当前位置:文档之家› 蓄电池寿命的理论分析

蓄电池寿命的理论分析

蓄电池寿命的理论分析
蓄电池寿命的理论分析

铅酸蓄电池的寿命

因为铅酸蓄电池内的活性物质会产生不利的化学和物理变化,所以蓄电池的寿命是有限的。

一、铅酸蓄电池的三种寿命

铅酸蓄电池的寿命有三种:循环寿命、搁置寿命和日历寿命。

“蓄电池循环寿命”的定义是蓄电池的容量在跌至额定容量的某个百分比之前所完成的总的完全充放电循环次数。在不同的蓄电池中,这个百分比会不同。蓄电池使用越久,其容量越下降。如果蓄电池滥用,其循环寿命会更加缩短。

另一个计算蓄电池循环寿命的方法是测量单体的内阻。这时,循环寿命的定义是蓄电池在内阻上升到某一点前所完成的总的完全充放电循环次数。

上述的两个定义假定蓄电池的每一次循环都是完全的充放电循环。如果蓄电池每次只是部分放电,那么其循环寿命会延长。所以,在使用铅酸蓄电池时务必要知道额定的放电深度。即使如此,经常放电至额定的深度也会大大地缩短蓄电池的循环寿命。

“蓄电池搁置寿命”是指不使用(搁置)的蓄电池容量在跌至额定容量的某个百分比之前的时间。

“蓄电池日历寿命”是指新蓄电池使用或者搁置后到无法再使用所经过的时间。由于蓄电池实际使用的情况大不相同,就是同一型号蓄电池的日历寿命通常也会相差很大,所以其实际意义不大。

二、铅酸蓄电池内的化学变化

铅酸蓄电池内的不利化学反应会耗掉活性物质并阻止正常的电化学反应。引起不利化学变化的原因一般有六种:温度、压力、放电深度、充电程度、充电电压和放电率。

温度

温度会加剧铅酸蓄电池内的化学反应。蓄电池越热,化学反应会越快。高温可以提高铅酸蓄电池的性能,但是同时不利的化学反应也会加快。高温会引起腐蚀、析气和活性物质脱落,也会使电解液钝化,从而缩短蓄电池寿命。铅酸蓄电池的搁置寿命和持电状态取决于自放电速度,而自放电是由电解槽内的不利化学反应引起的。所以,温度不但影响蓄电池的循环和搁置寿命,而且影响持电时间。

阿亨纽斯方程式表示了温度和化学变化之间的关系。随着温度的升高,化学变化会指数式地加快。一般而言,温度每上升10摄氏度,化学变化会加快一倍。就铅酸蓄电池的寿命而言,35摄氏度时的1小时等于25摄氏度时的2小时。温度的升高会提高蓄电池的性能,同时也会引起不利的化学反应,缩短蓄电池的寿命。从循环寿命上看,高温是铅酸蓄电池的敌人。

下图表示铅酸蓄电池的寿命随温度的不同而变化。注意,35摄氏度时,蓄电池的容量可以高于额定的容量,但是它们的寿命会缩短;而长久在15摄氏度下,蓄电池的寿命可以延长。

铅酸蓄电池的储存温度也很重要。环境温度每升高10摄氏度,自放电率会翻倍。

铅酸蓄电池的滥用也会导致电解液温度上升,从而使蓄电池夭折。如果蓄电池内产生热量的速度超过了在环境中散热的速度,蓄电池的寿命会缩短。在此境况下,蓄电池的温度如果继续上升,形成“热失控”,最后导致灾难性的结果。

铅酸蓄电池的使用,尤其是滥用,会产生电解槽内的极板硫化。硫化的蓄电池在充电和放电时都会使内部的温度上升,而温度上升又会加剧硫化,形成恶性循环。硫化是导致铅酸蓄电池死亡的首要原因。

总之,铅酸蓄电池在使用和储存时温度升高会严重影响蓄电池的寿命。

压力

压力问题一般同密封蓄电池有关。电解槽内的压力增加通常是温度升高的结果。导致温度和压力升高的因素有几个。过大的充电电流和过高的环境温度会引起电解槽内温度上升和活性物质的膨胀。这样,电解槽内的压力会上升。充电过头也会引起温度上升,但是更严重的是会产生气体,导致更大的内部压力。

不幸的是,压力增大会加剧高温的影响,加速形成热失控。压力过大也会引起电解槽内的机械性损坏,例如,短路、断路、变形和电解槽壳体碎裂。所有这些情况都会缩短铅酸蓄电池的寿命。

密封蓄电池的调节阀门会在一定程度上调节内部过高的压力。

放电深度

在一定的温度和放电率下,每次充放电循环时活性物质转换的量同放电深度成比例。

如下图所示,铅酸蓄电池循环寿命和放电深度存在相反的关系。换句话说,放电深度

越浅,蓄电池的循环次数就会上升。

要延长铅酸蓄电池的循环寿命,放电不能过深。一般而言,开口的浸渍式(有液的)

深放电蓄电池的放电深度绝对不能超过额定容量的80%,但是最好是在60%左右。现

场实际测试表明,如果放电深度平均不到80%,那么蓄电池的实际总运作时间会大大

延长。

阀控式深放电蓄电池的放电深度一般不宜超过50%。

充电程度

铅酸蓄电池充电时过充或者欠充都会缩短其循环寿命。过充会引起温度升高,导致腐蚀、析气和活性物质脱落,欠充会引起极板硫化,从而引起充电时温度升高。

先进的高频充电机可以保证蓄电池不被过充或者欠充,从而大大地延长蓄电池的寿命。

充电电压

充电的电压超过规定的电压上限(临界电压)会产生不可逆转的不利化学变化,损坏

电解槽,缩短蓄电池循环寿命。充电电压过高会引起蓄电池内的温度和压力上升,可

能引起蓄电池的爆炸。

放电率

过大电流放电会引起蓄电池内的温度和压力升高。如前所述,过高的温度和压力都是

蓄电池的敌人。然而,这并不等于说,放电电流越小越好。这是因为在确定的放电终

止电压下,较小的放电电流会放出更多的容量,实际放电更深,而蓄电池放电深度越深,其循环次数就会下降。

三、蓄电池的滥用

铅酸蓄电池夭折的主要原因是滥用,而滥用会大大加速蓄电池内的不利化学变化。除

了物理性的损坏之外,下面的例子都属于滥用:

