②电容器金属外壳与密封盖焊接不佳; ③绝缘了与外壳或引线焊接不佳; ④半密封电容器机械密封不良; ⑤半密封电容器引线表面不够光洁; ⑥工作电解液腐蚀焊点. (5) 引起电容器引线腐蚀或断裂的主要原因 ①高温度环境中电场作用下产生电化学腐蚀; ②电解液沿引线渗漏,使引线遭受化学腐蚀;

铅酸蓄电池的失效模式

铅酸蓄电池的失效模式(朱松然) (2012-07-15 12:23:21) 转载▼ 标签: 分类:电池 失效 铅酸蓄电池在使用初期,随着使用时间的增加,其放电容量也增加,逐渐达到最大值;然后,随着放电次数的增加,放电容量减少。电池在达到规定的使用期限时,对容量有一定的要求。牵引电池的容量不得低于80%;对于启动电池,应不低于70%。电动助力车电池标准规定也为70%。 一、铅酸蓄电池的失效模式 由于极板的种类、制造条件、使用方法有差异,最终导致蓄电池失效的原因各异。归纳起来,铅酸蓄电池的失效有下述几种情况: 1、正极板的腐蚀变型 目前生产上使用的合金有3类:传统的铅锑合金,锑的含量在4%~7%质量分数;低锑或超低锑合金,锑的含量在2%质量分数或者低于1%质量分数,含有锡、铜、镉、硫等变型晶剂;铅钙系列,实际为铅—钙-锡-铝四元合金,钙的含量在0.06%~0.1%质量分数。上述合金铸成的正极板栅,在蓄电池充电过程中都会被氧化成硫酸铅和二氧化铅,最后导致丧失支撑活性物质的作用而使电池失效;或者由于二氧化铅腐蚀层的形成,使铅合金产生应力,使板栅长大变形,这种变形超过4%时将使极板整体遭到破坏,活性物质与板栅接触不良而脱落,或在汇流排处短路。 2、正极板活性物质脱落、软化 除板栅长大引起活性物质脱落之外,随着充放电反复进行,二氧化铅颗粒之间的结合也松弛,软化,从板栅上脱落下来。 板栅的制造、装配的松紧和充放电条件等一系列因素,都对正极板活性物质的软化、脱落有影响。 3、不可逆硫酸盐化 蓄电池过放电并且长期在放电状态下贮存时,其负极将形成一种粗大的、难以接受充电的硫酸铅结晶,此现象称为不可逆硫酸盐化。轻微的不可逆硫酸盐化,

光电子元器件的失效模式和失效机理

光电子元器件的失效模式和失效机理 朱炜容 1.1 光电子器件的分类 在光电子技术中,光电子元器件包括光源器件以及光探测器件。其中光源器件主要有发光二极管和激光器。光探测器件主要是光电二极管。作为电气元件,光纤和光缆也是光电子技术中不可缺少的组成元件。 1.2 激光器的失效模式及失效机理 随着工作时间的增加,半导体激光器的工作性能将会劣化,发射功率和效率下降,有时还会发生突然失效的灾变性损坏。造成半导体激光器退化的原因除了其本身的因素外,还有使用温度、工作条件等环境因素。 一、暗线缺陷 暗线缺陷是激光器工作时形成的缺陷网络,这些缺陷最终会导致发射功率的下降。暗线缺陷的形成除了材料、工艺过程中会引入外,其形成过程与温度有很大的关系,它所引起的退化速率强烈地依赖于温度。 二、腔面损伤退化 腔面的损伤退化一般有灾变性退化和化学腐蚀损伤退化。 在高功率密度激光的作用下,由于局部过热、氧化、腐蚀、介质膜的针孔和杂质等因素使腔面遭受损伤,从而使局部电流密度增加,局部大量发热,在热电正反馈的作用下,最终腔面局部熔融,导致灾难性的损伤,器件完全失效。 腔面的化学腐蚀是由于光化学作用使腔面表面发生氧化,并形成局部缺陷,导致腔面局部发热,使激光器性能退化甚至失效。 三、电极退化 高功率半导体激光器的欧姆接触退化和热阻退化与其他电子器件的电极退化相似。电极金属和半导体材料间存在互扩散,在烧结的部位,孔洞和晶须的生长现象是常见的退化模式。另外,热应力导致的电极损伤也很常见。由于电极远离器件的有源区,电极退化对器件特性的影响一般在老化或工作一定时间后再表现出来。