?放电电流超过蓄电池的设计

?蓄电池超载使用

?蓄电池在超高温和超低温下使用和存放

?使用不恰当的充电机

?充电过头(充电电压过高,电流过大、时间过长)

?充电不足

?放电过深

?在浸渍式蓄电池中,电解液低于下限

?在浸渍式蓄电池中,用自来水(而不是蒸馏水)补水

?在浸渍式蓄电池中,补水过头,特别是使电解液溢出

?蓄电池过渡地受震动和冲击

?蓄电池长期搁置不使用,也不充电

四、延长铅酸蓄电池的寿命

延长铅酸蓄电池寿命的方法有两种:

?不滥用蓄电池

?用科学的再生方法改变已经产生的不利化学变化并防止其产生

铅酸蓄电池最主要的不利化学变化是硫化。如果积聚在极板上的硫酸铅不被除去,电

解槽内不久就会发生机械性的损坏,例如,短路、断路、变形等。铅酸蓄电池一旦发

生机械性的损坏就无法再生。

蓄电池再生是指用科学的、无损的设备和工艺除去硫化,恢复蓄电池的容量和性能,

延长其寿命。

科学的再生方法不但能够除去硫化,而且还能防止其产生。为了获得最大的经济效益,铅酸蓄电池越早进行再生处理越好。

不滥用铅酸蓄电池不等于不再会产生不利的化学和物理变化,只是变化能够延缓。只

有加上科学的再生处理,才能使蓄电池获得最大的功效和最长的寿命。

池容量(Ah)的含义是什么?

蓄电池的额定容量C,单位安时(Ah),它是放电电流安(A)和放电时间小时(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah是不同的,为了便于对电池容量进行描述、测量和比较,必须事先设定统一的条件。实践中,电池容量被定义为:用设定的电流把电池放电至设定的电压所给出的电量。也可以说电池容量是:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积。

为了设定统一的条件,首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小

时时率、电动车专用电池为2小时率,写做C20、C10和C2,其中C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放电到设定电压的小时数。于是,用容量除小时数即得出额定放电电流。也就是说,容量相同而

放电时率不同的电池,它们的标称放电电流却相差甚远。比如,一个电动自行车用的电池容量10Ah、放电时率为2小时,写做10Ah2,它的额定放电电流为10(Ah)/ 2(h)=5A;而一个汽车启动用的电池容量为54Ah、放电时率为20小时,写做54Ah20,它的额定放电电流仅为54(Ah)/ 20(h)=2.7A!换一个角度讲,这两种电池如果分别用5A和2.7A的电流放电,则应该分别能持续2小时和20小时才下降到设定的电压。

上述所谓设定的电压是指终止电压(单位V)。终止电压可以简单的理解为:放电时电池电压下降到不至于造成损

坏的最低限度值。终止电压值不是固定不变的,它随着放电电流的增大而降低,同一个蓄电池放电电流越大,终止

电压可以越低,反之应该越高。也就是说,大电流放电时容许蓄电池电压下降到较低的值,而小电流放电就不行,

否则会造成损害。

电池在工作中的电流强度还常常使用倍率来表示,写做NCh 。N是一个倍数,C代表容量的安时数,h 表示放电时

率规定的小时数。在这里h的数值仅作为提示相关电池是属于那种放电时率,所以在具体描述某个时率的电池时,

倍率常常写成NC的形式而不写下标。倍数N乘以容量C就等于电流A。比如20Ah电池采用0.5C倍率放电,0.5×20=10A。换一个角度举例:某汽车启动蓄电池容量54Ah,测得输出电流为5.4A,那么它此时的放电倍率N为5.4 / 54=0.1C 。下图是某20小时率的电池产品在不同放电倍率下的终止电压和放电时间的关系,这些数值对通常的铅

酸蓄电池具有代表性。

由图可见,同一个电池在不同的放电电流下所得出的Ah(电流和时间的乘积)数是不同的。假设电池的容量为

10Ah,以0.6C倍率也就是6A放电时间只能持续1小时,能够放出的电量仅为6A×1h=6Ah。而以0.05C也就是0.5A放电时间可以持续20小时,放出电量0.5A×20h=10Ah。尽管前者的终止电压比后者低得多,但能够放出的电

量要远小于后者。

32650-5Ah圆柱型动力电池安全性分析20141008

32650-5Ah圆柱型动力电池安全性分析 作者:深圳市沃特玛电池有限公司何有奇2014.10.8 汽车作为日常出行的工具已经有近300 年的历史,人们已经离不开汽车。然而随着石油危机的临近,传统 的燃油汽车面临着无油可用的危机。新能源汽车,尤其是电动汽车将承担起历史的使命。然而接连出现的安全 事故给新能源汽车的发展蒙上了阴影。2011 年 4 月汽车发生自燃事故。同年7 月汽车发生燃烧事故。2012年, 深圳电动出租车被撞燃烧引发人员伤亡。这唤起了人们对动力锂电池的质疑。新能源汽车,尤其是锂离子电池驱 动的纯电动车还要不要发展? 因此深圳沃特玛电池有限公司传来消息,动力锂离子电池通常来说是指能够通过大电流放电给设备、器械、 车辆等提供动力的锂离子电池。动力锂离子电池具有比能量高、大电流充放电、循环寿命长等特点,已经获得 广泛应用。动力锂离子电池根据正极材料的不同分为三元、钴酸锂、锰酸锂、磷酸铁锂等类型;根据外形的不 同分为方型电池(prismatic),圆柱型电池(cylindrical)等。为提高续航里程,动力锂离子电池通过串并联组合 后的能量一般较大,容量从几安时到几百安时不等,电压从十几伏到几百伏不等。随着携带能量的提高,电池潜在 危险性也随之增大。因此如何提高动力电池的安全性成为电动汽车持续发展的重要前提。在动力锂电池的发展过程中,一直存在着两个发展方向。一个方向是大单体电池,通过少量并联组合;一个方向是小单体电池,通过大量并联组合。韩国LG,国内BYD 为代表的企业走的是大方型路线;美国特斯拉,国内沃特玛为代表的企业走的是小型圆柱路线。这两条路线目前没有定论,不同的动力电池厂家依据自己的理解选择不同的工艺路线。但是在面对安全性这一指标方面,两种工艺路线的结果差别是非常大的。本文从动力电池结构、性能方面,特别是安全性方面进行对比分析,来阐述小型圆柱电池在应用于电动汽车等方面的安全优势。 电池结构、性能对比分析 圆柱形电池和方型电池是目前业界两大主流方向。圆柱型电池的基本结构如图 1 所示。正负极之间由隔膜 分开,通过卷绕形成卷芯。通常正负极极片焊接有正负极极耳并分别通过两侧引出。极耳焊接于正极和负极外 壳。电解液加注于壳体内。图 2 为方型电池结构。方型电池的结构分叠片结构和卷绕结构。叠片式方型锂离子 电池由n 片正极片和n+1 片负极片叠片组成电池芯胞,正负极片之间用隔膜隔开,分别在正、负极片的一侧预 留有正、负极耳区,叠成芯胞时正、负极耳分别从芯胞两侧对称伸出。方型电池的卷绕结构和圆柱型电池的卷 绕结构类似,其区别是卷心是扁平形状而非圆柱型。由于圆柱型电池和方型电池形状的不同,结构差别较大。 一般情况下,圆柱型电池由于卷芯电流密度和散热的限制,容量不能做得太大。方型电池保证厚度适当的前提 下,通过增大长、宽可以提高容量。其单体容量一般可以超过圆柱型电池的10 倍以上。表 1 为圆柱型和方型 电池的性能对比。可以看出两种电池具有各自的特色。圆柱形电池结构设计简单,正负极界面紧密,生产线成 熟,成本低,成组散热好,安全性能优秀。其缺点是内阻相对较高,成组要求高。方型电池的优势是单体容量 大组合简单。其缺点是生产工艺复杂,大容量电池单体一致性难控制。另外,方型壳体容易产生应力集中,壳 体容易破裂,电解液溅出引发安全隐患。 从全球应用市场来看,大容量方型电池和小容量圆柱型电池在动力领域都有应用。目前电动汽车行业的标 杆企业,美国特斯拉的电池产品为18650型号的圆柱型电池,单体容量为3Ah左右。

阀控式密封和免维护铅酸蓄电池的寿命影响

阀控式密封和免维护铅酸蓄电池的寿命影响 摘要:本文讨论了阀控式密封和免维护铅酸蓄电池作为太阳能灯具、光伏电站和光伏户用系统的储能电源,在全天候运行时的耐候性问题,即自然环境下温度对蓄电池寿命、容量的影响,以及光伏系统储能铅酸蓄电池研究、开发。 关键词:VRLA蓄电池胶体铅酸蓄电池免维护铅酸蓄电池环境温度蓄电池寿命蓄电池容量蓄电池研发方向 近年来,太阳电池的光伏发电技术得到了世界各国的高度重视。从欧美的太阳能光伏“屋顶计划”到我国的西部光伏发电项目。太阳能光伏发电已经显示了其强劲的发展势头。随着光伏发电技术的发展和低成本光伏组件的产业化,太阳能灯具、光伏电站和光伏户用电源,均要求蓄电池供应商能够提供全天候运行的蓄电池,而目前光伏系统多采用阀控式密封铅酸蓄电池(以下简称铅酸蓄电池缩写为VRLAB)胶体铅酸蓄电池和免维护铅酸蓄电池(不是VRLA蓄电池)作为储能电源。耐候性是指蓄电池适应自然环境的特性。本文主要讨论自然环境下温度对蓄电池寿命、容量的影响及解决方法,以及储能铅酸蓄电池研究发展方向。上述三种产品在河北奥冠电源公司已批量生产,山东皇明太阳能公司做储能蓄电池已配套应用,现场试验效果很好。 一、温度对铅酸蓄电池寿命的影响 VRLA铅酸蓄电池受温度影响较大,按阿里纽斯原理,在大于40℃,温度升高10度,寿命降低一倍,寿命终止的主要原因是:(一)硫酸电解液干涸;(二)热失控;(三)内部短路等。(一)硫酸电解液干涸: 硫酸电解液作为参加化学反应的电解质,在铅酸蓄电池中是容量的主要控制因素之一。酸液干涸将造成电池容量降低,甚至失效。造成电池干涸失效这一因素是铅酸电池所特有的。酸液干涸的原因:(1)气体再化合的效率偏低,析氢析氧、水蒸发;(2)从电池壳体内部向外渗水;(3)控制阀设计不当;(4)充电设备与电池电压不匹配,电池电压过高、发热、失水、干涸而失效。 VRLA铅酸蓄电池受到上述(1)(2)(3)(4)四种因素的影响,其中(2)(3)(4)三种因素引起的失水速度随环境温度的上升而加快,从而加速了铅酸蓄电池以干涸方式失效。酸液干涸是影响VRLA铅酸蓄电池寿命的致命因素,VRLA蓄电池不适于在35℃以上高温条件下使用。 (二)热失控: 蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下非凡分类生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 (三)内部短路:由于隔膜物质的降解老化穿孔,活性物质的脱落膨胀使两极连接,或充电过程中生成枝晶穿透隔膜等引起内部短路。深放电之后的蓄电池,其吸附式隔板易出现铅绒或弥散型沉淀,或形成枝晶,导致正负极板微短路。 由于VRLA铅酸蓄电池的负极冗余设计,充电的初、中期充电效率比正极板充电效率高,所以在正极板析氧之前,负极已生成足够的绒面铅,用于使氧进行再化合。在制作蓄电池过程中,以负极活性物质的量作为控制因素,可以减缓电池性能的恶化。

充电电池发展现状及市场前景分析

2015年版中国充电电池市场现状调研与发 展前景趋势分析报告 报告编号:1521598 行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容:

一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:2015年版中国充电电池市场现状调研与发展前景趋势分析报告 报告编号:1521598 ←咨询时,请说明此编号。 优惠价:¥7020 元可开具增值税专用发票 咨询电话:4006-128-668、0、传真:0 Email 网上阅读: 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 《2015年版中国充电电池市场现状调研与发展前景趋势分析报告》依据国家权威机构及充电电池相关协会等渠道的权威资料数据,结合充电电池行业发展所处的环境,从理论到实践、从宏观到微观等多个角度对充电电池行业进行调研分析。 《2015年版中国充电电池市场现状调研与发展前景趋势分析报告》内容严谨、数据翔实,通过辅以大量直观的图表帮助充电电池行业企业准确把握充电电池行业发展动向、正确制定企业发展战略和投资策略。 《2015年版中国充电电池市场现状调研与发展前景趋势分析报告》是充电电池业内企业、相关投资公司及政府部门准确把握充电电池行业发展趋势,洞悉充电电池行业竞争格局,规避经营和投资风险,制定正确竞争和投资战略决策的重要决策依据之一。正文目录 第一章充电电池相关概述 第一节充电电池基础阐述

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

影响锂电池组容量的因素

我们常说电动车锂电池组能跑多远,是衡量一个电动车质量及价格的重要因素,关系着电动车销量及客户的观感,那么锂电池组的性能与哪些因素有关。东莞捷凯贝安新能源为你解答,锂电池组的容量是衡量锂电池性能的一项重要指标,一般用安时(AH)来表示,放电时间(小时)与放电电流(安培)的总称,即容量=放电时间×放电电流。电池的实际容量,取决于电池中活性物质的多少和活性物质的利用率。活性物质的量越多,活性物质利用率就越高,电池的容量也就越大,反之容量越小,一般锂电池的电芯质量就是由此来进行区别,影响电池容量的因素很多,常见的有以下几种: (1) 放电率对电池容量的影响 铅蓄电池容量随放电倍率的增大而降低,也就是说放电电流越大,计算出电池的容量就越小。比如一只5Ah的电池,用2.5A放电可以放2小时,即2.5×2=5 ; 那么用5A放电只能放出47分钟的电,合0.78小时。其容量仅为5×0.78=3.9安时,所以对于给定电池在不同时率下放电,会有不同的容量。我们在说容量时必须知道放电的时率或倍率,简单的讲就是用多大的电流放电。放电率对锂电池组的影响和铅蓄电池的影响是同样的,所以电动车锂电池组在相同的时间下,在相对低速的情况下,跑动的距离越远。 (2)极板的几何尺寸对电池容量的影响 在活性物质的量一定时,与电解液直接接触极板的几何面积增加,电池容量增加,所以极板的几何尺寸,对电池容量的影响不可忽视。 (3) 温度对电池容量的影响

温度对锂电池组及铅酸蓄电池的都有较大的影响,一般对铅酸电池的影响更大,一般随着温度降底,容量下降; 在锂电池生产标准中,一般要规定一个温度为额定标准温度,锂电池的技术参数,都是在标准温度下进行测试的(一般为25摄氏度) ,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即锂聚合物电池输出功率会上升。温度也影响电解液的传送速度,温度上升则加快,温度下降,传送减慢,电池充放电性能也会受到影响。 (3)终止电压对电池容量的影响 当电池放电至某一个电压值以后,产生电压急剧下降,实际上所获得的能量非常小,如果长期深放电,对电池的损害相当大,所以必须在某一电压值终止放电,该截止放电电压叫放电终止电压,设定放电终止电压,对延长锂电池组使用寿命意义重大。

201X年全球铅酸蓄电池行业发展现状分析

2015年全球铅酸蓄电池行业发展现状分析 2014年11月19日 (1)铅酸蓄电池的历史发展情况 铅酸蓄电池是发展历史最为悠久的二次电池,是世界上第一个商业化应用的可再充电池,自1859 年法国物理学家Gaston Plante(普兰特)发明以来,已经历了150多年的发展历程。 铅酸蓄电池已经发展成为世界上产量最大的电池产品,生产量占电池行业总量的50%,占充电电池的70%,即便是欧美日等世界上最发达的国家和地区,至今也仍大量生产和使用铅酸蓄电池。 铅酸蓄电池150 年的历史中,技术进展是其能够持续发展的动力,其大致经历了以下三个阶段的发展: ①开口式(富液式)蓄电池 最早的开口式铅酸蓄电池,内部有流动的电解液,充电、放电时会析出气体和酸雾,内部硫酸溶液在使用运输过程容易溢出,污染环境,对使用者有一定的危险性,如酸液腐蚀衣服。灼伤皮肤,损毁设备等,而且由于充电时失水,电池需经常加水维护(频繁时一个月一次),使用不便。

②富液式免维护蓄电池 二十世纪七十年代,出现了富液式免维护蓄电池,采用铅钙合金,水分解的速度减小,在一定程度上解决了电池充电失水问题,蓄电池在3-5 年的使用期限内,不需补加水,但蓄电池需要直立安装,充电时仍有少量气体和酸雾溢出,主要应用于汽车等车辆启动。 ③阀控密封免维护蓄电池 1971年,美国Gates 公司发明了吸液式超细玻璃棉隔板(Absorbent Glass Mat)技术,即阀控式蓄电池(VRLA)的AGM 技术。该技术从实践上解决了电池内部氧气的复合循坏问题,使铅酸蓄电池实现了100 多年来的密封、不漏液的梦想,结束了铅蓄电池开口的时代,开创了铅蓄电池发展历史上的一个新的里程碑。阀控式密封免维护蓄电池,利用吸附式AGM 隔板和气体再化合原理,充电过程产生的氧气,可以在电池内部再化合为水,且采用密封结构,解决了电池漏酸、腐蚀、维护问题,电池性能大大提高。 我国从九十年代开始研制和生产阀控式密封免维护蓄电池。阀控密封蓄电池可以任意位置安装,由于没有酸雾溢出,不污染环境,蓄电池可以与电子元器件安装在一起,不需要单独的电池房间。另外,蓄电池寿命可长达20 年。阀控密封蓄电池的另一