半导体激光器的工作性能对温度非常敏感,温度升高将加速暗线缺陷的生长,腔面氧化等失效机理,严重影响激光器的寿命。激光器的转换效率不高,自身的功耗很大,因此降低热阻是提高激光器寿命和可靠性的主要方法之一。芯片电极烧结质量的好坏不但影响了热阻的大小,而且还关系到电极的电阻,因为激光器在正常工作时,其一般工作电流为几十甚至上百安培,即使是很小的电极电阻,也将产生很大的热功耗,减小电极电阻可以减小激光器本身的热功耗。此外,烧结工艺控制不好会造成焊料沾污腔面、焊料导致pn结短路以及烧结应力导致芯片损伤等。因此电极的烧结质量与半导体激光器的性能、稳定性和可靠性紧密相关。 1.3 光电二极管的失效模式和失效机理 光电二极管的失效模式主要有:结构损伤、光纤断裂、开路、短路、性能参数退化(暗电流上升、响应度降低、击穿电压降低等)和IV特性变化等。 引起这些失效的主要原因如下: 1、结构损伤 整个光电二极管结构由于外力导致构成器件的各有机组成部分产生大的机械变形、位移,严重影响到器件的使用性能或致使器件失去规定的功能。这些外形结构的损伤失效容易通过目检并结合使用环境来判定。 1)机械应力如震动、冲击、碰撞、压力,可能会导致二极管的结构变形毁坏,外引线脱(断)落,光窗破裂,光纤塑套皱缩,纤芯断裂等失效。 2)热应力容易导致器件不同性质的材料之间因热膨胀系数的差异而位移、形变,从而导致结构(绝缘子、光窗、封边等)漏气、光纤位移甚至脱落。 3)高湿环境中器件金属表面容易受到电化学腐蚀,导致光窗脱落、封边漏气、外引出端及其与管脚间的绝缘电阻降低。 2、光纤断裂 1)各方向的应力超过了光纤承受的限度。 2)与金属或陶瓷插针粘接的光纤纤芯因机械或热应力作用导致光纤在插针结合部位断裂或损伤。

对铅酸蓄电池进行原理及失效原因分析

对铅酸蓄电池进行原理及失效原因分析 铅酸蓄电池已发明有一百多年了,铅酸蓄电池主要壳体、正负极板、隔板,电解液在电场作用下将电能转变为化学电能贮存,又将化学电能转为直流电能,并可反复进行数次充放电循环的一种装置。普通铅酸蓄电池设计寿命为2-3年,而往往实际使用只一年我时间或更短时间,免维护铅酸蓄电池设计寿命为7-15年,有的制造出来由于贮存时间过长,未经使用就已失效报废,远远短于预期使用寿命,导致能源的浪费及应用的经济效益。 铅酸蓄电池原理 一、铅酸蓄电池电动势的产生: 1、铅酸蓄电池充电后,正极板是二氧化铅(PbO2),在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质——氢氧化铅(Pb(OH) 2、氢氧根离子在溶液中,铅离子(Pb)留在正极板上,故正极板上缺少电子。 2、铅酸蓄电池充电后,负极板是铅(Pb),与电解液中的硫酸(H2SO2)发生反应,变成铅离子(Pb+2),铅离子转移到电解液中,负极板上留下多余的两个电子(2e)。可见,在未接通外电路时(电池开路),由于化学作用,正极板上缺少电子,负极板上多余电子,两极板间就产生了一定的电位差,这就是电池的电动势。 二、铅酸蓄电池放电过程的电化反应: 1、铅酸蓄电池放电时,在蓄电池的电位差作用下,负极板上的电子经负载进入正极板形成电流I,同时在电池内部进行化学反应; 2、负极板上每个铅原子放出两个电子后,生成的铅离子(Pb+2)与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4); 3、正极板的铅离子(Pb+4)得到来自负极的两个电子(2e)后,变成二价铅离子(Pb+2)与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。正极板水解出的氧离子(O2)与电解液中的氢离子(H+)反应,生成稳定物质水;

风帆蓄电池储能技术说明书.

太阳能、风能系统 储能用铅酸蓄电池 技术说明书 风帆股份有限公司工业电池分公司

目录 安全注意事项 (3) 一、概要................................................................................... 错误!未定义书签。 1.风帆储能电池特点 (4) 2.风帆储能电池用途 (4) 3.风帆储能电池使用环境 (4) 二、风帆储能电池的规格型号 (4) 1.名称的组成及其意义 (4) 2.风帆储能电池规格表 (5) 三、风帆储能电池的构造 (5) 四、风帆储能电池的充放电特性及参数........................................... 错误!未定义书签。 1.充放电技术要求及参数...................................................... 错误!未定义书签。 2.充电特性及曲线 (8) 3.放电特性及曲线 (8) 五、风帆储能电池的自放电特性、补充电及寿命 (10) 1.自放电特性及补充电.......................................................... 错误!未定义书签。 2.使用寿命.............................................................................. 错误!未定义书签。 六、风帆储能电池深放电后的充电恢复特性 (12) 七、风帆储能电池的使用注意事项 (12) 1.关于充电.............................................................................. 错误!未定义书签。 2.关于放电.............................................................................. 错误!未定义书签。 3.安装注意事项...................................................................... 错误!未定义书签。 4.日常检查及维护保养........................................................ 错误!未定义书签。3 5.关于贮存............................................................................ 错误!未定义书签。4 6.废弃蓄电池的处置.............................................................. 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档