拆解特斯拉锂电池看究竟

拆解特斯拉锂电池看究竟 自上世纪70年代诞生以来,锂电池成功进入了每个人的生活,但在科技进步如此神速的年代,却没有新的能量存储技术能替代其地位,这足以说明锂电池性能之优越,用途之广泛。随着新能源汽车高速发展,锂电池将得到充分的发展。 提到新能源汽车,就不得不说下马斯克的特斯拉了。时尚的外形、百公里加速3.2秒、续航440公里,这些都是特斯拉Model S作为一款纯电动汽车所展示给人们的数据。

不逊于传统燃油车的性能表现,让特斯拉获得了巨大的成功。同样的锂电池,为何在特斯拉上会有如此不俗的表现?是电动机技术高超?还是电池技术先进? 这不,为了探寻特斯拉电池的奥秘,国外牛人就将一辆Model S的电池板给拆开了,一探究竟。 国外牛人直接给我们展示电池组。电池组安放前后轴之间的底盘位置,其重量可达900公斤。因此造成底盘重心较低,非常利于车辆的高速稳定性。电池组几乎占据车辆底盘的全部,但电池组并没有作为承受力的主体,电池组有加强筋和受力框架保护,大大减低碰撞时的爆炸危险。 电池组整体有标明其身份的铭牌,其中标明了其容量为85kWh,400V直流电,简单来说电池可以装85度电,可供一个普通家庭使用一个月。

电池组表面不仅有塑料膜保护着,而且塑料膜下面还有防火材料的护板。护板下面才是电池组。护板通过螺栓与电池组框架连接,并且连接处充满了密封粘合剂。外观来看电池组保护的不错。

特斯拉Model S电池组板看似非常高大上。其电池组板由16组电池组串联而成,并且每组电池组由444节锂电池,每74节并联形成。因此特斯拉Model S 电池组板由7104节18650锂电池组成。

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统 解析 1.Tesla目前推出了两款电动汽车,Roadster 和Model S,目前我收集到的 Roadster的资料较多,因此本回答重点分析的是 Roadster的电池管理系统。 2.电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。 BMS勺主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管

理系统(Battery Thermal Man ageme nt System, BTMS). 1.热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子

电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0° C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30° C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池

铅酸蓄电池产业全面分析

铅酸蓄电池: 一、概述: 铅酸蓄电池是指电极由铅及其氧化物制成,电解液是硫酸溶液的一种蓄电池,主要构成成份为:阳极板(过氧化铅 . PbO2)活性物质、阴极板 ( 海绵状铅 .Pb)活性物质、电解液(稀硫酸)、硫酸(H2SO4) + 水(H2O)、电池外壳、隔离板及液口栓、盖子等。它是目前世界上广泛使用的一种化学电源,具有电压平稳、安全可靠、价格低廉、适用范围广、原材料丰富和回收再生利用率高等优点,是世界上各类电池中产量最大、用途最广的一种电池。 二、原理: 铅酸蓄电池正极活性物质是二氧化铅,负极活性物质是海绵铅,电解液是稀硫酸溶液,其放电化学反应为二氧化铅、海绵铅与电解液反应生成硫酸铅和水,Pb(负极)+PbO2(正极)+2H2SO4=2PbSO4+2H2O(放电反应)其充电化学反应为硫酸铅和水转化为二氧化铅、海绵铅与稀硫酸。2PbSO4+2H2O=Pb(负极)+PbO2(正极)+2H2SO4 (充电反应)铅酸蓄电池单格额定电压为,一般串联为6V、12V用于汽车、摩托车启动照明使用,单替电池一般串联为48V、96V、110或220V 用于不同场合。电池内正、负极板间采用电阻极低、杂质少成分稳定离子能通过的橡胶、PVC、PE或AGM隔板。 三、特点: 铅酸蓄电池已有140多年的历史,虽然与技术先进的锂电池、镍氢电池等相比能量低、深循环寿命短、环保性差,但由于功率特性好、自放电小、高低温性能优越、生产和回收技术成熟以及具有廉价优势,该电池目前仍然是二次电池的主流产品,销售额居二次电池之首。 四、分类: 常用的铅酸蓄电池主要分为三类:分别为普通蓄电池、干荷蓄电池和免维护蓄电池三种。 1)普通蓄电池;普通蓄电池的极板是由铅和铅的氧化物构成,电解液是硫

特斯拉锂电池技术

TESLA电池: TESLA电动车的电池采用了松下提供的NCA系列(镍钴铝体系)18650钴酸锂电池,单颗电池容量为3100毫安时(mAh,一般我们在电瓶上看到的单位是“安时”,这主要是根据不同容量的电池来选择不同的单位)18650电池的技术更为成熟,比能量(参与电极反应的单位质量的电极材料放出电能的大小)方面它几乎是磷酸铁锂电池的两倍,也就是说,在同等体积的情况下,18650电池组成的电池单元可以储存更多的电能。这也是TESLA使用这种电池的其中一个原因; TESLA电动车与其它品牌电动车使用电池的情况 车型MODEL S 85KWh 丰田普锐斯 雪佛兰沃蓝 达 Volt 比亚迪e6 日产聆风 正极材料18650电池钴 酸锂 锰酸锂三元磷酸铁锂锰酸锂 电池供应商松下(三洋被 其收购) 松下LG化学比亚迪AESC 电池总容量85kWh 44kWh 16kWh 60kWh 24kWh 续航里程426km 20km 62km 300km 160km 电池质保期8年不限里程整车质保3年,10 万公里 8年,约16万公 里(英里换算) 5年,10万公里 8年,约16万公里(英 里换算) 续航里程为纯电动行驶里程,数据来自官方 尽管如此,把这种电池运用在电动车上还是有一定难度,比如,要想满足一辆电动车的使用需求就需要使用很多个18650锂电池,这就出现了一个要解决的问题,如何把它们组合在一起。 85kWh的MODEL S的电池单元一共运用了8142个18650锂电池,工程师首先将这些电池以砖、片逐一平均分配最终组成一整个电池包,电池包位于车身底板。

18650电池的稳定性 虽然18650钴酸锂电池是满足较高续航行驶里程的关键,但它在高温状态下的稳定性相比镍钴锰酸锂(NCM)和磷酸铁锂电池则要稍差些,因此,在安全性方面就需要技术的有力支撑。 暴烈的性格曾让它也惹了不少麻烦,记得在几年前,索尼公司就因旗下笔记本产品所使用的电池发生爆炸采取了召回行动。不过,现在的18650电池已经可以在技术上避免自燃或无故爆炸的情况出现。不过,在发生强烈的撞击后,这种电池还是存在着很大的爆炸可能,另外,对于低温环境的适应能力也不是很稳定,在低温环境下,钴酸锂电池容易出现因过度放电导致过热的情况。这样看来,如何管理这些电池就成了十分重要的事。 如何监控电池包的状态 电池包内的保险装置分布到每一节18650钴酸锂电池,每一节18650钴酸锂电池两端均设有保险丝,当电池出现过热或电流过大时,保险丝会切断,以此避免因某个电池出现异常情况(过热或电流过大)时影响到整个电池包。

关于特斯拉与比亚迪电动汽车的调查报告

关于特斯拉与比亚迪电动汽车的调查报告 随着石油资源的日益枯竭和环境的不断恶化,各国都开始大力推广电动汽车技术。其中美国在这一领域研究的最早也走得最远。以通用、福特等老牌汽车公司为代表的汽车公司对电动汽车做了长久的研究并取得了丰硕的成果。目前对于电动汽车的分类主要有三种种,分别是混合动力汽车(FCEV)、纯电动汽车(BEV)、燃料电池电动汽车(PCEV)。目前传统的汽车厂商均把混合动力汽车作为主要研究对象。相对于纯电动汽车,该种汽车技术挑战小,更易于普及也是我国新能源汽车发展的主要方向。笔者认为该种电动汽车可以看成是燃油汽车向纯电动汽车的过渡产品,随着传统能源的储量日益减少和电动汽车的不断发展,纯电动车必将来临。 成立于2003年的特斯拉汽车公司正是专注于纯电动汽车的研究,该公司在创立之初就将自己定位为高新技术企业而非传统的汽车制造企业。该公司虽然成立年限不长,但却为汽车制造行业带来了翻天覆地的变化。目前特斯拉前后推出了3个系列的纯电动汽车车型分别为Tesla roadster电动敞篷跑车、Tesla Model S电动轿车、Tesla Model X电动SUV。其中roadster为特斯拉开发出的第一代电动汽车是全球首款量产版电动敞篷跑车。该车价格不菲,在美国最低售价为109000美元,从一开始就将消费群体定位为高端客户。Roadster 是第一辆使用锂电池技术每次充电能够行驶320公里以上的电动车;0至60英里(约为0至97公里)加速时间仅为3.7秒;每公里耗电量为0.135度(千瓦时),效率高达92%。Model S是一款由Tesla汽车公司制造的全尺寸高性能电动轿车。Model S的电池规格分为三种,其中采用最高电池规格的一次充电可行驶480公里。车内中控台上的液晶显示屏尺寸为17英寸,这一显示屏集成了车辆行驶模式调节(舒适、正常、运动)、车辆灯光、车辆用电状况、以及导航、音乐、电话等功能于一体,并可实现分屏显示。充电方式上,该车可以选择传统插座充电和充电站充电两种方式。此外,它还支持太阳能充电,对于容量为85千瓦时的电池,仅需一小时就可将电量充满。最新款的Model X是全尺寸纯电动SUV车型。特斯拉发展策略为在企业刚起步时推出豪华价格昂贵、空间小的Roadster跑车,然后是豪华、价格高档、全尺寸的轿车Model S,接下来是豪华、价格相对亲民、空间更大的全尺寸SUV Model X。 毫无疑问,电动汽车的核心技术正是电池技术。足够的电池容量、持久的续航时间、快速的充电技术,这些都是电动汽车能否普及的关键。特斯拉的成功的关键即在该领域绝对领先的技术。相对于目前很多电动车和混动车的磷酸铁锂电池,特斯拉采用的18650钴酸锂电池技术较为成熟,功率高、能量密度大、且一致性较高。问题是安全系数较低,热特性和电特性较差,成本也相对较高。而要驱动一辆汽车,无疑需要相当数量的18650电池,在特斯拉Model S上,这个数字达到了惊人的8000节。面对8000节18650电池,他们借鉴了网络控制领域用程序控制成百上千台服务器的模式,引入了分层管理的方法控制这些“活跃的圆柱体”。具体说来,特斯拉将小电池组成电池片、电池片再组成电池砖、电池砖又组成电池包的形式组合这些数量惊人的电池。仅仅有分级还不够,每个层级都要全面监控,特斯拉在每个电池片、电池砖和电池组中设计了监控单元和保险,电流过大或电池过热时立刻断开输出。 对于充电,以Model S为例特斯拉电劢汽车总共有三种充电方式:移劢充电包、高能充电桩和超级充电桩。所谓的移动充电包就是一条充电线,只要你带着这根线,任何有普通电源插口的地斱都可以充电,非常斱便,只是这种充电方式的速度是最慢的。美国本土电压是110V,充电速度每小时不到10英里(约16公里),一晚上的时间我们就按最少8个小时计

铅酸免维护蓄电池保养手册

铅酸免维护蓄电池保养手册 1、环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右,UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。一般情况:电池存放容量:1个月(25℃),96%。3个月,(25℃)90%。6个月(25℃),80%。 2、充电电压。由于EPS电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长电池的使用寿命,EPS的充电器一般采用恒压限流的方式控制,电池充满后即转为浮充状态,每节浮充电压设置为左右。在使用温度15~30℃环境中,电池浮充使用过程容量递减。递减情况:1年容量为90%左右;2年容量为70%左右;3年容量为50%左右。 3、放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然EPS都有电池低电位保护功能,一般单节电池放电至左右时,EPS就会自动关机。但是,如果EPS处于轻载放电或空载放电的情况下,也会造成电池的深度放电。? ?4、电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开路电压高于,则表示电池储能还有80%以上,若开路电压低于,则应该立刻进行补充充电。若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。? 5、免维护电池由于采用吸收式电解液系统,在正常使用时不会产生任何气体,但是如果用户使用不当,造成电池过充电,就会产生气体,此时电池内压就会增大,将电池上的压力阀顶开,严重的会使电池爆裂。?? 6、电池应尽可能安装在清洁、阴凉、通风、干燥的地方,并要避免受到阳光、加热器或其他辐射热源的影响。电池应正立放置,不可倾斜角度。每个电池间端子连接要牢固。? 7、定期保养。电池在使用一定时间后应进行定期检查,如观察其外观是否异常、测量各电池的电压是否平均等。如果长期不停电,电池会一直处于充电状态,这样会使电池的活性变差。因此,即使不停电,UPS也需要定期进行放电试验以便使电池保持活性。放电试验一般可以三个月进行一次,做法是EPS带载--最好在50%以上,然后断开市电,使EPS 处于电池放电状态,放电持续时间视电池容量而言一般为几ms至几十ms,放电后恢复市电供电,继续对电池充电。? 蓄电池性能曲线:

影响使用寿命的主要因素和注意事项

影响使用寿命的主要因素和注意事项 ⑴环境温度对电池的影响较大。环境温度过高,会使电池过充电产生气体,环境温度过低,则会使电池充电不足,这都会影响电池的使用寿命。因此,一般要求环境温度在25℃左右, UPS浮充电压值也是按此温度来设定的。实际应用时,蓄电池一般在5℃~35℃范围内进行充电,低于5℃或高于35℃都会大大降低电池的容量、缩短电池的使用寿命。 ⑵放电深度对电池使用寿命的影响也非常大。电池放电深度越深,其循环使用次数就越少,因此在使用时应避免深度放电。虽然UPS都有电池低电位保护功能,一般单节电池放电至10.5V左右时,UPS就会自动关机。但是,如果UPS 处于轻载放电或空载放电的情况下,也会造成电池的深度放电。 ⑶电池在存放、运输、安装过程中,会因自放电而失去部分容量。因此,在安装后投入使用前,应根据电池的开路电压判断电池的剩余容量,然后采用不同的方法对蓄电池进行补充充电。对备用搁置的蓄电池,每3个月应进行一次补充充电。可以通过测量电池开路电压来判断电池的好坏。以12V电池为例,若开路电压高于12.5V,则表示电池储能还有80%以上,若开路电压低于12.5V,则应该立刻进行补充充电。若开路电压低于12V,则表示电池存储电能不到20%,电池不堪使用。 ⑷电池充放电电流一般以C来表示,C的实际值与电池容量有关。例如,100AH的电池,C=100A。松下铅酸免维护电池的最佳充电电流为0.1C左右,充电电流不能大于0.3C。充电电流过大或过小都会影响电池的使用寿命。放电电流一般要求在0.05C~3C之间,UPS在正常使用中都能满足此要求,但也要防止意外情况的发生,如电池短路等。 ⑸充电电压。由于UPS电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长电池的使用寿命, UPS的充电器一般采用恒压限流的方式控制,电池充满后即转为浮充状态,每节浮充电压设置为13.6V 左右。如果充电电压过高就会使电池过充电,反之会使电池充电不足。充电电压异常可能是由电池配置错误引起,或因充电器故障造成。因此,在安装电池时,一定要注意电池的规格和数量的正确性,不同规格、不同批号的电池不要混用。外加充电器不要使用劣质充电器,而且安装时要考虑散热问题。目前,为进一步提高电池寿命,先进的UPS都采用一种ABM(Advanced Battery Management)三阶段智能化电池管理方案,即充电分成初始化充电、浮充电和休息三个阶段:第一阶段是恒流均衡充电,将电池容量充到90%;第二阶段是浮充充电,将电池容量充到100%,然后停止充电;第三阶段是自然放电,在这个阶段里,电池利用自身的漏电流放电,一直到规定的电压下限,然后再重复上述的三个阶段。这种方式改变了以前那种充满电后,仍使电池处于一天24h的浮充状态,因此延长了电池的寿命。 ⑹免维护电池由于采用吸收式电解液系统,在正常使用时不会产生任何气体,但是如果用户使用不当,造成电池过充电,就会产生气体,此时电池内压就会增大,将电池上的压力阀顶开,严重的会使电池爆裂。

中国铅酸蓄电池产业现状及发展趋势

中国铅酸蓄电池产业现状 及发展趋势 Ting Bao was revised on January 6, 20021

铅酸蓄电池产业现状及发展趋势 电池工业是新能源领域的重要组成部分,是全球经济发展的一个新热点,与电力、交通、信息等产业发展息息相关,是社会生产经营活动和人类生活中不可缺少的产品。铅酸蓄电池凭借其性能价比高、大容量、高功率、长寿命、安全可靠等优点,是目前世界上产量最大、用途最广的一种电池,铅酸蓄电池销售额占全球电池销售额的30%以上。铅作为铅酸蓄电池最为重要的原料,其质量和价格的高低直接影响蓄电池产业未来的发展,铅和铅酸蓄电池的发展是相辅相成的。现就对近年来我国铅酸蓄电池发展现状进行分析,谈点自己的感想。 一、我国铅酸蓄电池行业现状 随着我国经济的持续快速发展,中国汽车、摩托车、电动助力车、通信、信息、电力等基础产业发展十分迅速,这些行业在我国处于一个高速成长期,对铅酸蓄电池的需求日益增长,铅酸蓄电池工业呈持续、快速增长趋势。 据不完全统计,我国铅酸蓄电池制造厂家已达到1500家左右,生产量平均以每年约20%的速度快速增长,铅酸蓄电池产量约占世界产量的1/3,出口量、出口额分别以每年高达29%和34%左右的速度递增,在国际市场上具有举足轻重的地位,成为全球铅酸蓄电池的生产和消费大国。

2003年,中国铅酸蓄电池的销售额约130亿元人民币,约占中国电池销售总额的1/3,占二次电池销售总额的45%。 2004年,由于铅等原料价格的集聚增长,影响了市场销售和利润,但由于国内需求和出口的增长,中国铅酸蓄电池产量达到了约6000万KVAH,销售额约150亿元。 2005年,铅酸蓄电池总产量达6645万KVAH,销售额200亿元左右,出口额亿美元,同比增长40%。蓄电池产量年平均增长远远高于国民经济的增长速度和欧美等发达国家,起动蓄电池增长15%以上,固定电池增长30%,动力电池增长50%以上。 2006年,铅酸蓄电池产量为万KVAH,销售额350亿元. 2007年,铅酸蓄电池产量为万KVAH,销售额503亿元。其产品结构见下图: 2007年我国铅酸蓄电池产量结构图 随着中国市场经济进程的加快,铅酸蓄电池企业已呈现优胜劣汰趋势,地域性规模企业逐步形成并壮大,市场份额逐年增长。仅以助动车用铅酸蓄电池企业为例,浙江省长兴县的蓄电池产业是随着近年来我国电动助力车产业的兴起迅速发展壮大,2003年,铅酸蓄电池企业有175家之多,销售额为亿元;2004年开始进行了专项整治,到2005年蓄电池企业保留下来53家,销

暴力拆解特斯拉Model S 85锂电池组

暴力拆解特斯拉Model S 85锂电池组 从去年12月底就开始在油管上爆红的一则视频,完整描述了某网友拆解特斯拉Model S 85电池组的全过程。 无独有偶,喜欢拆特斯拉电池的还真不是只有这一位。小编从国外的特斯拉论坛上扒出了这么一个帖子。楼主之前曾放话出来,说要拆一拆Model S的电池组玩。您瞧瞧,这嘚瑟劲儿,没事儿拆车玩儿就算了,还专挑这么贵的特斯拉下手。不过,在大家都以为这哥儿们不过是赤裸裸的标题党的时候,他真的就把Model S P85的电池组给拆了!小编想想都觉得任性,不过又忍不住偷偷给这位伙计点了个赞,毕竟人这说到做到的勇气也是值得学习一番。 特斯拉Model S P85电池组内部构造图 特斯拉论坛用户wk057自己本身就是一位Model S车主,平时喜欢没事捣鼓的他想自己做一套特牛掰的太阳能存储系统。所以,他自购了一辆报废Model S上的电池组,然后将它彻底地拆了个底朝天。小编想想都觉得这活儿它真心不简单,因为特斯拉Model S的电池组包含了近7000个锂电池电芯,组成了16个独立电池模块,内部结构十分复杂。wk057购买的这块电池组容量为85千瓦时,最大直流电压为400V。 wk057发现特斯拉的电池组中,每一枚独立电芯都通过一根很细的线和电池模块总线相连,达到一定温度时能够自熔断电,保障了整个电池组的安全。他还发现电池组的水冷管中仍使用的是传统的冷却液,但稍微经过了加压处理。wk057还亲自扫描并上传了特斯拉电池管理系统的印制电路板图,不过由于电路板上的保形涂料,所以很难清晰地辨别出每一独立区域的数字。 看完上面的视频之后,想必大家对Model S的电池构造有了进一步了解,那么不妨再看看这位wk057车主以图片形式记录的拆解过程: 1. 整装待拆的电池组,楼主还专门为它安装了四枚轮子,主要原因是:抬不动!!!

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗? 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化! 这个说法对吗? ⑴维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

影响UPS电源蓄电池寿命的因素及UPS电源维修检测方法

市场上UPS电源的类型有很多,除了我们常见的山特、维谛、华为等知名品牌之外还有众多的中小UPS 电源厂家,那么影响UPS电源蓄电池寿命的因素及如何进行UPS电源维修检测哪,小编带您走进这个问题。 UPS电源蓄电池有哪些分类 在UPS电源应用中常用的UPS电源电池共有三种:包括开放型液体铅酸电池,免维护电池,镍铬电池,影响电池寿命的因素,不同种类UPS电源电池也有各自的优点和缺点。现UPS电源厂家所配的电池一般为免维护电池,下面以免维护蓄电池为主介绍三种电池的特点: 1、开放型液体铅酸电池 此类电池按结构可分为8-10年,15-20年寿命两种。由于此电池硫酸电解会产生腐蚀性气体,此类电池必须安装在通风并远离精密电子设备的房间,且电池房应铺设防腐蚀瓷砖。由于蒸发的原因,开放电池需定期测量比重,加酸加水。此电池可忍受高温高压和深放电。电池房应禁烟并用开放型电池架。此电池充电后不能运输,因而必须在现场安装后充电初充电一般需55-90小时。正常每节电压为2V,初充电电压为2.6-2.7v。 2、镍铬电池 此类电池不同于铅酸电池,电解时产生氢和氧而不产生腐蚀性气体,因而可安装在电子设备的旁边。且水的消耗很少,一般不需维护。正常寿命为20-25年。远比前面提到的电池昂贵。初始安装的费用约为铅酸电池的三倍。并不会因环境温度高而影响电池寿命,也不会因环境温度低而影响电池容量。一般每节电压为1.2V,UPS因应用此类电池需设计较高的充电器电压。 3、免维护蓄电池 免维护蓄电池由于自身结构上的优势,电解液的消耗量非常小,在使用寿命内基本不需要补充蒸馏水。它还具有耐震、耐高温、体积小、自放电小的特点。使用寿命一般为普通蓄电池的两倍。市场上的免维护蓄电池也有两种:第一种在购买时一次性加电解液以后使用中不需要维护;另一种是电池本身出厂时就已经加好电解液并封死,用户根本就不能加补充液。 由于免维护蓄电池采用铅钙合金栅架,充电时产生的水分解量少,水份蒸发量低,加上外壳采用密封结构,释放出来的硫酸气体也很少,所以它与传统蓄电池相比,具有不需添加任何液体,对接线桩头、电线腐蚀少,抗过充电能力强,起动电流大,电量储存时间长等优点。 UPS蓄电池寿命受什么因素影响? 1、温度影响 温度对UPS电池的自然老化过程有很大影响。详细的实验数据表明温度每上升摄氏5度,电池寿命就下降10%,所以UPS的设计应让电池保持尽可能的温度。 2、充电影响

相关主题
文本预览
相关文档 最新文档